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ABSTRACT

An artificial neural networks (ANN) study, has been carried out on 38 di-
verseorganic pollutantsfor prediction chemical toxicity by using molecular
structural descriptors. Modeling of logarithm values of chronic toxicity in
fish (Log Chv) of these compounds as a function of the theoretically de-
rived descriptors was established by artificial neural networks (ANN). The
Stepwise SPSS was used for the sel ection of the variables (descriptors) that
resulted in the best-fitted models. For prediction Log Chv of compounds,
three descriptors were used to devel op a quantitative relationship between
the Log Chv and structural properties. Appropriate models with low stan-
dard errors and high correlation coefficients were obtained. After variables
selection, compounds randomly were divided into two training and test
sets and ANN used for building the best models. The predictive quality of
theANN modelsweretested for an external prediction set of 11 compounds
randomly chosen from 38 compounds. The regression coefficients of pre-
diction for the ANN model were 0.9940, 0.9955 for training and test sets
respectively. Result obtained showed that ANN can simulate the relation-
ship between structural descriptors and the Log Chv of the molecules in
data sets accurately. © 2011 Trade Sciencelnc. - INDIA
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INTRODUCTION

Quantitative structure-activity relationships
(QSARS) arethefundamental basisof developed ap-
proachesfor estimating thetoxicity of chemicasfrom
their molecular structureand phys cochemical proper-
tied*?. QSARsare mathematical modelsthat can be
usedto predict the phys cochemica andbiological prop-
ertiesof moleculesconsidering that thebiologica activ-
ity of anew or untested chemical canbeinferred from
themolecul ar structure or other propertiesof similar

compounds whose activities have already been as-
sessed. Thetwo main objectives of QSARsareto a-
low prediction of the biological propertiesof chemi-
caly characterized compoundsthat have not been bio-
logically tested and to obtai n information on the mo-
lecular characteristicsof acompound that areimpor-
tant for thebiological properties?.

Artificia neural networks(ANNSs) areamong the
best availabletool sto generate nonlinear models. Arti-
ficid neurd networksarepardle computationd devices
consisting of groupsof highly interconnected process-
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ing e ementscaled neurons. Artificid neura networks
(ANNS), inspired by scientist’s interpretation of the ar-
chitectureand functioning of thehuman brain®4. mean,
however, amethodol ogy rel ated to nonlinear regres-
siontechniques®d. Reviewshavebeen published con-
cerning applicationsof ANN indifferent fieldg”®. Re-
cently, artificia neurd networks(ANNS) havebeenusd
toawidevariety of chemical problemssuch asspectra
andysig?, prediction of didlectric constant!*? and mass
spectral search™, ANNshavebeen appliedto QSAR
andysssincethelate 1980sduetoitsflexibility inmod-
eling of nonlinear problems, mainly inresponsetoin-
crease accuracy demands; they have beenwiddy used
to predict many physicochemica propertied?>¢. The
mainamof theppresent work isdevelopment of aQSAR
modelsby using ANN as nonlinear method to predict
thelogarithm vauesof chronictoxicity infish of various
organic pollutants.

Inthe present work, a QSAR study, has been car-
ried out onthelogarithm values of chronictoxicity in
fish (Log ChV) for 38 diverse organic pollutants by
using structural molecular descriptors. Nonlinear
method, feed forward neura network with back-propa-
gation training along with Stepwise SPSSasvariable
sel ection software were used to model the Log ChV
with thestructural descriptors.

MATERIALSAND METHODS

Experimental data

The experimental data of thelogarithm values of
chronictoxicity infish (Log Chv), for 38 chemical com-
poundsincluding variousorganic pol lutantsweretaken
fromliteraturd, that shownin TABLE 1. Thedatasat
randomly wasdivided into two subsetsinANN: train-
ing and test setsincluding 27 and 11 compoundsre-

Spectively.
Artificial neural networks(ANN)

Principles, functioning and applicationsof artificia
neural networks have been adequately described el se-
wherd819, Therelevant principleof supervised learn-
inginanANN isthet it takesnumericd inputs(thetraning
data) and transferstheminto desired outputs. Theinput
and output nodesmay be connected to any other nodes
withinthenetwork. Theway inwhich each nodetrans-

TABLE 1: Dataset and corresponding observed and ANN
predicted valuesof Log Chv?

No. Name log Chv log Chv Residua
Training set (EXP) (ANN) I
1 (2,4,5-trichlorophenoxy)acetic acid 12912 1.1685 0.0591
2 2-(2,4,5-trichlorophenoxy)propionic acid 0.9490 0.9470 -0.0020
3 2-(2,4-dichlorophenoxy)propionic acid 1.4551 1.4186 -0.0365
4 2-(4-chlorophenoxy)-2-methylpropionic acid 1.4939 1.6230 0.1291
5 2-(4-chlorophenoxy)propionic acid 1.9431 1.9224 -0.0207
6 2,4-dichlorophenoxyacetic acid 1.7851 1.7472 -0.0379
7 2,4-dimethylphenol 0.0546 0.0953 0.0407
8 2-chlorophenol 0.3581 0.3157 -0.0424
9 2-phenoxypropionic acid 24181 2.4769 0.0588
10 2-phenyl phenol -0.2197 0.0674 0.2871
11 3,6-dichloro-2-methoxybenzoic acid 2.2027 2.1707 -0.0320
12 4-(2-methyl-4-chlorophenoxy)butyric acid ~ 1.0342 1.1031 0.0689
13 Anthracene -0.8125 -0.7893 0.0232

14 Biphenyl -0.3635 -0.4137 -0.0502
15 Bromobenzene 0.4103 0.4018 -0.0085
16 Buturon 0.7800 0.5552 -0.2248
17 Chlorbromuron 0.4472 0.2542 -0.1930
18 Chloroxuron -0.3665 -0.2431 0.1234
19 Chlortoluron 0.8031 0.8603 0.0572
20 Fenuron 1.7348 1.7923 0.0575
21 Fluometuron 1.0414 1.1409 0.0995
22 |soproturon 0.5637 0.4297 -0.1340
23 Monolinuron 1.0855 1.0343 -0.0512
24 Monuron 1.2520 1.1843 -0.0677
25 Pentachorophenol -0.9393 -0.9198 0.0195
26 Phenol 0.6289 0.6997 0.0708
27 Tetradifon -1.2366 -1.2524 -0.0158
Test set
28 (4-chloro-2-methylphenoxy)acetic acid 1.8300 1.7709 -0.0591
29 2-(3-chlorophenoxy)propionic acid 19431 1.8643 -0.0788

0.0611 -0.0612 -0.1223
0.0656 -0.0742 -0.1398

30 2,4-dichlorophenol
31 3-methyl-4-chlorophenol

32 Benzene 0.8814 0.6747 -0.2067
33 Buprofezin -0.5361 -0.4936 0.0425
34 Diuron 0.7646 0.7627 -0.0019
35 Metoxuron 1.2435 1.4082 0.1647
36 Neburon -0.4510 -0.3866 0.0644
37 Propargite -1.5850 -1.4886 0.0964
38 Triclopyr 19279 1.9179 -0.0100

“Log Chv in fish after 30 days
formsitsinput depends on the so-called ‘connection
weights’ or ‘connection strength’ and bias of the node,
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Figurel: Plotsof predicted L og Chv estimated by ANN mod-
eling ver susexperimental L og Chv compounds

which aremodifiable. The output values of each node
depend on both the weight strength and biasvalues.
Training of theANN can be performed by using the
back propagation algorithm. In order to train the net-
work using the back propagation agorithm, the differ-
ences betweenthe ANN output and itsdesired value
arecalculated after each training iteration and theval -
uesof welghtsand biasesmodified by usngtheseerror
terms.

A three-layer feed-forward network formed by one
input layer cong sting of anumber of neuronsequal to
the number of descriptors, one output neuron and a
number of hidden unitsfully connected to both input
and output neurons, were adopted in this study. The
most used learning procedure is based on the back-
propagation agorithm, inwhich the network readsin-
puts and corresponding outputsfrom aproper data set
(training set) and iteratively adjustsweightsand biases
inorder tominimizetheerror in prediction. Toavoid
overtraining and consequent deterioration of itsgener-
alization ability, the predictive performance of the net-
work after each weight adjustment ischecked on un-
seen data(vaidation set).

Inthiswork, training gradient descent with momen-
tum isapplied and the performance function wasthe
mean square error (M SE), the average squared error
between the network outputs and the actua output.

The QSAR modelsfor the estimation of the Log
Chv of various compounds are established in thefol -
lowing six steps: molecular structureinput and genera:
tion of thefilescontai ning thechemica dructuresstored
inacomputer-readableformat; quantum mechanicsge-
ometry optimization with asemi-empirical method;
structura descriptors computation; structural descrip-
torssdlection; Sructure-Log Chv model sgenerationwith
theANN method and statistical andysis.

—— Fyll Peper
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Figure2: Plotsof residual versusexperimental Log Chvin
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Computer hardwareand software

All cdculationswererunonaPentium IV persond
computer with windows X P as operating system. The
molecular 3D structures of data set were sketched us-
ing hyperchem (ver. 7.1), then each molecule was
“cleaned up” and energy minimization was performed
using geometry. Optimization was done using
semiempirical AM1 (Austin Model) Hamiltonian
method. After optimization of structures, 3D structures
with lower energy conformers obtained by the afore-
mentioned procedure werefed into dragon (ver. 5.2-
2005) and ChemOffice 2005 molecular modeling soft-
warever. 9, supplied by Cambridge Software Com-
pany, for calculation of thestructural molecular descrip-
tors(congtitutional, topol ogical, connectivity, geometri-
cal, getaway, thermodynamic and charge descriptors).
Through these descriptorswhich have va uesfurther
than 90% zero or have equal valuesfurther than 90%
arenot useful and cut. Then Descriptor selection was
accomplished by using Stepwise SPSS (SPSS Ver.
11.5, SPSSInc.). other calculationswere performedin
the MATLAB (version 7.0, MathWorks, Inc.) envi-
ronmert.

RESULTSAND DISCUSSION

Descriptor s selection

Generdly thefirst stepinvariablesselectionisthe
caculation of the corrdation between variablesand with
seeking activity. In the present case, to decrease the
redundancy existed in the descriptorsdatamatrix, the
correlationsof descriptorswith each other and with the
Log Chv of themol eculeswereexamined, and descrip-
torswhich showed highinterrelation (i.e., r>0.9) with
Log Chv and low interrelation (i.e., r<0.9) with each
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TABLE 2: Molecular descriptor semployed for the proposed
ANN model

TABLE 4: Architectureand specification of the generated
ANNs

No. Descriptor Notation class

1 Partition coefficient (octanol/water) CLogP Thermodynamic

2 Heat of formation

levrege-wei ghted autocorrel ation of
3 lag 7/weighted by atomic sanderson HATS7e
electronegativities

HF  Thermodynamic

Getaway

TABLE 3: Correlation matrix of thethreedescriptorsand
Log Chv used in thiswork®

CLogP HF HATST7e Log chV
CLogP 1 0.2135 -0.0471 -0.7526
HF 1 -0.5247 -0.6586
HATS7e 1 0.5243
Log chV 1

“The definitions of the descriptors are given in TABLE 2

other were detected. For each class of the descriptor
just one of them was kept for construction the final
QSAR modd andtherest werede eted. In second step,
Stepwise SPSSwas used for variables selection. After
thisprocessthree descriptorswereremained, that keeps
most interpretiveinformationfor Log Chv. TABLE 2
shows descriptorsthat usedin ANN method. A corre-
lation analysiswas carried out to evaluate correlations
between sl ected descriptorswith each other and with
LogChv (TABLE3).

ANN optimization

A three-layer neura network was used and starting
network weightsand biaseswererandomly generated.
Descriptors sel ected by stepwise method wereused as
inputsof network andthesigna of theoutput noderep-
resent the Log Chv of organic pollutants. Thus, net-
works havethreeneuronsininput layer, and one neu-
roninoutput layer. The networks performancewas op-
timized for thenumber of neuronsin the hidden layer
(hnn), thelearning rate (Ir) of back-propagation, mo-
mentum and the epoch. Asweights and biased are op-
timized by the back-propagation iterative procedure,
training error typically decreases, but test error first
decreases and subsequently beginsto rise again, re-
vealing aprogressiveworsening of generalization abil-
ity of thenetwork. Thustraining was stopped when the
test error reachesaminimum vaue. TABLE 4 shows
thearchitectureand specification of theoptimized net-
works.

No. of nodes in the input layer 3
No. of nodes in the hidden layer 7
No. of nodesin the output layer 1
learning rate 0.6
Momentum 0.8
Epoch 2200

Transfer function Sigmoid

TABLE5: Satistical parameter sobtained using the ANN
modd®

Ft Fc R* R% Rt Rc SEt SEc Mode
2076.6734 990.4636 0.9881 0.9910 0.9940 0.9955 0.1058 0.1130 ANN

“c refers to the calibration (training) set; t refers to test set; R is
the correlation coefficient; R? is the correlation coefficient
square and F is the statistical F value

Results of ANN analysis

Thenonlinear QSAR model provided by the opti-
mal neura networksispresentedinfigurel wherecom-
puted or predicted Log Chv vaues are plotted against
the corresponding experimental data. Figure2 showsa
plot of residualsversusthe observed Log Chv values.
Thesubstantia random pattern of thisplot indicatesthat
most of the datavarianceisexplained by the proposed
modd.

The agreement between computed and observed
values in ANN training and test sets are shown in
TABLEL. Thedatistica parameterscalculated for the
ANN model are presented in TABLE 5. Goodness of
the ANN-based model isfurther demonstrated by the
high va ueof the correl ation coefficient R between cal-
culated and observed Log Chv values are (0.9940,
0.9955) for training and test set respectively.

CONCLUSIONS

QSAR analysiswas performed on aseries of or-
ganic pollutantsusing ANN method that correlate Log
Chv values of these compound to their structural de-
scriptors. According to obtained resultsitis concluded
that the (CLogP, HF, HAT S7€) can be used success-
fully for modeling Log Chv of the under study com-
pounds. The statistical parameters of the built ANN
mode were satisfactory which showed thehigh quality
of the chose descriptors. High correl ation coefficients
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and low prediction errors obtained confirm good pre-
dictiveability of ANN model. TheANN model pro-
posed withthesmply cal culated molecular descriptors
can beused to estimatethelogarithm val uesof chronic
toxicity for new compoundseven in theabsence of the
standard candidates.
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