ISSN : 0974 - 7486

Volume 10 Issue 10

Materials

Science An Indian Journal FUII Paper

MSAIJ, 10(10), 2014 [410-415]

Physical properties of chalcogenide glasses from the GeSe₂-Sb₂Te₃-PbSb₂Te₄ system

Temenuga Hristova-Vasileva¹, Lilia Aljihmani^{2*}, Venceslav Vassilev² ¹Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, (BULGARIA) ²Department of Non-Ferrous Metals Metallurgy and Semiconductors Technology, University of Chemical Technology and Metallurgy – Sofia, 8 Kliment Ohridsky Blvd., 1756 Sofia, (BULGARIA) E-mail : 1 aljihmani@aby.bg

ABSTRACT

Chalcogenide glasses from the GeSe₂-Sb₂Te₃-PbSb₂Te₄ system are synthesized by direct monotemperature synthesis from the initial compounds. The thermal properties (temperatures of glass-transition T_{g} , crystallization T_{cr} and melting T_{m} , as well as the Hruby's criterion of the glassy samples are determined using DTA. On their basis the Hruby's criterion K_G is calculated. The density and the Vickers microhardness of the glasses are measured and using the obtained values the compactness C, the elasticity modulus E and the thermomechanical properties (micro-voids volume V_h and energy for formation of a micro-void E_h) are calculated. A correlation between these properties and the glasses composition is established and discussed. © 2014 Trade Science Inc. - INDIA

KEYWORDS

Thermal properties; Density; Microhardness; Thermomechanical properties; Elasticity modulus.

INTRODUCTION

The chalcogenide glasses can find application in the optics, electronics, sensorics and other areas of the contemporary technics^[1-5]. They can be synthesized relatively easy in a bulk form and the thin films can be deposited by conventional methods. The glassy chalcogenide semiconductors are characterized by high corrosion steadiness and stability of the properties^[6]. Besides, they are relatively cheap electronic material when they are developed in thin film form.

The GeSe₂ is hardly obtained in glassy state, but combined with an element or compound with modifying properties it is recognized as one of the best glassformers^[7]. Such modifier in the current case is the Sb₂Te₃. This compound possesses very good thermoelectrical properties. At T=300 K its thermal power is $\alpha \approx 90 \,\mu$ V/K; the specific electrical conductivity σ =2000÷4000 S/cm; the holes concentration is 7.10¹⁹ cm⁻³; and the electrical band gap Δ E=0.19 eV^[8].

The pseudo-ternary compound PbSb₂Te₄ decomposes in the glasses to PbTe and Sb₂Te₃^[9], which helps the formation of more complicated glassy network and more stable glasses, respectively. The PbSb₂Te₄ is new thermoelectric material with p-type conductivity, band gap at 0 K $\Delta E_{o} = 0.27$ eV, and it is characterized by significant anisotropy of its thermoelectrical and thermomagnetic properties^[10]. The monocrystalline PbSb₂Te₄ has electrical conductivity σ =2350 Ω^{-1} cm⁻¹ and thermal conductivity λ =29.1×10⁻² W/(cm.K) at 300 K^[11].

Full Paper

For the polycrystalline stoichiometric PbSb₂Te₄ these values are respectively: σ =2120 Ω^{-1} cm⁻¹ and λ =19.2×10⁻² W/(cm.K)^[12]. The total thermal conductivity λ_{tot} changes from 2.6×10⁻² (at 320 K) to 2.0×10⁻² W cm⁻¹ K⁻¹ (at 600 K)^[13].

The region of glass formation in the GeSe₂-Sb₂Te₃-PbSb₂Te₄ system^[14] spreads from the point, corresponding to 100 % GeSe₂ and lies partially on the GeSe₂-Sb₂Te₃ (from 0 to 32.5 mol % Sb₂Te₃) and GeSe₂-PbSb₂Te₄ (from 0 to 27 mol % PbSb₂Te₄) sides. No glassy phases were obtained on the Sb₂Te₃-PbSb₂Te₄ side.

Figure 1 : Region of glass formation in the GeSe₂-Sb₂Te₃-PbSb₂Te₄ system.

On the basis of the properties of the initial compounds, one can assume that the glasses from the chalcogenide $GeSe_2-Sb_2Te_3-PbSb_2Te_4$ system will possess properties, appropriate for their application as active material for development of electronic elements and sensors.

In connection with all presented above, the aim of the present work is to determine the thermal (temperatures of glass-transition T_g , crystallization T_{cr} and melting T_m , as well as the Hruby's criterion K_G), physicochemical (density d, compactness C and microhardness HV), mechanical (elasticity modulus E) and thermomechanical (micro-voids volume V_h and energy for formation of a micro-void E_h) properties of chalcogenide glasses from the GeSe₂-Sb₂Te₃-PbSb₂Te₄ system and to find an explanation of their compositional dependence, if such exists.

EXPERIMENTAL

The initial compounds GeSe₂, Sb₂Te₃ and $PbSb_{2}Te_{4}$, as well as the samples from the investigated system were synthesized by direct monotemperature synthesis in evacuated to a residual pressure of 1.10^{-3} Pa quartz ampoules. The initial elements used for the synthesis of GeSe₂, Sb₂Te₃ and PbSb₂Te₄ were with purity of 5N for the Ge, Se, Te and 4N for the Sb and Pb. The synthesis conditions (temperature, duration of the isothermal steps and heating rate) were conformed to the physicochemical properties of the initial components. The maximum synthesis temperature of the samples from the investigated system was 800±10 °C (duration of 3 h at constant vibration stirring of the melt). After a decrease of the temperature to 770 ± 10 °C the melt was tempered for 10 minutes and quenched in a water+ice mixture (cooling rate of 10-15 °C s⁻¹).

The phase transformations temperatures of the glasses (glass transition T_g , crystallization T_{cr} and melting T_m) were determined by differential thermal analysis (DTA) using measuring set from the F.Paulik-J.Paulik-L.Erdey system, produced by MOM-Hungary. The DTA was carried out as the glassy samples in quantity of 0.3 g were heated at rate of 10 °C/min in evacuated and sealed Stepanov's vessels. Calcinated γ -Al₂O₃ was used as a reference substance.

The Hruby's criterion (K_G) was used for evaluation of the glass-forming ability of the samples:

$$\mathbf{K}_{\rm G} = \frac{\mathbf{T}_{\rm cr} - \mathbf{T}_{\rm g}}{\mathbf{T}_{\rm m} - \mathbf{T}_{\rm cr}} \tag{1}$$

The density of the glassy samples was measured by hydrostatic method in toluene as immersion fluid. The Vickers microhardness (HV) was measured using MIM-7 microscope with built in microhardnessmeter PMT-3 at loading of 20 g (30 measurements per sample). The accuracy of both measurements is ± 5 %.

The compactness C was calculated using the equation^[15]:

$$\mathbf{C} = \mathbf{d} \left\{ \sum_{i} \frac{\mathbf{M}_{i} \mathbf{x}_{i}}{\mathbf{d}_{i}} - \sum_{i} \frac{\mathbf{M}_{i} \mathbf{x}_{i}}{\mathbf{d}} \right\} \left[\sum_{i} \mathbf{M}_{i} \mathbf{x}_{i} \right]^{-1}$$
(2)

where M_i , x_i and d_i are the molar mass, the molar part and the theoretical density of the ith component, respectively.

The elasticity modulus was calculated using Eq.

(3)

Full Paper(3)^[16]:

E=0.147.HV[GPa],

For calculation of the thermomechanical properties (micro-voids volume V_h and energy for their formation E_h) the following equations were used^[16]:

$$V_{\rm h} = 5.04 \cdot 10^{-3} \, \frac{T_{\rm g}}{\rm HV} \, [\rm nm^3] \tag{4}$$

 $E_{\rm h} = 29.75 T_{\rm g} [\rm J \, mol^{-1}]$ (5)

RESULTS AND DISCUSSION

The thermal characteristics of glasses from the investigated system are shown in TABLE 1. For convenience during the analysis of the results the m parameter is introduced, which expresses the ratio between the GeSe₂ (x) and Sb₂Te₃ (y) – m = Sb₂Te₃/(GeSe₂+Sb₂Te₃) = y/(x+y). Due to the same reason the third component from the system (PbSb₂Te₄) is marked with z in the dependencies.

ing in of the structural units (s.u.) SbTe_{3/2}, while at the combined introduction of Sb₂Te₃ and PbSb₂Te₄, two new s.u. are built in. The first of them includes the trigonal pyramids SbTe_{3/2}, the source of which are both the initial component Sb₂Te₃ and the PbSb₂Te₄ compound, and the second - linear fragments $-Pb-Te-(s.u. : PbTe_{1/2})$, which are carried by the PbSb₂Te₄ (PbSb₂Te₄ \rightarrow PbTe+Sb₂Te₃). The : PbTe_{1/2} s.u. lead to looseness of the glasses structure (their compactness C decreases). Therefore, the T_g change in the concentration intervals $0.0 \le m \le 0.1$ and $0 \le z \le 10$ mol % is limited by the effect, provoked by the introduction of the s.u. SbTe_{3/2}, while outside these borders – by the s.u. PbTe_{1/2}.

The $T_{cr}(m)_{z=10}$ and $T_{cr}(z)_{m=0.1}$ dependencies (TABLE 1) are practically linear with negative angle coefficient, which is logical since at the complication of the glasses composition as a result of the participation of 3, 4, 5 or more chemical elements the probability for arise of crystalline nuclei with following crystallization of different by composition phases increases. The exit of the sys-

TABLE 1 : Composition and thermal characteristics of glasses with composition $(GeSe_2)_x(Sb_2Te_3)_y(PbSb_2Te_4)_z$.

№ -	Composition				T OC	T OC	T OC	V
	GeSe ₂	Sb ₂ Te ₃	PbSb ₂ Te ₄	- 111	1 _g , °C	$\mathbf{I}_{\rm cr}, \mathbf{C}$	1 _m , °C	ĸ _G
20	90	10	0	0.1	232	443	477	6.20
12	90	0	10	0	208	385	453	2.60
18	85.5	4.5	10	0.05	237	390	462	2.13
3	81	9	10	0.1	246	361	457	1.20
2	72	18	10	0.2	217	246, 328	477	0.75
5	72	8	20	0.1	193	246, 304	438, 477	0.64

The parallel analysis of the compositional dependencies of the glass-transition temperature $T_g - T_g(m)_{z=10}$ $\mu T_{a}(z)_{m=0,1}$, respectively, shows the presence of well expressed maximum for the composition, corresponding to p. 3 (GeSe₂)₈₁(Sb₂Te₃)₉(PbSb₂Te₄)₁₀. This means in practice, that the glasses around this composition are the most stable ones and the introduction of $PbSb_{2}Te_{4}$ up to 10 mol % increases the T_a and stabilizes the glasses structure. On the other hand, the glasses from the binary GeSe₂-Sb₂Te₃ system in the compositional interval $0.0 \le m \le 0.1$ possess higher T_a values compared to the glasses from the binary GeSe₂-PbSb₂Te₄ system around $0 \le z \le 10 \mod \%$. This T_g deviation has to be related to a change in the structure, which initially is built only by $GeSe_{4/2}$ -tetrahedrons. With the addition of Sb₂Te₃ the structure becomes denser due to the buildtem from one relatively stable condition as a result of ongoing crystallization inevitably leads to decrease of the glasses stability and from there to decrease of the crystallization temperature. It has to be marked, that at the compositions, corresponding to p. 2 and 5, 2 exothermal effects of crystallization are observed. This is not by chance, since these compositions are situated near the outline, tracing the glass forming region. The nearness of the crystallization temperatures of the "high temperature" effects (328 and 304 °C) of p. 2 and 5, as well as the coincidence of the T_{cr} of the "low temperature" effects (246 °C) of the same points, make us assume that the crystallizing phases in these two samples are near or equal by composition. The higher crystallization temperature could be related to the crystallization of the Sb₂SeTe₂ phase, proven in our previous

works on this system^[9,14]. Most probably, the second phase crystallizing at the lower temperature is elemental alloy from the Te-Se system, rich of Te.

The melting temperature (T_m) of the samples containing 10 mol % PbSb, Te, (z=10) lightly increases with the increase of m-TABLE 1. The second endothermal effect at T_m=477 °C is most probably related to the existence of an eutectic in the GeSe₂-Sb₂Te₃ system, reported by Surinach et al.^[17]. Since the thermal analysis was led up to 750 °C and taking into account the fact that the GeSe, compound melts at 740 °C and the compounds, which could be formed as a result of the high temperature processes passing in the melt, are with lower melting temperature, one can say that all endothermal effects connected to T_m do not refer to "pure" chemical compounds, but to solid solutions. This strongly bothers the addressing of a given melting temperature to defined crystallized phase. Analyzing the path of the obtained $T_m(m)_{z=10}$ dependence one can say that the addition of any of the possibly existing phases in this system - GeSeTe ($T_m \sim 650 \circ C$); GeSe ($T_m = 675 \circ C$); Sb₂Te₃ (T_m =620°C), PbSb₂Te₄ (T_m =637 °C), will lead to decrease of the T_m of the glasses. We do not take into account the influence of the PbTe, which has higher melting temperature than this of GeSe₂, since the PbTe content is constant. This leads to the conclusion that the T_m increase with the increase of m is most probably related to the peculiarities of the liquidus line in the GeSe₂-Sb₂Te₃-PbSb₂Te₄ system, as well as to the formation of an intermediate phase with melting temperature a little bit higher than this of the GeSe₂.

The influence of $PbSb_2Te_4$ in the $T_m(z)_{m=0.1}$ dependence is even more complicated, since with the approaching of the compositions towards the border, limiting the glass forming region conditions for crystallization of more than one phase are created. In this case

the phases are two and their temperatures have "logical" values – lower than T_m of the composition, corresponding to p.3.

On the thermogram of the sample with composition, corresponding to p. 5, one more effect is observed, which coincides to an effect of p. 2. If we exclude this endothermal effect, which was related above to the closeness of this composition to the eutectic in the $GeSe_2$ -Sb₂Te₃ system, the path of the $T_m(z)_{m=0,1}$ dependence is logical as far as it is typical for the melting effects of "solid solutions" (in this case we make analogy to a solid solution with the same composition as the glass). For this time it is hard to relate these melting temperatures to the composition of a current phase. In any case, this phase will obligatory contain the components of these eventual compounds, whose melting temperature is lower than the melting temperature of GeSe, (GeSeTe, GeSe, Sb₂Te₃, as well as eventually this of Se and/or Te).

The Hruby's criterion K_G characterizes the ability of a given composition to pass into glassy state. For calculation of K_G the higher values of T_{cr} and T_m have been used. With the increase of the Sb₂Te₃ at constant PbSb₂Te₄ content (z=10), the Hruby's criterion lightly decreases, as at m>0.1 a tendency towards saturation is observed – TABLE 1. The behavior of the $K_G(z)_{m=0.1}$ dependence is analogical - K_G decreases with a tendency towards saturation at z>10. The path of these two dependencies is logical, since with the increase of m, respectively of z, the composition of the chalcogenide glasses approaches the glass forming border.

The obtained values of the density d of the samples from the GeSe₂-Sb₂Te₃-PbSb₂Te₄ system (TABLE 2) fall between the values of the initial components densities ($d_{GeSe_2} = 4.34 \text{ g.cm}^{-3[6]}$, $d_{Sb_2Te_3} = 6.57 \text{ g.cm}^{-3[18]}$ and $d_{PbSb_2Te_4} = 7.5 \text{ g.cm}^{-3[19]}$).

TABLE 2 : Density d, compactness C, microhardness HV, elasticity modulus E and thermomechanical characteristics (V_h and E_h) of glassy samples from the GeSe₂-Sb₂Te₃-PbSb₂Te₄ system

N⁰	Z	m	d, g/cm ³	С	HV, kgf/mm ²	E, GPa	V _h .10 ⁻³ , nm ³	E _h , kJ/mol
20	0	0.1	4.498	-0.0451	95	13.97	0.0268	15.02
12	10	0	4.530	-0.0954	109	16.02	0.0222	14.31
18	10	0.05	4.648	-0.0958	94	13.82	0.0273	15.17
3	10	0.1	4.745	-0.0988	83	12.20	0.0315	15.44
2	10	0.2	5.046	-0.0816	80	11.76	0.0309	14.58
5	20	0.1	4.925	-0.1375	67	9.85	0.0351	13.86

Materials Science An Indian Journal

Full Paper

In the d(m)_{z=10} and d(z)_{m=0,1} dependences the density increases (TABLE 2) This is related to the different density values of the initial components Sb_2Te_3 and PbSb₂Te₄.

The compactness C does not depend in practice on the composition up to $m \le 0.10$ and weakly increases with the change of m from 0.10 to 0.20. The search of correlation between the d(m) and C(m) dependencies at z=const is impeded to a large degree due to the physicochemical properties of the initial component PbSb₂Te₄, which melts incongruently and it is absolutely possible that during the synthesis of the glasses it "masks" the influence of the composition on the density.

The decomposition (partial or full) of PbSb₂Te₄ by the scheme PbSb, $Te_4 \rightarrow PbTe+Sb_7Te_3$ leads to increase of the total quantity of Sb₂Te₃, which cannot be left non-reflected in the d(m) and C(m) dependencies at z=const. Furthermore, instead of talking about analysis of the PbSb₂Te₄ influence, one should talk about influence of PbTe on the glasses characteristics. Besides, both PbSb₂Te₄ and PbTe possess high molecular mass and they can participate, and most probably participate, with structural units SbTe_{3/2} and linear fragments -Pb-Te-. This means that three factors will influence the path of the above-stated dependencies simultaneously in opposite directions: building of the linear fragments into the structure, as well as building of the trigonal pyramids $SbTe_{3/2}$, which by their side can lead to both increase or decrease of the micro-voids. Depending on which effect is limiting, the compactness C will increase (weakly or strongly) or will decrease. Evidence for this are the $C(m)_{z=10}$ and $C(z)_{m=0.1}$ dependencies (TABLE 2). In the first case the limiting influence on the C path has the densification of the structure under the impact of the building of the SbTe_{3/2} pyramids into the $GeSe_{4/2}$ tetrahedrons. In the second case, limiting is the influence of the breakage of the Se-, Te- and (Se-Te)bridges and the building of the linear -Pb-Te- fragments between the atoms of Se-, Te- or Se-Te.

The analysis of the HV(m)_{z=10} and HV(z)_{m=0.1} dependencies (TABLE 2) shows well expressed tendency towards decrease of the microhardness values with the increase of m (z=10) and z (m=0.1). This path of the concentration dependencies of HV is most probably related to the partial HV values of the initial components GeSe₂, PbSb₂Te₄ and Sb₂Te₃, which decrease in

Materials Science An Indian Journal the same row: $100-200^{[6]}$, $45^{[19]}$ and $18 \text{ kgf/mm}^{2[20]}$, respectively.

The $E(m)_{z=10}$ and $E(z)_{m=0.1}$ dependencies have analogical path (TABLE 2), as in the first dependence a tendency towards saturation at m>0.1 is observed. This similar path of the concentration dependencies of HV and E is caused by their mutual relation in Eq. (3).

Two factors (T_a and HV) with opposite action influence the path of the concentration dependencies $V_h(m)_{z=10}$ and $V_h(z)_{m=0,1}$. They are directly connected to the glasses structure and influence simultaneously, according Eq. (4), the values of $\boldsymbol{V}_{h}-\text{TABLE 2}.$ Hence, the reasons, which lead to change of the concentration dependencies of HV and T_o, also reflect on the concentration path of V_{h} . The more important in this case is to mention, that in the $0.0 \le m \le 0.1$ interval, the T_a and HV act in one direction (T_g increases, while HV decreases) and according to Eq. (4) the micro-voids volume V_{h} increases. At m>0.1 T_a and HV act in opposite direction: the decrease of T_{a} leads to decrease of V_{b} and the decrease of HV leads to increase of $V_{\rm h}$. The influence of the first factor (T_{g}) is limiting, which explains both the weak decrease of V_h and its saturation tendency. This means in practice that the system tends towards structural relaxation.

The $E_h(m)_{z=const}$ and $E_h(z)_{m=const}$ dependencies go over the path of the $T_g(m)_{z=10}$ and $T_g(z)_{m=0.1}$ dependencies, according to Eq. (5), going through maximum at m=0.1 and z=10, respectively – TABLE 2.

CONCLUSIONS

Chalcogenide glasses from the $GeSe_2-Sb_2Te_3-PbSb_2Te_4$ system were synthesized.

The temperatures of glass-transition (T_g), crystallization (T_{cr}) and melting (T_m), as well as the density d and the microhardness (HV) of the samples were measured by classical analysis methods. The characteristic temperatures T_g , T_{cr} and T_m vary between 193-246, 246-443 and 438-477 °C, respectively, and the path of their concentration dependencies is limited by a row of factors: the ratio between the structural units GeSe_{4/2}, SbTe_{3/2} and PbTe_{1/2}; the closeness of the samples composition to the glass forming borders; the number and the kind of the crystallizing phases; the peculiarities of the liquidus line in the investigated system; the melting

415

temperatures of the intermediate phases. The density values of the samples fall between these of the initial components, which together with the physicochemical specifics of the PbSb₂Te₄ dictate the path of the $d(m)_{z=10}$ and $d(z)_{m=0.1}$ dependencies. The path of the concentration dependencies of HV is related to the partial HV values of the initial components, the physicochemical properties of PbSb₂Te₄ and to above-counted factors, influencing the characteristic temperatures.

On the base of the experimental results from the measurements led, the Hruby's criterion K_{g} , the compactness C, the elasticity modulus E and the main thermomechanical characteristics (V_{h} and E_{h}) were calculated. The concentration dependencies of these characteristics were analyzed and discussed.

ACKNOWLEDGEMENTS

The authors acknowledge the Ministry of Education and Science (National Science Fund) for the financial support of this investigation by contract DO 02-123/15.12.2008.

REFERENCES

- [1] N.Mehta; J.Sci.Ind.Res., 65, 777 (2006).
- [2] Zakery; J.Non-Cryst.Solids, 330(1-3), 1 (2003).
- [3] X.Zhang, H.Ma, J.Lucas; J.Optoelectron.Adv.Mater., 5(5), 1327 (2003).
- [4] Quémard, F.Smektala, V.Couderc, A.Barthélémy, J.Lucas; J.Phys.Chem.Solids, 62, 1435 (2001).
- [5] M.Frumar, B.Frumarova, P.Nemec, T.Wagner, J.Jedelsky, M.Hrdlicka; J.Non-Cryst.Solids, 352, 544 (2006).
- [6] Z.U.Borisova; Halkogenidnie poluprovodnikovie stekla, Leningr.un-ta, Leningrad, in Russian, (1983).
- [7] G.Z.Vinogradova; Stekloobrazovanie I fazovie ravovesia v halkogenidnih sistemah, Nauka, Moskva, in Russian, (1984).
- [8] N.H.Abrikosov, et al.; Poluprovodnikovie halkogenidia i splavia na ih osnove, Nauka, Moskva, in Russian, (1975).

- [9] L.Aljihmani, V.Vassilev, T.Hristova-Vasileva; Rev.Metall., 109, 21 (2012).
- [10] L.E.Shelimova, T.E.Svechnikova, P.P.Konstantinov, O.G.Karpinskii, E.S.Avilov, M.A.Kretova, V.S.Zemskov; Thermoelectric Properties of Layered Anisotropic p-type PbSb₂Te₄ Compound and Peculiarities of its Energy Spectrum, Presented at 5th European Conference on Thermoelectrics, Odessa (Ukraine), September 10-12, (2007).
- [11] L.E.Shelimova, O.G.Karpinskii, T.E.Svechnikova, I.Yu.Nihezina, E.S.Avilov, M.A.Kretova, V.S.Zemskov; Inorg.Mater., in Russian, 44(4), 436 (2008).
- [12] D.M.Freik, N.I.Dikun, V.M.Boichuk, R.I.Zapuhliak;J.Phys.Chem.Solid State, in Ukrainian, 10(4), 872 (2009).
- [13] L.E.Shelimova, T.E.Svechnikova, P.P.Konstantinov, O.G.Karpinskii, E.S.Avilov, M.A.Kråtova, V.S.Zemskov; The n- and p-type Mixed Layered Thetradimite-like Compounds with Low Lattice Thermal Conductivity: Growth, Structure and Thermoelectric Properties, Proceedings 2nd European Conference on Thermoelectrics, Krakow, 202-207 (2004).
- [14] L.Aljihmani, T.Hristova-Vasileva, V.Vassilev; J.Tech.Univ.Plovdiv, Fundamental Sciences And Applications, 16(2), 159 (2011).
- [15] L.Aljihmani, V.Vassilev, P.Petkov;J.Optoelectron.Adv.Mater., 5(5), 1187 (2003).
- [16] V. Vassilev, G. Vassilev, E. Fidancevska; Chalcogen. Lett., 5(2), 415 (2008).
- [17] S.Surinach, M.D.Baro, M.T.Clavaguera-Mora, N.Clavaguera; Thermochim.Acta, 133, 287 (1988).
- [18] CRC Handbook of Chemistry and Physics; Internet version 2005, David R.Lide, (Ed); http:// www.hbcpnetbase.com, CRC Press, Boca Raton, FL, (2005).
- [19] V.Vasilev, D.Atanasova, I.Mihailova, V.Parvanova, L.Aljihmani; Thermochim.Acta, 520, 80 (2011).
- [20] V. Vassilev, M.Radonova, E.Fidancevska, S.Boycheva; Basic physicochemical properties of glasses in the GeSe₂-Sb₂Te₃-CdSe system, Proceedings 7th International Scientific Conference Unitech '07, Gabrovo, 23-24 November, 2, II-365 (2007).

