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Introduction 

Inorganic ion exchange materials play an important role in analytical chemistry, based originally on their resistance 

to chemical attack as well as their thermal and radiation resistance [1,2]. Polymers can be synthesized through 

various techniques such as radical, cationic and anionic polymerization [3]. The structural, mechanical and thermal 

properties can be investigated through different kinds of characterization methods to determination of structure 

property relationships [3,4]. Recently, polymers have been applied in various fields such as automotive, 

construction, electronic, cosmetic and pharmaceutical industries due to its advantageous material properties. 

Functional polymers of photochromic [5], electrochromic [6] and optoelectronic [7] functions were developed 

recently. The use of polymers with tunable refractive properties as optical modulators, optical filters, or electro optic 

waveguide devices has been reported [8]. The development of new inorganic ion exchangers with characteristic 
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properties is still need attention and their utility in diverse fields is yet to be explored. Synthetic ion exchangers are 

used on a wide range for different applications, ranging from environmental remediation [1,9,10], water softening 

[10], hydrometallurgy [10] and selective adsorption [11,12] to medical applications [13-15]. Different materials 

based on silicate salts and poly acrylamide acrylic acid silicon titanate were synthesized earlier [1,11,16] and used 

for removal of some heavy metals from industrial and hazardous waste solutions.  

 

In this work magneso-silicate (MgSi) as inorganic ion exchange material was synthesized using precipitation 

technique. Polyacrylamide acrylic acid P (AM-AA), polyacrylamide acrylonitrile P (AM-AN), polyacrylamide 

acrylic acid magneso-silicate {P (AM-AA)-MgSi} and polyacrylamide acrylonitrile magneso-silicate {P (AM-AN)-

MgSi} composites have been synthesized by gamma radiation initiated polymerization at radiation doses 25, 65 and 

90 KGy. The prepared composite materials were analyzed by different analytical techniques and a new ion exchange 

character was represented compared to the original ones.  

 

Experimental Procedure 

All chemicals and reagents used were of analytical grade. 

 

Synthesis of magneso-silicate composite 

Magneso-silicate ion exchange material was synthesized as reported earlier [1,11,14] by the addition of equimolar 

solutions (0.5 M) of magnesium chloride to sodium metasilicate dropwisely with volumetric ratio for (Mg/Si) equal 

1.5 with continuous stirring in a water bath adjusted at 60 ± 1°C. The mixed solutions were immediately hydrolyzed 

in demineralized water. Diluted ammonia solution was added to the mixture until complete precipitation attained. 

The precipitate formed was kept in the mother solution to overnight standing. The precipitate was washed several 

times with distilled water, and then washed by 0.1 M HNO3 to remove impurities and Cl− ions. The precipitate 

rewashed by distilled water to remove NO3− ions. After drying at 60 ± 1°C, solid was poured in near boiling 

distilled water heated at 70 ± 1°C to break the solid and remove air trapped inside the solid, then re-dried at 60 ± 

1°C. The obtained solid was ground and store at room temperature. 

 

Synthesis of monomer solutions 

The investigated monomer solutions, acrylamide (AM), acrylic acid (AA) and acrylonitrile (AN) were prepared by 

dissolving 10% of each monomer in deoxygenated water. 

 

Synthesis of co-monomer solutions 

The acrylamide (AM) monomer solution was mixed with an aqueous solutions of acrylic acid (AA) and acrylonitrile 

(AN) by drop with addition at constant stirring and room temperature with volumetric ratio equal unity for the 

preparation of (AM+AA) and (AM+AN) co-monomers, respectively. Then the (AM+AA) and (AM+AN) co-

monomers were mixed with equimolar solutions (0.5M) of sodium metasilicate and magnesium chloride 
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hexahydrate by drop with addition at constant stirring and room temperature with volumetric ratio (AM-AA-Mg-Si) 

and (AM-AN-Mg-Si) equal 1:1:1.5:1, respectively.  

 

Synthesis of P (AM-AA), P (AM-AN), {P (AM-AA)-MgSi} and {P (AM-AN)-MgSi} composites 

P (AM-AA), P (AM-AN), {P (AM-AA)-MgSi} and {P (AM-AN)-MgSi} composites were prepared by subjected 

mixtures of (AM+AA), (AM+AN), (AM+AA+Mg+Si) and (AM+AN+Mg+Si) co-monomers to gamma radiation at 

radiation doses 25, 65 and 90 KGy with dose rate 1.05 KGy/h. After irradiation, the obtained hydrogel was cut into 

small pieces with a stainless steel scissors, soaked in acetone for removal of unreacted monomers, washed with 

water [17], dried at 50°C, grained, sieved for different mesh sizes and stored at room temperature [18]. 

 

Composition and characterization of synthesized composites 

IR spectra of MgSi, P (AM-AA), P (AM-AN), {P (AM-AA)-MgSi} and {P (AM-AN)-MgSi} composites prepared 

at different radiation doses were carried out by mixing of the solid with KOH in ratio 1:5 and ground to a very fine 

powder. A transparent disc was formed in a moisture free atmosphere. The IR spectra were recorded using BOMEM 

FTIR spectrometer in the range 400–4000 cm
−1

. 

 

The stoichiometry of the constituents in MgSi and polymeric composites based to silicate prepared at different 

radiation doses were determined using Philips sequential x-ray spectrometer-2400. The solid samples were ground 

to very fine powders and then mixed with H3BO3 as a binder to facilitate the pressing process. The mixture was 

pressed in a sample holder of 40 mm diameter aluminum cups and pressed on pressing machine at 20 psi to produce 

a sample with the diameter of 40 mm and 5 mm thickness. The concentrations of magnesium and silicone were 

measured according to Super-Q quantitative application program. 

 

X-ray diffraction patterns of prepared composites were carried out using a Shimadzu XD-D1, X-ray diffractometer 

with Cu-Kα radiation tube source (λ=1.5406A°) and graphite monochromator operating at 30 kV and 30 mA. The 

measurements were done in 2θ ranges from 4 to 90 with scan speed 2
ᵒ
/min. 

 

Prepared composites (20 mg) were analyzed for DTA and TGA with sample holder made of Pt in N2 atmosphere 

using a Shimadzu DTG-60H. The heating rate was maintained at 10°C/min with using alumina powder as reference 

material. 

 

Results and Discussion 

The scope of this study is the attempt to synthesize a high chemical stable inorganic, organic and composite ion 

exchange materials with high selectivity for some heavy metals. MgSi, P (AM-AA), P (AM-AN), {P (AM-AA)-

MgSi} and {P (AM-AN)-MgSi} composites prepared at different radiation doses have been synthesized with 

complete characterization for ion exchange materials. 
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Magneso-silicate (MgSi) was prepared earlier in our laboratories [11]. The formation mechanism of prepared MgSi 

can be represented as shown in SCHEME 1. Magneso-silicate material was obtained by substitution of two Na+ ions 

by one Mg2+ ion and elimination of two molecules of NaCl. 

 

 

 

 

SCHEME 1. Formation mechanism of magneso-silicate composite. 

 

P (AM-AA), P (AM-AN), {P (AM-AA)-MgSi} and {P (AM-AN)-MgSi} composites were prepared as mentioned 

before in the experimental part by gamma radiation initiated co-polymerization of (AAM+AA), (AM+AN), 

(AM+AA+Mg+Si) and (AM+AN+Mg+Si) co-monomers at radiation doses 25, 65 and 90 KGy. In gamma radiation 

initiated, the co-polymerization polymer complexes were formed which may be attributed to the possible steps [19]: 

preparation of the polymer by the generated radicals from the co-monomers, and the propagation of the co-monomer 

associated with the polymer by free radicals generated in the system [16,20].  

  

The formation mechanism of P (AM-AA) copolymers can be represented as shown in SCHEME 2, when (AM+AA) 

co-monomer subjected to gamma radiation, breaking down was carried out for double bond of (AM) and (AA) to 

form covalent bond between C atoms of (AM) and (AA), the polymerization in the chain occurred by addition 

polymerization [21]. (AM+AA) free radical was obtained. (AM+AA) free radical react with (AM+AA) co-monomer 

to form chain propagation. Finally, the chains were coupled with another (AM-AA) free radicals to obtain P (AM-

AA) copolymer. 

 

The formation mechanism of P (AM-AN) copolymers can be shown in SCHEME 3, from this scheme; when 

(AM+AN) co-monomer subjected to gamma radiation, breaking down was carried out for double bond of (AM), 

(AN) to form covalent bond between C atoms of (AM) and (AN), the polymerization in the chain occurred by 

addition polymerization [21]. (AM+AN) free radical was obtained. (AM+AN) free radical react with (AM-AN) co-

monomer to form chain propagation. Finally, the chains were coupled with another (AM-AN) free radicals to obtain 

P (AM-AN) copolymer. 
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 SCHEME 2. Formation mechanism of polyacrylamide acrylic acid copolymer. 

 

 

 

SCHEME 3. Formation mechanism of polyacrylamide acrylonitrile copolymer. 

 

The formation mechanism of {P (AM-AA)-MgSi} composite can be represented as shown in SCHEME 4, the 

reaction started by converting of (AM) monomer to imine form in solution. Then imine form react with 

(AA+Mg+Si) to form (AM-AA-Mg-Si) co-monomer, and subjected to gamma radiation, breaking down was carried 

out for double bond of (AM) and (AA) and formation of covalent bond between C atoms of (AM) and (AA), the 

polymerization in the chain between (AM) and (AA) occurred by addition polymerization, where polymerization of 

(Mg-Si) in the chain was occurred by condensation polymerization [21] by elimination of OH
−
 of carboxylate group 

of (AA) with Na
+
 of Na2SiO3 to form ionic bond between O atom of carboxylate group and Si atom of Na2SiO3 and 

elimination of H
+
 of imine form with Cl

− 
of MgCl2.6H2O to form ionic bond between O atom of imine form and Mg 

atom of MgCl2.6H2O and elimination Na
+
 of Na2SiO3 with Cl

− 
of MgCl2.6H2O to form ionic bond between O atom 

of Na2SiO3 and Mg atom of MgCl2.6H2O to form (AM-AA-Mg-Si) free radicals. (AM-AA-Mg-Si) free radical react 

with (AM-AA-Mg-Si) co-monomer to form chain propagation. Finally, the chains were coupled with another (AM-

AA-Mg-Si) free radical to obtain {P (AM-AA)-MgSi} composite.  

 

The formation mechanism of {P (AM-AN)-MgSi} composite was shown in SCHEME 5, the reaction started by 

converting of (AM) monomer to imine form in solution. Then imine form reacted with (AN+Mg+Si) to form (AM-

AN-Mg-Si) co-monomer, and subjected to gamma radiation, breaking down carried out for double bond of (AM), 

and (AN), the polymerization in the chain between (AM) and (AN) occurred by addition polymerization, where 

polymerization of (Mg-Si) in the chain was occurred by condensation polymerization [22-29], by elimination of 

OH
− 

of imine form with Na
+
 of Na2SiO3 with formation of ionic bond between C atom of imine form and Si atom of 
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Na2SiO3 and elimination Na
+
 from Na2SiO3 with Cl

− 
of MgCl2.6H2O with formation of ionic bond between O atom 

Na2SiO3 and Mg atom of MgCl2.6H2O and elimination of H
+
 of solution with Cl

− 
of MgCl2.6H2O and lone pair of 

electron of N atom of (AN) were bonded by ionic bond with Mg atom of MgCl2.6H2O to form (AM-AN-Mg-Si) free 

radical. (AM-AN-Mg-Si) free radical reacts with (AM-AN-Mg-Si) co-monomer to form chain propagation. Finally, 

the chains were coupled with another (AM-AN-Mg-Si) free radical to obtain {P (AM-AN)-MgSi} composite.  

 

 

 

 

 

SCHEME 4. Formation mechanism of polyacrylamide acrylic acid magnso-silicate composite 

 

 

 

 

 

SCHEME 5. Formation mechanism of polyacrylamide acrylonitrile magnso-silicate composite. 
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The prepared samples of P (AM-AA), P (AM-AN), {P (AM-AA)-MgSi} and {P (AM-AN)-MgSi} composites are 

hard granulating in nature suitable for use in column operations with yellow color. 

 

IR spectra of MgSi ion exchanger was shown in FIG. 1a, from this Figure six characteristic bands were observed in 

the regions 3150-3670, ~1652, 1000-1100, 903, 640 and ~ 470 cm
-1

. The absorption band at 3150-3670 cm
-1 

may be 

attributed to the stretching mode of water and OH groups absorbed on the composite [1,22,23]. The strong band 

appear at ~1652 cm
-1 

represents the bending mode of water molecules absorbed on MgSi composite [1]. The broad 

absorption band at 1000-1100 cm
-1

 is due to the metal-oxygen (Mg-O) bond [1]. The band at ≈ 903 cm
-1 

may be due 

to the Mg-OH deformation vibration or overlapping of the Si-O and Si-OH, and Mg-O bonds in the structure [1,24]. 

The broad bands at 640 and 470 cm
-1

 are assigned to Si-O-Mg and Si-O-Si bending vibrations, respectively [1,25]. 

 

IR spectra of P (AM-AA) copolymers prepared at radiation doses 25, 65 and 90 KGy was represented in FIG. 2a, 

from this Figure two bands observed at 3450 and 3354 cm
-1 

[26]. The first band may be attributed to the stretching 

mode of N-H bond of acrylamide and the second band attributed to the stretching mode of O-H of acrylic acid [27]. 

The band appeared at 3210 cm
-1 

cross ponding to the stretching mode of H-O-H bonded of water molecules [28,29]. 

The bands appeared at (3090, 2950 and 2870 cm
-1

) may be due to the stretching mode of C-H of acrylamide and 

acrylic acid [30]. The strong band appeared at 1720 cm
-1 

attributed to the stretching mode of carbonyl group of 

acrylic acid [22,31]. Strong band appeared at 1550 cm
-1

 attributed to the bending mode of N-H bond of acrylamide 

[32]. Two bands appeared at 1450 and 1370 cm
-1

 may be attributed to the bending mode of C-H of acrylamide and 

acrylic acid [30,33]. Two broad bands appeared at 1213 and 1022 cm
-1

 attributed to the bending vibration of C-N of 

acrylamide [33,34]. 

 

IR spectra of P (AM-AN) copolymers prepared at radiation doses 25, 65 and 90 KGy was shown in FIG. 2b, from 

Figure represent, two bands appeared at 3340-3450 and 3195 cm
-1

 may be attributed to the stretching vibration of N-

H bond of acrylamide [1,29]. Two bands observed at 2935 and 2875 cm
-1

 can be attributed to the stretching mode of 

C-H of acrylamide and acrylonitrile [35,36]. The band appeared at 2790 cm
-1 

may be due to the stretching mode of 

aldehyde group may be present by rearrangement in the structure [31]. The strong band appeared at 2244 cm
-1 

due to 

the stretching mode of C≡N of acrylonitrile [35-38]. The band appeared at 1665 cm
-1

 attributed to the stretching 

mode of carbonyl group of acrylamide [32]. Band appeared at 1605 cm
-1 

may be attributed to the bending mode of 

N-H bond of acrylamide [32]. Two bands observed at 1450 and 1409 cm
-1

 may be attributed to the bending mode of 

C-H of acrylamide and acrylonitrile [34-37]. Three bands appeared at 1316, 1182 and 1120 cm
-1

 attributed to the 

bending vibration of C-N of acrylamide and acrylonitrile [32,34,37]. 

 

IR spectra of {P (AM-AA)-MgSi} composites prepared at radiation doses 25, 65 and 90 KGy was represented in 

FIG. 2c, this Figure show that; broad band observed at 3460-3200 cm
-1

 can be attributed to the stretching mode of 

water and OH group absorbed on the composites [1]. The two bands observed at 3460 and 3200 cm
-1

 can be 
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attributed to the stretching mode of N-H bond of acrylamide and H-O-H bonded of water molecules or O-H of 

acrylic acid respectively [27]. Two bands appeared at 2960 and 2875 cm
-1

 may be due to the stretching mode of C-H 

of acrylamide and acrylic acid [29-31]. Weak band appeared at 2245 cm
-1 

due to the stretching mode of C≡C bond 

may be present by rearrangement in the structure [29,36]. Two bands appeared at 1725 and 1675 cm
-1

, the former 

band may be due to the stretching mode of carbonyl group of acrylic acid [26,32], and the later band due to bending 

vibration of carbonyl group of acrylamide or due to presence of imine group or O-H bonded water molecules 

absorbed on the composite [32,39]. Band appeared at 1605 cm
-1

 for {P (AM-AA)-MgSi} at radiation dose 90 KGy 

attributed to the bending mode of O-H bonded water molecules absorbed on the composite [1]. The band appeared at 

1571 cm
-1

 due to the bending mode of N-H bond of acrylamide [32]. Two bands appeared at 1451 and 1413 cm
-1

 

may be attributed to the bending mode of C-H of acrylamide and acrylic acid [31,33,36]. Two bands appeared at 

1331 and 1218 cm
-1

 for composite at radiation doses 25 and 65 KGy, where at 1331 and 1173 cm
-1

 for composite at 

radiation dose 90 KGy may be attributed to the bending mode of C-N of acrylamide [32]. Band appeared at 1104 

cm
-1

, this band reflect that metal oxygen bond Mg-O [1,17,18]. Three bands appeared at 793, 611 and 465 cm
-1

. The 

first band may be attributed to the of Mg-OH deformation vibration or overlapping of the Si-O and Si-OH and Mg-O 

bonds in the structure [1,25]. The second band may be attributed to Si-O-Mg bending vibrations [25]. The third band 

may be due to Si-O-Si bending vibrations [1,25] the bands at 1104, 793, 611 and 465 cm
-1 

indicated that 

impregnation of Mg and Si in the polymeric resin, these results were agree with data obtained from XRF as will be 

set later.  

 

IR spectra of {P (AM-AN)-MgSi} composites prepared at radiation doses 25, 65 and 90 KGy was shown in FIG. 2. 

(d), from this Figure broad band observed at 3475-3300 cm
-1

 can be attributed to the stretching mode of water and 

OH group absorbed on the composite or N-H bond of acrylamide [1,27]. Two bands observed at 3190 and 2940 cm
-1

 

can be attributed to the stretching mode of N-H bond of acrylamide and C-H of acrylamide and acrylonitrile 

respectively, [34,36]. Strong band appeared at 2244 cm
-1 

due to the stretching mode of C≡N bond of acrylonitrile 

[36]. Two bands appeared at 1661 and 1605 cm
-1

, the first band may be attributed to the bending mode C=O group 

of acrylamide or due to presence of imine group [32], and the second band may be due to bending vibration of N-H 

bond of acrylamide or O-H bonded water molecules absorbed on the composite [1,36]. Two bands appeared at 1455 

and 1413 cm
-1

 attributed to C-H of acrylamide and acrylonitrile [30]. Band appeared at 1571 cm
-1 

may be attributed 

to the bending mode of N-H bond of acrylamide [32]. Two bands appeared at 1451 and 1413 cm
-1

 may be attributed 

to the bending mode of C-H of acrylamide and acrylic acid [34-36]. Two bands appeared at 1340 and 1220 cm
-1

 for 

composite at radiation dose 25 KGy, where at 1340 and 1188 cm
-1

 for composite at radiation doses 65 and 90 KGy 

may be attributed to the bending mode of C-N of acrylamide [32]. The band appeared at 1040 cm
-1

 attributed to 

metal oxygen bond Mg-O [1,17,18]. Three bands appeared at 905, 636 and 460 cm
-1

). The first band may be 

attributed to the of Mg-OH deformation vibration or overlapping of the Si-O and Si-OH and Mg-O bonds in the 

structure [1,25]. The second band may be attributed to Si-O-Mg bending vibrations [1,25]. The third band may be 

due to Si-O-Si bending vibrations [1,25]. The bands at 1040, 905, 636 and 460 cm
-1 

indicated that impregnation of 
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Mg and Si in the structure of polymeric resin, these results were agree with data obtained from XRF as will be set 

later.  

  

X-ray diffraction patterns of MgSi composite were represented in FIG.1b, from this Figure it is clear that Mg-Si has 

crystalline structure [1,40]. These results were agree with the data obtained from XRD of composites materials 

treated at different heating temperature [1,11,14]. The crystallinity of the prepared materials slightly improved with 

the increase of heating temperatures from 50°C to 850 ± 1°C, and there is a sharp improvement of crystallinity 

occurs at 850 ± 1°C. 

 

 

 

 

 

 

FIG.1. (a) IR spectrum of magneso-silicate; (b) XRD of magneso-silicate. 
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FIG.2. (a) IR spectrum of P (AM-AA); (b) P (AM-AN); (c) {P (AM-AA)-MgSi}; (d) {P (AM-AN)-MgSi} at 

different radiation doses. 
 

 

 

FIG.3a shows that XRD of P (AM-AA) copolymers prepared at radiation doses 25, 65 and 90 KGy. This Figure 

indicated that P (AM-AA) copolymers have amorphous structure and these results were similar to the data obtained 

from XRD of polyacrylamide-co-acrylic acid prepared by Hassan, et al. [31]. In addition, the crystalline character of 

the prepared samples was increased with radiation doses from 25 to 90 KGy. FIG. 3b shows XRD patterns for P 

(AM-AN) copolymers prepared at radiation doses 25, 65 and 90KGy. From this figure it is clear that the sample 

prepared at radiation dose 25 KGy has crystalline structure, and these results were similar to the data obtained from 

XRD of potassium hexacyano cobalt (II) ferrate (II) polyacrylonitrile (KCFC–PAN) [41], where samples prepared at 

radiation doses 65 and 90 KGy have amorphous structure.  

 

FIG. 3c and 3d show XRD patterns of {P (AM-AA)-MgSi} and {P (AM-AN)-MgSi} composites prepared at 

radiation doses 25, 65 and 90 KGy, respectively. From these figures it is clear that P (AM-AA)-MgSi and P (AM-

AN)-MgSi have crystalline structure and these results were similar to the data obtained from XRD of 

polyacrylamide titanium tungstophosphate [19,42], and potassium hexacyano cobalt (II) ferrate (II) polyacrylonitrile 
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(KCFC–PAN) [41]. In addition, the crystalline character of {P (AM-AA)-MgSi} samples were decreased with 

radiation dose from 25 to 90 KGy, where the samples prepared at radiation doses 25 and 65 KGy have crystalline 

nature, where sample prepared radiation dose 90KGy have semi crystalline nature. On the other hand, the crystalline 

character {P (AM-AN)-MgSi} was decreased with radiation doses from 25 to 65 KGy then increase from 65 to 90 

KGy, where the sample at radiation dose 65 and 90 KGy has amorphous and semi crystalline natures, respectively.  

 

 

 

FIG.3. (a) XRD of P (AM-AA); (b) P (AM-AN); (c) {P (AM-AA)-MgSi}; (d) {P (AM-AN)-MgSi} at different 

radiation doses. 
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Differential thermal and thermogravimetric analyses (DTA&TGA) play a vital role in studying the structure and the 

properties of any materials where it has been widely used to investigate the decomposition characteristics of 

materials. DTA and TGA data were used here to provide an alternative model for the kinetics of the composite 

degradation. For all investigation studies of the composites the rate of heating is 10°C/min [17,34,42,43], and the 

data were tabulated in TABLES 1 and 2.  

 

TABLE 1. DTA and TGA analyses for MgSi, P (AM-AA) and P (AM-AN) materials. 
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P
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A
M
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5
0
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125-240 Endo. Removal of the water of crystallization for P (AM-AA) 50 8.94 

338.2

7 
240-384 Endo. Probably caused by the dehydration of carboxylic acid and decarboxylation or the loss of chemical bond water 1,47,51 28.1 

400.9 384-408 Exo. May be due to the complete decomposition of the organic part of the materials 52-54 9.87 

422.2

8 
408-500 Endo. The chain scission in the main chain of poly acrylamide acrylic acid. 51 

14.0

2 

65 
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1
0
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8 
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55-56 17.9 
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372.4 328-384 Exo. Due to the complete decomposition of the organic part of the materials 52-54 12.5 
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8 

393.5

7 
384-418 Endo. 

The loss of constitution water, which forms part of the crystalline network and it is generally presented like OH 

groups 

55, 56 12.3 

436.4

4 
418-452 Endo. 

The chain scission in the main chain of poly acrylamide acrylic acid 

51 5.34 

465.7 452-500 Endo. 2.05 

65 

83.43 50-145 Endo. Loss of external water molecule 49 9.5 

6
1

.3
9
 

273.3

9 

178-312 Endo. Removal of the water of crystallization for P (AM-AN) 50 14.3 

362.8 312-367 Exo. Due to the complete decomposition of the organic part of the polymer 52-54 8.27 

378.2

2 

367-400 Endo. The loss of constitution water, which forms part of the crystalline network and it is generally presented like OH 

groups 

55, 56 14.2

8 

469.7

6 

400-500 Endo. The chain scission in the main chain of poly acrylamide acrylic acid. 51 14.6

8 

90 

85.63 57-137 Endo. loss of external water molecule 49 4.78 

25.

5 

240.4

7 

137-286 Endo. removal of the water of crystallization for P (AM-AN) 50 6.04 

357.4

1 

286-416 Endo. The loss of constitution water, which forms part of the crystalline network and it is generally presented such as 

OH groups 

55, 56 10.0

9 

437.8

4 

416-456 Exo. Due to the complete decomposition of the organic part of the resin 52-54 2.29 

469.5 456-500 Endo. The chain scission in the main chain of poly acrylamide acrylic acid. 51 2.11 

 

 

TABLE 1 was represented the data obtained for DTA and TGA analyses for inorganic ion exchange material MgSi 

and organic polymers P (AM-AA) and P (AM-AN) radiated at different radiation doses 25, 65 and 90 KGy. The 

data obtained are supporting the fact that MgSi have a good thermal stability comparing with the other inorganic ion 

exchangers and the weight loss of MgSi when the sample calcinated at 800
 
°C equal to 33.4% [1].  

   

DTA and TGA of P (AM-AA) and P (AM-AN) copolymers prepared at radiation doses 25, 65 and 90 KGy were 

represented in TABLE 1 and indicates the process was occurring via five stage process and the weight loss are 

continued up to 500°C. The weight loss for P (AM-AA) and P (AM-AN) prepared at radiation doses 25, 65 and 90 

KGy with the heating temperature indicates that a (67.15%, 100% and 68.3%) for P (AM-AA) and (56.98%, 61.3% 

and 25.5%) for P (AM-AN) when the samples are calcinated at 500°C [19] (TABLE 3). 

 

TABLE 2. DTA and TGA analyses for {P (AM-AA)-MgSi} and {P (AM-AN)-MgSi} composite materials. 
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P
 (

A
M

-A
A

)-

M
g

S
i 

25 

80.92 38-139 Endo. Caused by loss of external water molecule 49 9.33 

1
0

0
 

263.7

2 

139-313 Endo. Removal of the crystalline water for {P (AM-AA)-MgSi} 50 14.6

6 

396.1

4 

340-434 Exo. The complete decomposition of the organic part of the composite. 52-54 1858 

434.1 434-517 Endo. Probably caused by the dehydration of carboxylic acid and decarboxylation or the loss of chemical bond 1,47,49,51 17.7
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8 water 1 

655.6 517-800 Endo. The chain scission in the main chain of poly acrylamide acrylic acid. 51 40.9 

65 

92.17 67-164 Endo. Loss of external water molecule 49 6.48 

8
8

.3
4
 

304.5 164-355 Endo. Removal of the chemical bond water of {P (AM-AA)-MgSi} 50 22.4

5 

375.1

5 

355-409 Exo. 

The complete decomposition of the organic part of the composite resin 52-54 

12.1

8 

429.1

9 

409-455 Exo. 7.01 

521.1

9 

455-563 Exo. 37.3

8 

90 

80.8 42-171 Endo. Loss of free water molecule 49 6.6 

8
8

.8
 

240.1

6 

171-318 Endo. Removal of the crystalline water for {P (AM-AA)-MgSi} 50 14.3

2 

380.3

3 

318-407 Exo. The complete decomposition of the organic part of the composite ion exchangers 52-54 19.8

5 

420.5

5 

407-431 Endo. Due to loss of chemical bond water 1,47 3.35 

444.0

5 

431-467 Exo. 

May be due to the complete decomposition of the organic part of the materials 52-54 

5.88 

503.7

8 

467-800 Exo. 38.6

4 

P
 (

A
M

-A
N

)-
M

g
S

i 

25 

76.26 57-132 Endo. Loss of water molecule 49 8.77 

7
4

.2
 

281.6

9 

132-340 Endo. Removal of the water of crystallization for {P (AM-AN)-MgSi} 50 13.1

1 

372.1

3 

340-398 Exo. The complete decomposition of the organic part of the composites 52-54 9.97 

419.6

9 

398-433 Endo. The loss of interstitial water molecules 1,47 4.78 

515.5

8 

434-577 Exo. May be due to the complete decomposition of the organic part of the materials 52-54 32.4

9 

585.5

6 

577-800 Endo. The chain scission in the main chain of poly acrylamide acrylic acid. 51 4.45 

65 

76.24 40-124 Endo. Loss of free water molecule 49 8.85 

8
0

.8
 

263.5

1 

124-334 Endo. Removal of the water bind molecules of {P (AM-AN)-MgSi} 50 14.3

3 

362.7

2 

334-383 Exo. The complete decomposition of the organic part of the ion exchange materials 52-54 8.31 

398.5

7 

383-402 Endo. The loss of chemical bond water 1,47 2.86 

448.3

8 

402-472 Exo. 

May be due to the complete decomposition of the organic part of the materials 52-54 

8.87 

521.2

9 

472-800 Exo. 37.4

4 

90 

76.11 55-126 Endo. Loss of non-bonded water molecule 49 7.29 

8
3

.9
 

272.6

3 

126-326 Endo. Removal of the water of crystallization for {P (AM-AN)-MgSi} 50 14.3 

365.2 326-397 Exo. may be due to the complete decomposition of the organic part of the materials 52-54 12.7

3 

421.2

9 

397-452 Endo. The loss of chemical bond water 1,47 7.88 

527.2 452-800 Exo. The complete decomposition of the organic part of the composite materials 52-54 41.2 
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TABLE 3. Elemental analysis of magneso-silicate and polymeric composites based on silicate prepared at 

different radiation doses 

 

 

 

 

 

 

 

The DTA and TGA analyses for polymeric materials impregnated with inorganic ion exchange materials, {P (AM-

AA)-MgSi} and {P (AM-AN)-MgSi} prepared at different radiation doses 25, 65 and 90 KGy were measured and 

tabulated in TABLE 2. The data in TABLE 2 indicates that the process for {P (AM-AA)-MgSi} composite was 

occurring via four stage process at radiation doses 25 and 90 KGy, where five stage process at radiation doses 65 

KGy. On the other hand, the process for {P (AM-AN)-MgSi} prepared at radiation doses 25, 65 and 90 KGy was 

ocurrs via four stage process. Also, the data supporting the fact that {P (AM-AA)-MgSi} composites prepared at 

radiation doses 25, 65 and 90KGy have a good thermal stability comparing with the other inorganic ion exchangers. 

The weight losses of {P (AM-AA)-MgSi} composites prepared at radiation doses 25, 65 and 90 KGy with the 

heating temperature equal 100%, 88.34% and 88.8% when the samples are calcinated at 800
 
°C. also, TABLE 2 

indices that, the weight loss for {P (AM-AN)-MgSi} prepared at radiation doses 25, 65 and 90KGy are continued up 

to 600°C, and no weight loss occurred in the range ~600-800°C. This supporting the fact that {P (AM-AN)-MgSi} 

prepared at radiation doses 25, 65 and 90KGy have a good thermal stability comparing with the other inorganic ion 

exchangers. The weight losses of {P (AM-AN)-MgSi} prepared at radiation doses 25, 65 and 90 KGy with the 

heating temperature equal to 74.2%, 80.8% and 83.9% when the sample is calcinated at 800°C [1,19]. 

 

The elemental analyses of magneso-silicate and polymeric composites based on silicate prepared at different 

radiation doses were measured using XRF and tabulated in TABLE 3; the measured data is confirmed that 

impregnation of magneso-silicate in the {P (AM-AA)-MgSi} and {P (AM-AN)-MgSi} [44,45]. 

 

Conclusion 

Magneso-silicate (MgSi) has been synthesized by precipitation technique. P (AM-AA), P (AM-AN), {P (AM-AA)-

MgSi} and {P (AM-AN)-MgSi} composites have been synthesized by subjected co-monomers to gamma radiation 

initiated polymerization at radiation doses 25, 65 and 90 KGy. From the data obtained from the analytical techniques 

such as IR, XRD, TGA, DTA and XRF it is indicating that the impregnation of MgSi in {P (AM-AA)-MgSi} and {P 

(AM-AN)-MgSi} show an improvement in thermal stability and these composite materials have crystalline nature 

suitable for column chromatographic applications [46-57]. 

Concentration, % 
Radiation Dose, KGy Composite 

Si Mg 

37.7 18.7 ---- MgSi 

21.2 10.1 25 

P (AM-AA)-MgSi 25.6 11.6 65 

44.7 8.3 90 

44.7 13.3 25  
P (AM-AN)-MgSi 

 
47.6 12.9 65 

45.2 13.5 90 
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