
Full Paper

Polymer nanofibers deposited via coaxial electrospinning: A model for
core-shell structured through solutions to Lane-Emden equation

K.Boubaker
Unité de physique des dispositifs à semi-conducteurs, Faculté des sciences de Tunis,

Université de Tunis El Manar, 2092 Tunis, (TUNISIA)

E-mail : mmbb11112000@yahoo.fr

INTRODUCTION

Polymer nanofibers have gained much attention due
to their great potential applications, such as filtration, ca-
talysis, scaffolds for tissue engineering, protective cloth-
ing, sensors, electrodes electronics applications, reinforce-
ment and biomedical use[1-6]. Particularly, polymeric
nanofibers with core-shell structure have been attractive
in the past decades[4,5]. Co-axial electrospinning, which
has emerged as a method of choice due to the simplicity
of the technology and its cost effectiveness, provides an
effective and versatile way to fabricate such nanofibers[6-

8]. This technique uses a high electric field to extract a
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In this paper, a model to core-shell structured polymer nanofibers depos-
ited via coaxial electrospinning is presented. Investigations are based on a
modified Jacobi-Gauss collocation spectral method, proposed along with
the Boubaker Polynomials Expansion Scheme BPES, for providing solution
to a nonlinear Lane-Emden type equation. The spatial approximation has

been based on shifted Jacobi polynomials )(),(
, xP NT
  with 0),,1(,  T

and n was the polynomial degree. The Boubaker Polynomials Expansion
Scheme BPES main feature, concerning the embedded boundary condi-
tions, have been outlined. The modified Jacobi-Gauss points are used
as collocation nodes. Numerical examples are included to demonstrate
the validity and applicability of the technique and a comparison is made
with existing results. It has been revealed that both methods are easy to
implement and yields very accurate results.
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liquid jet of polymer solution from the bot core and
shell reservoirs. The yielded jet experiences stretching
and bending effects due to charge repulsion and, in the
process, can reach very small radii. Co-axial electro-
spinning can not only be used to spin the unspinnable
polymers (Polyaramid, nylon and poly-aniline) into
ultrafine fibers, but also ensures keeping functionalizing
agents like antibacterial and biomolecules agents inside
nanofibers[9-11].

In this paper, a mathematical model to coaxial
electrospinning dynamics, in a particular setup, is pre-
sented. The model is based on solutions to the related
Lane-Emden equation on semi-infinite domains:
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Lane-Emden type equations model many phenomena
in mathematical physics and nano-applications. They
were first published by Lane in 1870[12], and further
explored in detail by Emden[13]. In the last decades,
Lane-Emden has been used to model several phenom-
ena such as the theory of stellar structure, quantum
mechanics, astrophysics and the theory of thermionic
currents in the neighbourhood of a hot body in thermal
equilibrium and the thermal behaviourof an isothermal
gaseous sphere[14-18]. Even if Lane-Emden problem was
numerically challenging because of the singularity be-
havior at the origin, several methods have been used in
order to solve it in semi-infinite domains. Boyd[19] used
domain truncation method replacing the semi-inûnite

domain with [0,K] interval by choosing K, sufûciently

large, while Shen[20] used spectral-Galerkin approxi-
mations based on Laguerre functions to perform ana-
lytical solutions and demonstrated that they were stable
and convergent with spectral accuracy in the Sobolev
spaces. Maday et al.[21] proposed a Laguerre type
spectral method, Siyyam[22] applied two numerical meth-
ods using the Laguerre Tau method, and Guo[23] refor-
mulated the original Lane-Emden problem to a singular
problem in a bounded domain by variable transforma-
tion using the Jacobi polynomials.

This paper is organized as follows: In Section 2 we
present an illustrated formulation of the problem, then,
in Section 3, we give an overview of the modified Jacobi-
Gauss collocation spectral method along with its appli-
cations, and in Sections 4, we present the fundaments
and the application of the Boubaker Polynomials Ex-
pansion Scheme BPES. In Section 5, results are plot-
ted and discussed along wirh comparison with some
existing solutions. A conclusion is given in Section 6.

PROBLEM FORMULATION

As per Spivak et al.[24,25], mass balance, linear
moentum balance and electric charge balance equa-
tions describe polymer fibers electrospinning process:

0u. 
 (2)

em FFu).u( 


(3)
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

(4)

where u
  is the axial velocity, J



 is the electrical current

density,  is material density, mF and eF  are terms
which represent viscous and electric forces, respec-
tively.

Under the assuptions of a steady state jet and a
neglectible thermal effort, the electrically generated force
is dominant, the monodimentional momentum equation
is hence:

r
)x(E)x(2
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)x(u

u








(5)

where u  is the modulus of the axial velocity,, r  is the
radius of the jet at axial coordinate x  (Figure 1), )(x

is the surface charge density, and E is the exogenous

Figure 1 : Scheme of the studied setup

electric field in the axial direction.
By introducing the charge balance equation:

I)x(kEr)x(u)x(r2 2
 (6)

where I is the electrical current intensity and k is a con-
stant which depend only on temperature in the case of
an incompressible polymer, it gives:
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Then, by introducing the variable:
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By differentiating the last equation, along with assuming weak r-dependence of the variable x, we have:
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and by choosing the exogenous electric field profile so that:
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it gives, by annexing boundary conditions:
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MODIFIED JACOBI-GAUSS COLLOCATION MJGC METHOD

Let 1,1    and ),( 

kP  be the standard Jacobi polynomial of degree k . We have :
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Then, let 0T , then the shifted Jacobi polynomial of degree k  on the interval ),0( T  is defined by :
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For    one recovers the shifted ultraspherical polynomials (symmetric shifted Jacobi polynomials) and for

0,
2

1
    the shifted Chebyshev of the first and second kinds and shifted Legendre polynomials re-

spectively; and for the nonsymmetric shifted Jacobi polynomials, the two important special cases 
2
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(shifted Chebyshev polynomials of the third and fourth kinds) are also recovered.

Jacobi-Gauss interpolation starts by denoting Nj0x ),(
j,N   the nodes of the standard Jacobi-Gauss inter-

polation. The corresponding Christoffel numbers are Nj0),(
j,N   . The nodes of the shifted Jacobi-Gauss

interpolation on the interval (0, T) are the zeros of )x(P ),(
1N,T



 , denoted by ),(
j,N

1),(
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ing Christoffel numbers are ),(
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T(   . Let )T,0(SN  be the set of polynomials of degree at most N.

Thanks to the property of the standard Jacobi-Gauss quadrature, it follows that for any )T,0(S 1N2  :
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Next, after using (13) and (15) at 1q  , we have:
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Finally, from (19), (21) and (22), we get (N + 1) non-
linear algebraic equations which can be solved for the
unknown coefficients a

j
 by using any standard iteration

technique, like Newton�s iteration method. Conse-

quently, )x(zN  given in Eq. (20) can be evaluated, and
then the approximate solution of (12) can be obtained.

The boubaker polynomials expansion scheme
BPES

The Boubaker Polynomials Expansion Scheme
BPES[26-35] is a resolution protocol which as been
successfully applied to several applied-physics and
mathematics problems. The BPES protocol ensures
the validity of the related boundary conditions re-
gardless main equation features. The BPES is mainly
based on Boubaker polynomials first derivatives
properties:
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and:

where ),(
j,N,Tx   and ),(

j,N,T
  are the nodes and the corre-

sponding weights of the shifted Jacobi-Gauss-quadra-
ture formula on the interval (0,T), respectively.

For solving (12), we first set:
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The shifted Jacobi-Gauss collocation method for solv-
ing (xxx) is to seek )T,0(S)x(z NN  , such that:
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We first approximate z(x), z'(x) and z"(x), as Eq. (19).
By substituting these approximation in Eq. (19), we get:
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Several solution have been proposed through the BPES
in many fields such as numerical analysis[26], material char-
acterization[27], theoretical physics[28], mathematical al-
gorithms[29], heat transfer[31,32] and homo dynamics[33-35].

The Boubaker Polynomials Expansion Scheme
BPES is applied to the system (12) through setting the
expression:
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where k4B  are the 4k-order Boubaker polynomials, x
[0,1] is the normalized variable, r
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unknown pondering real coefficients.
Thanks to the properties expressed by Equations

(23) and (24), boundary condition are trivially verified
in advance to resolution process. The system (1) is hence
reduced to:
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The BPES solution is obtained by determining the non-

null set of coefficients 
0N..1k
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Figure 2 displays a velocity profile which matches
perfectly the conditions evoked by Zhmayev et al.[41]

and Shin et al.[42]. In fact, along an unitary path, jet
velocity increases of about 300 percent, which is a fa-
vorable condition for fiber formation[41,42].

Additional error analyses yielded a mean relative
error below 0.4% (Figure 3).

Figure 2 : Solution plots

The final solution is hence:
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RESULTS PLOTS AND DISCUSSION

Plots of the solution obtained by the modified
Jacobi-Gauss collocation spectral method are presented
in Figure 2, along with BPES solution.

According to the results recorded by Theron et
al.[36], He et al.[37,38], Xu et al.[39] and Thompson et
al.[40], velocity at the beginning of the process is
jugulated along a short path then is exponentially ac-
celerated. These features are fully verified in the
present results (Figure 2). It seems that the two meth-
ods ensure the preset boundary condition expressed
in Eq. (12). From a methodological point of view,
the BPES resolution process forces the validity of
the boundary conditions prime to establishment of
the resolution algorithm while the modified Jacobi-
Gauss collocation spectral method takes boundary
conditions into account at the same level with the
main equation.
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