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ABSTRACT

In this paper, three different multivariate calibration methods feed-forward
artificial neural networks (ANN) with back-propagation learning rule, Par-
tial Least Squares (PLS) and Multiple Linear Regression (MLR) were ap-
plied to predict the retention time of 103 diverse pesticides or toxicantsin
gas chromatography-mass spectrometry (GC-M S) by using molecular struc-
tural descriptors. Five descriptors are considered to account for the effect
of solute structure on the retention time. These are (solvation connectivity
index chi-1, 3D -Balabanindex, H autocorrel ation of lag 3/weighted by atomic
sanderson electronegativities, relative negative charge, Wiener-type index
from Z weighted distance matrix (Barysz matrix). The Stepwise SPSS was
used for the selection of the variables that resulted in the best-fitted mod-
els. After variables selection, 103 compounds randomly are divided into
three training, validation and test sets. The mean sgquare error (MSE) of
training, test and validation setsfor the ANN model are 0.0008676, 0.0014
and 0.0013, respectively. Result obtained showed that nonlinear model can
simulate the relationship between structural descriptors and the retention
times of the molecules in data set accurately.
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1.INTRODUCTION

High-performanceliquid chromatography (HPLC)
and gas chromatography (GC) arethemost appropri-
ateandytica techniquesfor multi-res duemonitoring of
pesticides in natural ecosystems or water and food-
stuffsfor human consumption, which, asaconsequence
of persistency and toxicol ogical effects of theseicro-
contaminants, hasbecomein thelast decades an es-
sential aspect of environmenta protection and human
health, safeguard policy™. Asapotentid dternativeto
expend veand time-consuming experimental trid-and-
error gpproach traditionally adopted to optimize chro-

matographic separations, retention predictivemodels
havereceived considerable attention in recent years?.
Animportant property that has been extensively stud-
iedin QSRR isthe chromatographicretentiontime. A
QSRR study involvesthe prediction of chromatographic
retention parametersusing molecular structure. QSRR
studiesarewidely investigated in gas chromatography
(GC) and high-performanceliquid chromatography
(HPLC)X., The chromatographic parameters are ex-
pected to be proportional to afree energy changethat
isrelated to the solutedistribution on the column. Chro-
matographic retentionisaphysica phenomenonthat is
primarily dependent on the interactions between the
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solute and the stationary phase. Molecular group con-
tribution methodsarewidely employed to estimate gas
chromatographic retention parameters?. Pesticides, as
aconsequenceof massive usein agriculture and other
human activities, arewiddy diffuseenvironmenta con-
taminants subjected in Europeand USA torestrictive
legidation aimed at the protection of natural ecosys-
temsand hedlth safeguard. Rather thanawell identifi-
ablechemicd dass, theterm“pesticide” identifies a large
spectrum of structurally different compounds. A wide
Sructurd variability aso characterizesthe pesticide sub-
families (insecticides, herbicidesand fungicides) that
group together molecul esaccording tothetarget of bio-
cideactivity. Chromatography isthemost suitable ana
Iytical tool for pesticide determinationf>4l,

Quantitativestructure-activity relationship (QSAR)
methods represent an attempt to correl ate structural
and/or property descriptorsof compoundswith bio-
logical activities. These descriptors characterizing to-
pologica, connectivity, geometrica and getaway prop-
ertiesof aseriesof moleculeshave beentraditionally
determined mainly empiricaly, and only morerecently
by computationa methods.

Artificia neural networksareamong thebest avail-
abletoolsto generate nonlinear models. Artificia neu-
ral networksare parallel computational devices con-
sisting of groupsof highly interconnected processing
elements called neurons. Artificial neural networks
(ANN), inspired by scientist’s interpretation of the ar-
chitectureand functioning of the human brain”8 mean,
however, amethodol ogy rel ated to nonlinear regres-
sion techniques®™¥., Reviewshavebeen published con-
cerning applications of ANN in different fiel dg12,
Partial Least Squares (PLS) wasintroduced by Wold
andKrishnaiah* andiscommonly usedinchemometrics
asamodeling alternativeto Ordinary Least Squares
(OLS) whenthepredictor matrix ispoorly conditioned.
PLSregressionisoneof thestandard cdibration meth-
odsused in many chemical applicationg®.

In the present work, a QSRR study, has been car-
ried out onthe GC retentiontimes (t.)) for 103 diverse
pesticidesor toxicantsby using structura molecular de-
scriptors. Thetwo linear methodsMLR and PLS and
nonlinear method feed forward neural network with
back-propagation training along with Stepwise SPSS
asvariablesel ection software were used to model the
retentiontimeswith thestructurad descriptors.
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2.METHODS

2.2. Sepwisemultiplelinear regression

Themultiplelinear regressons(MLR) arean ex-
tension of the classicd regression method to morethan
onedimension™. MLR cal culates QSAR equation by
performing standard multivariableregression calcula-
tionsusing multiplevariablesinasingleequation. The
stepwisemultiplelinear regressions areacommonly
used variant of MLR. Inthiscase, dso amultiple-term
linear equation is produced, but not al independent
variablesare used. Each variableisadded to theequa-
tion at atimeand anew regressionisperformed. The
new termisretained only if equation passesatest for
sgnificance. Thisregressonmethod isespecidly useful
when thenumber of variablesislargeand whenthekey
descriptorsare not known.,

2.3. Partial least squares(PLS)

ThePLS modd will try to find afew PLSfactors
(also known as components or latent variables) that
explain most of thevariation in both predictorsand re-
sponses. Factorsthat explain responsevariation well
providegood predictive mode sfor new responses, and
factorsthat explain predictor variationwell arewd | rep-
resented by the observed values of thepredictors. The
Partial Least Squares (PLS) regression methodiswell
suited for problemswith multicollinear predictor and
responsevariables. PLSisexplanedindetal inlitera
ture*”8, To obtain the PLS model with the best pre-
dictive performance, the number of PLS components
that optimizethepredictiveability of themoded should
be determined. Thisistypically doneby cross-valida-
tion, aprocedurein which theavailabledatawithinthe
training set aresplitinto several subgroupscalled vali-
dation sets. The prediction residual sum of squares
(PRESS) for thetest samplesisdetermined asafunc-
tion of thenumber PLS componentsretainedinthere-
gression model that wasformed withthetraining data.
The procedureisusually repeated severa times, with
each subset in the training set being part of the test
samplesat least once.

2.4. Artificial neural networks

Principles, functioning and applicationsof artificia
neural networks havebeen adequately described el se-
where? 2, A three-layer feed-forward network formed
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by oneinput layer consisting of anumber of neurons
equd to the number of descriptors, oneoutput neuron
and anumber of hidden unitsfully connected to both
input and output neurons, were adopted in this study.
Themost used |earning procedureisbased on the back-
propagation a gorithm, in which the network readsin-
puts and corresponding outputsfrom aproper data set
(training set) and iteratively adjustsweightsand biases
inorder tominimizetheerror in prediction. Toavoid
overtraining and consequent deterioration of itsgener-
alization ability, the predictive performance of the net-
work after each weight adjustment ischecked on un-
seen data(vaidation set).

Inthiswork, training gradient descent with momen-
tum isapplied and the performance function wasthe
mean square error (M SE), the average squared error
between the network outputs and the actual outpuit.

2.5. Computer hardwar eand software

All cdculationswererunonaPentium 1V persona
computer with windows X P as operating system. The
molecular 3D structures of data set were sketched us-
ing hyperchem (ver. 7.1), then each molecule was
“cleaned up” and energy minimization was performed
using geometry. Optimization was done using
semiempirical AM1 (Austin Model) Hamiltonian
method. After optimization, 3D structureswith lower
energy conformersobtained by the aforementioned pro-
cedurewerefed into dragon (ver. 5.2-2005) for cal cu-
|ation of thestructural molecular descriptors (constitu-
tiond, topol ogical, connectivity, geometrical, getaway
and charge descriptors). Through these descriptors
which havevauesfurther than 90% zero or haveequal
valuesfurther than 90% are not useful and cut. Then
Descriptor selection was accomplished by using
Stepwise SPSS (SPSS Ver. 11.5, SPSS Inc.). PLS
regression (PLS_Toolbox, version 2.1, Eigenvector
Company) and other cal culationswere performedin
the MATLAB (version 7.0, MathWorks, Inc.) envi-
ronment.

3.RESULTSAND DISCUSSION

3.1. Datasets

Retention times(t.)) of 103 compoundsincluding
pesticides or toxicantswere taken fromtheliterature??
that shownin TABLE 1.
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TABLE 1: Dataset and corresponding observed and (ANN,
MLR, PLS) predicted valuesof Retentiontime(TR)

No. Name tr tr tr tr
Training set (EXP) (ANN) (MLR) (PLS)
1 Ethoprophos 1195 1199 1274 1310
2 Demton-s-methyl 1217 1295 1.297 1.307
3 Omethoate 1239 1260 1249 1.268
4  Terbufos 1.303 1318 1.349 1351
5  Chlorbufan 1313 1320 1.336 1.366
6 Atrazine 1323 1308 1318 1.329
7  Trietazine 1326 1344 1338 1.357
8 Lindan 134 1325 1.345 1.350
9 PCB15 1344 1360 1410 1.396
10 Disulfoton 135 1.334 1.346 1.370
11 Dimetoate 1356 1284 1279 1.289
12 Carbofuran 136 1.367 1.352 1.384
13 4,4-DDM 139 1.395 1427 1422
14 PCB31 1.399 1420 1.465 1.446
15 Benoxactor 1401 1.433 1424 1437
16 Fenchlorphos 1429 1412 1482 1516
17  Phosphamidon 143 1414 1399 1.324
18 Aldrin 1434 1460 1551 1581
19 PCB52 1443 1492 1520 1.496
20 Paration-methyl 1449 1441 1441 1.455
21 Metalaxyl 1449 1489 1464 1444
22 Pentanochlor 1451 1436 1345 1371
23 Pirimiphos 1452 1451 1536 1525
24 Paraoxon-ethyl 1.463 1.491 1438 1.482
25 Metolachlor 1.464 1488 1.456 1.436
26  Chlorpyriphos 1476 1480 1522 1574
27  Fenitrothion 1477 1482 1476 1477
28 Malathion 1.478 1477 1477 1.446
29 Thiobencrab 1478 1434 1.39% 1.430
30 Isodrin 1485 1513 1569 1.580
31 Fenthion 1501 1517 1497 1491
32 Allethrin 1503 1523 1547 1536
33 Pendimethalin 1516 1.494 1469 1.446
34  Isocarbophos 152 1500 1511 1.493
35 PCB70 1522 1494 1521 1.495
36 Isofenphos 1523 1529 1.540 1.580
37  Tridimenol 1533 1556 1537 1517
38 Bromophos-ethyl 1.539 1532 1548 1.589
39 Chlorfenvinphos 154 1587 1580 1.611
40 PCB101 1545 1567 1573 1545
41 2,4-DDE 1545 1.609 1599 1.560
42 Alphaendosulfan 1549 1.630 1599 1.650
43  Phenthoate 1551 1597 1571 1572
44  Chlorbenside 1557 1459 1483 1.491
45  Prothiofos 1572 1555 1553 1.600
46 Tetrachlorvinphos 1.576 1.560 1592 1.603
47 Chinomethionate 1577 1562 1.473 1.466
48 PCB87 1581 1562 1570 1547
49 4,4DDE 1582 1616 1.604 1557
50 lodofenphos 1589 1582 1550 1.558
51 Fenamiphos 159 1559 1516 1.528
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TABLE 2: Molecular descriptor semployed for the proposed
QSRR models

No. Descriptor Notation Type Coefficient
solvation connectivity . 0.096
1 index chi-1 X1sol Connectivity (+0.014)
. . -0.026
2 3D -Balaban index J3D  Geometrical (0.009)
H autocorrel ation of
lag 3 / weighted by -0.047
s atomic sanderson H3e Getaway (£0.029)
electronegativities
relative negative -0568
4 charge RNCG Charge (£0.249)
Wiener-type index
from Z weighted . -0.0000989
5 distance matrix Whetz - Topological -, 4 5300989)

(Barysz matrix)
TABLE 3:Correlation matrix of thefivedescriptorsandt,
used in thiswork?*

Xl1lsoL J3D  H3e RNCG WhetZz  tg
X1soL 1 -0186 0.605 0.019 0.653 0.810
J3D 1 0.039 0.207 -0.144 -0.513
H3e 1 -0123 0557 0.306
RNCG 1 -0.432 -0.180
WhetZz 1 0.474
tr 1
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No. Name tr tr tr tr
Training set (EXP) (ANN) (MLR) (PLS)
52 2,4-DDD 16 1599 1592 1.549
53 Binapacryl 1604 1572 1552 1541
54 PCB149 1608 1.626 1.616 1.597
55 Endrin 1612 1628 1.625 1.626
56 PCB118 1614 1566 1574 1.545
57 PCB153 1.627 1.627 1.625 1.594
58 Beta-endosulfan 1.637 1576 1579 1.650
59 4,4DDD 1.637 1.601 1591 1.547
60 PCB141 1639 1.627 1.625 1.596
61 Sulprophos 1.647 1629 1592 1.598
62 4,4-DDT 1652 1640 1.626 1.579
63 Benalaxyl 1652 1647 1674 1611
64 PCB187 1.653 1.666 1.663 1.646
65 Haloxyfop-2-ethoxyle 1.656 1.657 1.644 1.704
66 PCB185 1661 1.669 1.662 1.647
67 PCB167 1661 1.627 1.625 1.594
68 Edifenphos 1.664 1.658 1.622 1.648
69 PCB202 1665 1.672 1.721 1.695
70 PCB128 1666 1.625 1.623 1.597
71 Brompropylate 167 1671 1.644 1648
72 Fenpropathrin 1673 1688 1.731 1.705
73 Dicofol 1678 1.652 1598 1.601
74 Tetramethrin 1679 1665 1.630 1.639
75 Leptophos 1.687 1.691 1.714 1.700
76 Tertradifon 1.688 1.677 1.621 1.634
77 Phosalone 1689 1701 1.690 1.707
78 Pyrazophos ethyl 1695 1.698 1713 1.734
79 Fenarimol 1.697 1.688 1.663 1.653
80 Permethrin 17 1688 1742 1.757
81 Azinphos-methyl 17 1690 1642 1.638
Test set
1 Fonofos 1.337 1.338 1.370 1.424
2 Benfuresate 1432 1451 1440 1.469
3 Methiocrab 1483 1428 1.387 1.376
4 Bromophos-methyl 1504 1.465 1515 1.537
5 Procymidone 1544 1537 1522 1504
6 Crotoxyphos 1561 1561 1573 1.569
7 Buprofezin 159 1569 1.567 1.558
8 Ethion 1636 1544 1.658 1.585
9 Famphur 1664 1632 1.648 1.581
10 Pyridaphention 168 1679 1.618 1.675
11 PCB194 1701 1674 1726 1.695
Validation set
1 Phorate 1247 1268 1.314 1.340
2 Dichlorofention 1.387 1417 1.465 1.524
3 Trichoronate 1472 1451 1.483 1.530
4 Paration 1495 1494 1.469 1.508
5 Fumetrain 1533 1.636 1.619 1.628
6 Quinalophos 1549 1531 1538 1.592
7 Methidathion 1587 1.607 1554 1531
8 24-DDT 1627 1644 1632 1581
9 PCB-138 165 1.627 1.624 1.595
10 PCB180 1674 1649 1674 1.645
11 Imidan 1.687 1682 1640 1.631
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*The definitions of the descriptors are given in TABLE 2.

The QSRR modd sfor the estimation of thereten-
tiontimesof variouscompoundsareestablishedinthe
following fivesteps: (1) molecular structureinput and
generation of thefilesconta ning thechemica sructures
stored in acomputer-readable format; (2) quantum
mechani csgeometry optimizationwith asemi-empiri-
ca (AM1) method; (3) structura descriptors compu-
tation; (4) structurd descriptorsselection; (5) structure-
retention models generation with the multivariate
methods(ANN,MLR,PLS) and statistical anaysis.

Thedatasat wasdivided into threesubsetsinANN,
MLR and PLS: atraining set of 81 compounds, atest
and avalidation setsboth of 11 compounds.

3.2. Descriptors selection

Generdly thefirst stepin variablessdectionisthe
calculation of the correlation between variablesand with
seeking property. In the present case, to decreasethe
redundancy existed in the descriptorsdatamatrix, the
correlationsof descriptorswith each other and withthe
t. of the molecules were examined, and descriptors
whichshowed highinterrelation (i.e., r>0.9) witht_ and
low interrelation (i.e., r<0.9) with each other were de-
tected. For each class of the descriptor just one of them
was kept for construction thefinal QSRR model and
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therest were deleted. In second step, Stepwise SPSS
was used for variables selection. After these process-
ing five descriptors were remained, that keeps most
interpretiveinformation for retentiontime. TABLE 2
showsfivedescriptorsand their coefficients (+ confi-
denceinterval) that usedin MLR method. A correlation
analysiswascarried out to evaluate correlations be-
tween sel ected descriptors with each other and with
retentiontime(TABLE 3).

3.3.ANN optimization
A three-layer neural network wasused and start-
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Figurel: Plotsof predictedt, estimated by ANN modeling
ver susexperimental t, compounds
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Figure2: Plotsof resdual versusexperimental t,in ANN
mode

TABLE 4: Architectureand specification of the generated
ANNs

No. of nodesin theinput layer 5
No. of nodes in the hidden layer 7
No. of nodes in the output layer 1

learning rate 0.6
Momentum 0.1
Epoch 5300

Transfer function Sigmoid

—— Fuyl] Paper

ing network weightsand biaseswererandomly gener-
ated. Descriptors selected by stepwise method were
used asinputsof network and the signal of the output
node represent the retention time of pestisides. Thus,
thisnetwork hasfive neuronsin input layer and one
neuroninoutput layer. The network performancewas
optimized for thenumber of neuronsinthehidden layer
(hnn), thelearning rate (Ir) of back-propagation, mo-
mentum and the epoch. Asweights and biased are op-
timized by the back-propagation iterative procedure,
training error typically decreases, but validation error
first decreases and subsequently beginstoriseagain,
revedlingaprogressveworsening of generdization ability
of the network. Thustraining was stopped when the
validation error reachesaminimumvalue. TABLE 4
showsthe architecture and specification of the opti-
mized network.

3.4. Resultsof ANN analysisand comparison with
MLRandPLS

Thenonlinear QSRR model provided by the opti-
mal neural network ispresented infigure 1 where com-
puted or predicted retention time values are plotted
against the corresponding experimenta data. Figure 2
showsaplot of residualsversusthe observed retention
timevaues. Thesubstantial random pattern of thisplot
indicatesthat most of thedatavarianceisexplained by
the proposed model.

The agreement between computed and observed
vauesinANN training, validation and test sstsareshown
iINTABLE 1and TABLE 5. Thestatistical parameters
calculated for the ANN, MLR and PLS models are
presented in TABLE 5. Goodness of theANN-based
modd isfurther demonstrated by the high value of the
correlation coefficient R between cal culated and ob-
servedt, values0.9728, 0.9604 and 0.9605 for train-
ing, vaidation and test set, respectively.

For comparison, alinear QSRR model relating re-
tention timesto the sel ected descriptorswere obtained
by means of MLR and PLS methods.

With the purpose MLR and PLS model sbuilt on

TABLE5: Satigtical parameter sobtained usngtheANN ,M LR and PL Smodels®

Ft Fv Fc Rt Rv Rc SEt SEv SEc M odel
107.357 106.792 1394.641 0.960 0.960 0.973 0.031 0.037 0.029 ANN
66.553 78.729 511.820 0.939 0.947 0.931 0.042 0.036 0.044 MLR
27.359 30.040 349.153 0.867 0.877 0.903 0.051 0.043 0.041 PLS

"c refers to the calibration (training) set; v refers to validation set; t refers to test set; R is the correlation coefficient; and F is the

statistical F value.
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the samesubsetsthat used inANN analysis.

Multiplelinear regressons (MLR) areoneof the
most used modeling methodsin QSRR. Thecolinearity
problem of the MLR method has been overcome
through the devel opment of the partial |east-squares
projectionsto latent structures (PLS) method, which
has been shownto be an efficient gpproachin monitor-
ing many complex processes, reducing thehigh dimen-
siond strongly cross-correl ated datato amuch smaller
and interpretable set of principa componentsor latent
variables. Thenumber of significant factorsfor thePLS
algorithm was determined using the cross-validation
method. Theoptimum number of factorswasconc uded
asthefirstlocal minimuminthe PRESSversusnumber
of factorsplot. Figure 3 showsthe plot of PRESS ver-
susnumber of factorsfor thePLSmodd. Thebest PLS
model contained five saected descriptorsintwo latent
variablesspace.

Comparisonbetweendatidicd parametersin TABLE
5 revealsthat nonlinear ANN model produced better
resultswith good predi ctive ability than linear models.

4. CONCLUSIONS

QSRR anaysiswas performed on aseries of pes-
ticidesor toxicantsusingANN, MLR and PLS meth-
odsthat correlatet valuesof these compoundtothe
structura descriptors.

According to obtained resultsit isconcluded that
the X1sol, J3D, H3e, RNCG and Whetz can be used
successfully for modeling t,, property of theunder study
compounds. The statistical parameters of the built
QSRR modd sweresatisfactory which showedthehigh
quality of the chosedescriptors. High correl ation coef-
ficentsandlow prediction errorsobtained confirm good
predictive ability of ANN model. The QSRR models

proposed with thesmply cal culated molecular descrip-
tors can be used to estimate the chromatographic re-
tention timesfor new compounds evenin the absence
of thestandard candidates.
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