Prediction of solid volume fraction and mean density distribution isograms in slurry flow in a pipe, using ASM model

V.Daei, N.Saghatoleslami
Chemical Engineering Department, Ferdowsi University of Mashhad, (IRAN)
E-mail: slami@um.ac.ir

ABSTRACT

Although many works has been conducted in the field of solid-liquid flow; however, no work has been done on the volume fraction and density distributions, velocity profiles and mean skin friction coefficient distributions in the entrance region of solid-liquid flow. Therefore, in this work a simplified 3-D algebraic slip mixture model (ASM) was adopted for the determination of volume fraction and velocity isograms in slurry flow (i.e., silica sand-water) in a horizontal pipe. In order to obtain this objective, an assumption of fully developed flow was made and the RNG k-ε model for the turbulent flow with the algebraic slip mixture model was utilised. To solve the flow governing equations and discretize the computation domain, an unstructured (block-structured) with non-uniform grid was chosen using a control volume finite difference method (CVFDM). In order to validate the numerical mean pressure gradients obtained in this study, it was compared with the experimental data available in the literature. The result of this study reveals that there exist a good compatability between the present findings and the experimental data available in the literature. © 2015 Trade Science Inc. - INDIA

KEYWORDS

Algebraic slip mixture;
Control volume finite difference method;
Entrance region;
Fully developed turbulent flow.

INTRODUCTION

Solid-liquid flow in pipelines is a popular mode of transportation in various industries. In general, the solid-liquid flow is divided into three major flow patterns: (1) pseudo-homogeneous flow (or homogeneous flow), in which solid particles are suspended uniformly; (2) heterogeneous and sliding bed flow (or moving bed flow); and (3) saltation and stationary bed flow. It was founded that when the solid–liquid flow rate is too low to suspend all solid particles, a stationary bed layer at the bottom of the pipe cross-section was observed. Furthermore, the bed layer in the solid-liquid flow was unstable and dangerous during the operation of the pipeline transportation which would probably enhances the pipe to wear causing the plugging or blockage of the pipeline. Hence, it should be avoided in the design and operation of the pipeline transportation system.[1]

Thompson and co-workers has employd the micro-molecular tagging velocimetry (muMTV) to characterize the hydrodynamic developing flow in a microtube inlet with a n diameter of 180 μm.[2] Orú and Galanis has also examined the influence of the Lewis number on laminar mixed convective heat and mass transfer in a horizontal tube with uniform heat flux and concentration at the fluid–solid interface.[3] Al Araby and co-workers presented a numerical study and experimental investigation of single phase combined free and forced convection in the entry region of a horizontal pipe of constant wall temperature with simultaneous develop-
Prediction of solid volume fraction and mean density distribution isograms in slurry flow

Full Paper

An Indian Journal

MATHEMATICAL MODELING

Governing equations

In this work, the algebraic slip mixture (ASM) model was utilised which could model two-phase flow (i.e., solid-liquid) by solving the momentum equation and continuity equation for the mixture, the volume fraction equation for the secondary phase and an algebraic expression for the relative velocity. The continuity equation for the mixture is defined as:

$$\frac{\partial}{\partial t}(\rho_m) + \frac{\partial}{\partial x_i}(\rho_m u_{m,i}) = 0$$ \hspace{1cm} (1)

The momentum equation for the mixture is expressed as:

$$\frac{\partial}{\partial t} \rho_m u_{m,j} + \frac{\partial}{\partial x_i} \rho_m u_{m,i} u_{m,j} = \frac{\partial p}{\partial x_j} + \frac{\partial}{\partial x_i} \mu_m \left(\frac{\partial u_{m,i}}{\partial x_j} + \frac{\partial u_{m,j}}{\partial x_i} \right) + \rho_m g_i + F_j + \frac{\partial}{\partial x_i} \sum_{k=1}^{n} \alpha_k \rho_k u_{DK,i} u_{DK,j}$$ \hspace{1cm} (2)

where n is the number of phases, F is the body force, α_k is the volume fraction of solids and ρ_m is the mixture density. In Equation 2, μ_m is the viscosity of the mixture and is defined as:

$$\mu_m = \sum_{k=0}^{n} \alpha_k \mu_k$$ \hspace{1cm} (3)

where \bar{u}_m and \bar{u}_{DK} are mass-averaged and drift velocities, respectively and which are expressed as:

$$\bar{u}_m = \sum_{k=1}^{n} \alpha_k \rho_k \bar{u}_k \quad \text{and} \quad \bar{u}_{DK} = \bar{u}_k - \bar{u}_m$$ \hspace{1cm} (4)

The slip velocity is the velocity of the secondary phase (p) relative to the primary phase (q) velocity and is defined as:

$$\bar{v}_{qp} = \bar{u}_p - \bar{u}_q$$ \hspace{1cm} (5)

In the above equations, the drift and slip velocity are related by the following expression:

$$\bar{u}_{DP} = \bar{v}_{qp} - \sum_{i=1}^{n} \frac{x_i \rho_i}{f_m} \bar{v}_{iq}$$ \hspace{1cm} (6)

The basic assumption in the algebraic slip mixture model is to prescribe an algebraic relation for the rela-
tive velocity and a local equilibrium between the phases should be reached over short spatial length scales. The slip velocity in the above equation is defined as:

$$
\vec{v}_{sp} = \frac{\tau_p \rho_m - \rho_m \dot{a}}{f_{drag} \rho_p}
$$

(7)

where \(\dot{a}\) is the secondary phase particle’s acceleration, \(\tau_p\) is the particulate relaxation time, \(\tau_p = \frac{\rho_m d_p^2}{18 \mu_q}\), and \(d_p\) is the particle diameter. The volume fraction equation for the secondary phase is defined as:

$$
\frac{\partial}{\partial t}(\alpha_p \rho_p) + \nabla \cdot (\alpha_p \rho_p \mu_m \nabla \rho_p) = -\frac{\partial}{\partial x_i}(\alpha_p \rho_p \mu_m \nabla \rho_p)
$$

(8)

The algebraic slip mixture model could be applied in both the laminar and turbulent two phase flows. In practice, since the slurry transportation is in the fully developed turbulent flow; in this work, the RNG \(k-\varepsilon\) turbulent model was utilised with the algebraic slip mixture model. The turbulent kinetic energy in RNG \(k-\varepsilon\) turbulent model is defined as:

$$
\frac{\partial}{\partial t}(\rho_m k) + \nabla \cdot (\rho_m \mu_m \nabla k) = \frac{1}{\kappa} \left[\left(\alpha_k \mu_m \frac{\partial k}{\partial x_i} \right) \right] + \mu_T S + \beta_{\rho T} \frac{\mu_T}{\Pr_T} \frac{\partial T}{\partial x_i} - \rho_m \varepsilon
$$

(9)

Dissipation rate of the turbulent kinetic energy is expressed as:

$$
\frac{\partial}{\partial t}(\rho_m \varepsilon) + \nabla \cdot (\rho_m \mu_m \nabla \varepsilon) = \frac{1}{\kappa} \left[\left(\alpha_\varepsilon \mu_m \frac{\partial \varepsilon}{\partial x_i} \right) \right] + C_{1\varepsilon} \varepsilon

\times \frac{\varepsilon}{k} \mu_T S^2 - C_{2\varepsilon} \mu_m \frac{\varepsilon^2}{k} - R
$$

(10)

Where the coefficients, \(\alpha_k\) and \(\alpha_\varepsilon\) are the inverse effect Prandtl numbers for \(k\) and \(\varepsilon\), respectively. In Equation 10, \(\beta\) and \(Pr_T\) are the coefficients of thermal expansion and turbulent Prandtl number for energy, respectively. For the high-Reynolds numbers, \(\alpha_k = \alpha_\varepsilon E'' = 1.393\) and \(C_{1\varepsilon} = 1.42\) and \(C_{2\varepsilon} = 1.68\), respectively. In Equation 10, \(S\) is the modulus of the mean rate-of-strain tensor (i.e., \(S_{ij}\)) and are defined as:

$$
S = \sqrt{2S_{ij}S_{ij}} \text{ and } S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
$$

(11)

\(R\) in Eq. (10) is expressed as:

$$
R = \frac{C_{\mu} \rho_m \eta^3 (1 - \eta/\eta_0)}{1 + \xi \eta^3} \frac{\varepsilon^2}{k}
$$

(12)

where \(\eta = \frac{K}{\varepsilon}, \eta \approx 4.38, \xi = 0.012\), and \(C_{\mu} = 0.085\).

Boundary conditions

At high flow velocities, the solid might be dispersed uniformly in the fluid. In this work, the assumption of non-slip boundary condition was imposed for the walls and the transfer of heat has only been considered for parts of the computation domain. Furthermore, near the wall zone the standard wall function has been imposed, as has been proposed by Lauder and Spalding[13]. For \(y^* \ll 11.225\) at the wall-adjacent cells, the viscous forces are dominant in the sublayer, hence:

$$
\bar{u}^* = y^*
$$

(13)

$$
\bar{y}^* = \frac{\rho_m C_{\mu} k^{1/2}}{\mu_m} y_p
$$

(14)

The logarithmic law for the mean velocity is known to be valid for \(y^* \gg 11.225\) and is be expressed as[16]:

$$
\bar{u}^* = \frac{1}{k} \ln(E y^*)
$$

(15)

Where \(k\) is von Karman’s constant, \(C_{\mu}\) is turbulent model constant, \(k\) and \(\varepsilon\) are the turbulent kinetic energy at point \(p\) and the distance from point \(p\) to the wall, respectively.

As a simplified assumption, the mean velocity inlet and pressure outlet boundary conditions are imposed on the inlet and the outlet of the pipe and are as follows:

$$
u_{x,\text{inlet}} = \text{constant}, \quad u_{y,\text{inlet}} = u_{z,\text{inlet}} = 0, \quad \text{and} \quad p_{\text{outlet}} = \text{constant}
$$

(16)

In this work, the turbulence intensity level (i.e., \(I\)) was set as 1% for the average velocities.

NUMERICAL COMPUTATION

Physical problems and grid system

In this work, the geometry and physical problems are as follows: length of horizontal straight pipeline (i.e., \(L\)) was 1.5 meter; inner diameter of the horizontal straight pipe (i.e., \(d\)) was 0.0225 meter; range of the volume fraction of solids (i.e., \(\alpha_s\)) was 20%; range of mean velocities of the slurry flow was 1–2 m/s; the density of
Prediction of solid volume fraction and mean density distribution isograms in slurry flow

Full Paper

CTAIJ, 10(6) 2015

Prediction of solid volume fraction and mean density distribution isograms in slurry flow

An Indian Journal

CTAIJ, 10(6) 2015

water was 998.2 kg/m³; the density of silica sand was 2381 kg/m³; mean particle diameter (i.e., d_p) was 0.00011 meter and water temperature was 20 °C.

The length of the computation domain (i.e., x/d = 50) was used as the entrance region of the solid-liquid flow, and $x/d > 50$ as fully developed turbulent flow region, as was suggested by Wasp and Brown [17,18]. A multi-block unstructured, non-uniform grid system with hexahedral elements was used to discretize the computation domain, as shown in Figure 1. The unstructured grid system had five blocks to form the entire computation domain. The distribution of the grid on the circumference of the computation domain was uniform. As a contrast to the fully developed region, a finer grid was utilized in the region close to the inlet. The first near-wall cell was placed in such a way that its y^+ value was close to 30.

The grid independency test for obtaining the optimum grid (i.e., 825*9000) is shown in Table 1. Since three-dimensional multi-block was utilized in this work; hence, unstructured grid system adopted. In this work, V was the mean velocity of the solid-liquid flow and Dp/DL was the mean pressure gradient. As Table 1 demonstrates, when the grid refines an increase in the pressure drop was observed. This shows that the pressure gradient was sensitive to grid change.

Numerical method

In this work, the governing equations, wall boundary conditions and inlet and outlet boundary conditions were solved in a cartesian coordinate system with a CFD commercial code, namely FLUENT. Furthermore, heat transfer was neglected and steady state conditions were assumed. Moreover, the slurry flow were either assumed pseudohomogeneous, heterogeneous flow or heterogeneous and sliding bed flow; depends on the mean flow velocity. The second-order upwind scheme was adopted in this work for the discretization scheme and the convection terms and the central difference was applied in the diffusion terms in the governing equations. The SIMPLE algorithm was adopted to resolve the coupling between the velocity and pressure, as was suggested by Doormaal and Raithby [19]. To prevent the results to diverge, the under-relaxation technique was applied in all dependent variables. In this work, the under-relation factor for the pressure was 0.2-0.3, for the velocity components was 0.5-0.7 and those for the turbulence kinetic energy and turbulence dissipation rate were 0.6-0.8. The segregated solver was adopted to solve the governing equations sequentially where each discrete governing equation was linearized implicitly with respect to the equation's dependent variable. A point implicit (Gauss-Seidel) linear equation solver was utilized in conjunction with an algebraic multi-grid (AMG) method to solve the resultant scalar system of equations for the dependent variable in each cell. The numerical computation was considered converged when the residual summed over all the computational nodes at nth iteration (i.e.,) was satisfied with the following criterion:

$$\frac{R^n_\phi}{R^m_\phi} \leq 10^{-4}$$ (17)

where is the maximum residual value of ϕ variable after m iterations.

RESULTS AND DISCUSSION

Validation test

The mean pressure gradient in the solid-liquid flow is one of the key parameters in the slurry transportation...
and pipeline design. As there was no published data available on benchmarking, comparative studies has been made between the experimental data[20,21] and the findings of the present study using algebraic slip mixture model, as shown in Figure 2:

As Figure 2 demonstrates, the mean pressure gradients from the ASM model are compared with the available experimental data[20,21] in a single-species slurry flow for the same pipeline geometry, volume fraction of solid particles, particle size and particle density. Figure 2 reveals that there there exist a good compatibility between the findings of the present study and the experimental data and with a discrepancy of as high as 10-15%.

Mean density and volume fraction of solids

For the analysis of solid-liquid flow for the entrance turbulent region, the mean density and volume fraction distributions are of main concern. In practice, it is difficult to measure the mean density and volume fraction of the solid-liquid flow at any point of the entrance region; however, it is easy to obtain these values numerically.

Figure 2 : Comparative studies between the findings of the present study with the experimental data for fully developed turbulent flow region ($d = 0.0225$ m, $\rho_s = 998.2$ kg/m3, $\rho_w = 2381$ kg/m3, $\alpha_s = 20\%$).

Figure 3 shows the mean density distribution isograms of the silica sand–water flow in the turbulent entrance with $V = 2$ m/s, $\alpha_s = 20\%$, $\rho_s = 2381$ kg/m3, $\rho_w = 998$ kg/m3, $d = 0.0225$ m and $d_p = 0.00011$ m. As Figure 3a demonstrates, relatively small variation of the mean density distribution isograms at the $x/d=15$ are observed. The mean density of the solid-liquid flow usually ranges from 1271 kg/m3 to 1337 kg/m3. As dimensionless length (i.e., x/d) increases, the mean density distribution on the upper section of the pipe decreases; however, a gradual increase in the bottom section are observed. It is worth mentioning that in the central region of the solid-liquid flow, the mean density that ranges from 1271 kg/m3 to 1337 kg/m3 would decrease with an increase of the dimensionless length (i.e., x/d), as shown in Figures 3b and c. Figure 3d demonstrates, the mean density distribution isograms remains constant as the solid-liquid flow reaches a fully developed turbulent flow region. On the upper section of pipe, the mean density of the solid-liquid flow approaches the water density (i.e., 998.2 kg/m3); on the other hand, in the bottom section it would be close to the silica sand density (i.e., 2381 kg/m3). Furthermore, the porosity

Figure 3 : Mean density distributions of the single-species slurry flow for the entrance of the fully developed turbulent flow region ($\rho_s = 2381$ kg/m3, $\rho_w = 988.2$ kg/m3, $\alpha_s = 20\%$, $d = 0.0225$ m, $d_p = 110$ μm and $V = 2$ m/s).
distribution in the lower section of the pipe could be characterized by the sand’s volume fraction distribution where the porosity are found to be 0.31 in the lower section of the pipe. As Figure 3 demonstrates the distribution of density mixture in the pipe, it was expected that the porosity of the sands accumulated near the bottom of the pipe should drop sharply. However, it occurs only in a very thin layer. It was also concluded that the maximum sediment density or bulk density would reach only near the bottom thin layer section. Furthermore, Figure 3 also demonstrates that the mean density distribution isograms are symmetric in the horizontal direction; however, they are asymmetric in the vertical direction. The mean density of the solid-liquid flow in the upper section of the pipe is much smaller than that in the lower section, due to the solid particles’ settlement.

Figure 4 shows the volume fraction isograms of silica sand in the turbulent entrance with $V=2$ m/s, $\alpha_k=20\%$, $\rho_s=2381$ kg/m3, $\rho_w=998$ kg/m3, $d=0.0225$ m and $d_p=110$ μm. As Figure 4a demonstrates, the volume fraction in the central region ranges from 0.197862 to 0.243189 which is relatively large. Furthermore, in the upper section of pipe the volume fraction was relatively small (i.e., 0.03448) at $x/d=15$. However, as the dimensionless length (i.e., x/d) increases in the central section, the volume fraction which ranges from 0.197862 to 0.243189 would shrinked. Hence, the volume fraction would gradually be increased to 0.04918 in the upper part of the pipe. As Figure 4b and c demonstrates, in the lower section of the pipe the volume fraction was higher than 0.243189, indicating the accumulating of the solids’ settlement.

As in Figure 4d shows for the fully developed turbulent flow region, the volume fraction isograms of silica sand would remains constant. However, for upper section of the pipe the volume fraction of silica sand approaches zero. Similar to the density distribution of the solid–liquid flow, the volume fraction isograms of solids in the horizontal direction was symmetric. However, a gradual increase was observed for the top section of the pipe compared to the bottom section in the vertical direction (Figure 4).

Velocity profiles

The velocity profile of the solid-liquid flow along the horizontal pipeline are mainly aected by the volume fraction of solids, mean density, mean velocity and viscosity of the solid-liquid flow. Therefore, the velocity profile of the solid-liquid flow along the horizontal pipe is not much different from that of single-phase flow. Generall speaking, the velocity profile in the single-phase flow is symmetric and liquid density remains constant in the cross-sectional area of the pipe. However, since the density of solid particles is usually higher than that of liquid, the mean density and the volume fraction of the solid particles in the lower section of the pipe are higher than those in the upper part. In the higher density $\rho_s=2381$ kg/m3). It demonstrates that a mean velocity of 2 m/s is exerted at the pipe inlet. For the entrance region, the velocity profiles near the wall are reduced sharply due to the strong viscous shear stress in the turbulent boundary layer and non-slip boundary condition on the wall. As shown in Figure 5b-d demonstrates and in order to satisfy the flow continuity equation, the velocity in the central part of the pipe should be increased and the velocity profile of the solid-liquid flow keeps developing in the entrance. In fully developed turbulent flow region, the velocity profiles along the vertical centerline would remains constant. Since the density and viscosity distributions of the solid-liquid flow are asymmetric in the vertical direction, it could be concluded that the velocity profiles of the solid-liquid flow in the upper section of the pipe would be higher than those in the lower section.
lower part (Figure 5e). Furthermore, the maximum velocity in the center would move up gradually along the vertical centerline of the pipe in comparison with the single-phase flow where a maximum velocity was observed in the centerline. Therefore, as shown in Figs. 5b-e the velocity distribution in the fully developed turbulent flow region was asymmetric in the vertical direction.

Figure 6 demonstrates the velocity isograms of single-species slurry flow (silica sand-water slurry) for the entrance region of fully developed turbulent flow region. Similar to
Prediction of solid volume fraction and mean density distribution isograms in slurry flow

Figure 5: The location of maximum velocity of the solid-liquid flow would gradually enhance from the entrance region and would remain constant at the end for the fully developed turbulent flow region. Since the density, volume fraction and flow resistance of the solid-liquid flow along the vertical centerline are symmetric in the horizontal direction, Figure 6 also demonstrates that the velocity isograms of solid-liquid flow are symmetric in the horizontal direction.

CONCLUSIONS

It was the aim of this work to determine the volume fraction and velocity isograms in slurry flow (i.e., silica sand-water) in a horizontal pipe using algebraic slip mixture model. The findings of this study could be categorized and the following conclusions could be made:

The algebraic slip mixture model could provide a good prediction for single species slurry flows.

The findings of this study reveal that the pressure gradients in the single-species slurry flow agrees with a good degree of accuracy with the available experimental data.

For the entrance region, the distributions of mean density and volume fraction of solids would gradually reduce in the upper section of the pipe; however, would increase in the lower section.

In the fully developed turbulent flow region, the distributions of mean density and volume fraction remain constant.

On the top section of the pipe, the mean density of the solid-liquid flow approaches similar to that of primary fluid and the volume fraction of solids reaches zero.

In comparison with the single-phase flow, the location of maximum velocity center in the solid-liquid flow enhances gradually along the vertical centerline in the entrance region.

The velocity profiles of solid-liquid flow are asymmetrical in the vertical direction; however, the velocity profiles are symmetric in the horizontal direction.

NOMENCLATURE

secondary phase particle’s acceleration (m/s²)

C_1, C_2, C_μ constants

d_p solid particle diameter (m)

\dot{E} empirical constant

F body force (N/m²)

g acceleration of gravity (m/s²)

I turbulent intensity level

k turbulent kinetic energy (m²/s²)

κ von Karman’s constant

k_p turbulent kinetic energy at point p (m²/s²)

L pipeline length (m)

Pr_t turbulent Prandtl number for energy

S modulus of the mean rate-of-strain tensor

t time (s)

u_m mass-averaged velocity (m/s)

u_{DK} drift velocity (m/s)

u_p mean velocity of the fluid at point p (m/s)

V solid–liquid mean velocity (m/s)

q_p slip velocity (m/s)

X distance along the pipe centerline (m)

y_p distance from point p to the wall (m)

ΔB roughness function

$\Delta p/\Delta L$ mean pressure gradient of the solid–liquid flow (Pa/m)

Greek symbols

α_s volume fraction of solids
\(\beta \) coefficient of thermal expansion
\(\rho \) density (kg/m\(^3\))
\(\varepsilon \) dissipation rate of turbulent kinetic energy (m\(^2\)/s\(^3\))
\(\mu \) dynamic viscosity, N s/m\(^2\)
\(\tau_{ps} \) particulate relaxation time (s)

Subscripts
i, j, k general spatial indices
m mixture
s, w silica sand and water

ACKNOWLEDGMENTS

The authors wish to gratefully acknowledge the helpful comments made by Mr. Nezhadhassan in this work.

REFERENCES