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Abstract 

This note aims to give a self-contain and detail explaination about U(k′) × U(k) Pati-Salam model in curved space-time which derived 

from (1 + n)-dimensional square root Lorentz manifold by self-parallel transportation principle. The concepts fundation of manifold from 

view point of category theory, fiber bundle and sheaf theories are reviewed. There are extra U(k′) × U(k)-principal bundle and U(k)-

associated bundle than (1 + n)-dimensional Lorentz manifold. The conservative currents on square root Lorentz manifold is discussed 

preliminary. A detail proof of relation from sheaf quantization to path integral quantization is given.
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Introduction 

Square root metric manifold has extra U(k′) ×U(k) principal bundle and U(k)-associated bundle than usual Lorentz manifold. These 

extra bundles gives us opportunity to con-struct Yang-Mills theory in curved space-time [1], especially the Pati-Salam type Yang-

Mills theory [2, 3] in curved space-time. Sheaf as a natural mathematic structure being found by mathematicians [4], for example, 

Jean Leray, long ago. 

Sheaf theory has deep relation with fiber bundle theory [5] (Yang-Mills theory [6, 7]) and superposition principle. Sheaf can be 

derived from contravariant functor in category theory, the sheaf cohomology and spectral sequences is fascinating and useful. The 

micro support language of sheaf the-ory [4] from Mikio Sato might be popular in future mathematic-physicsts. 

Sheaf as a basic language of topos from Grothendieck [8], “we cannot even define a scheme without using scheaves” [9]. Sheaf 

quantization might be a method to quantize quantum field theory in curved space-time which avoiding problem of infinities [1, 

16-17].

The sheaf space is linear space and coherent with superposition principle, even the base manifold is curved. The sheaf quantization 

method is consistent with path integral quan-tization method.

In this paper, the section 2 gives us a priliminary concepts introduction of category, functor; and the topological space, sheaf, 

manifold, bundle from the category point of view.
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The section 3 talk about Einstein-Cartan geometry of Lorentz and Riemann manifold. The section 4 is a brief introduction of 

generators of Clifford algebra. The section 5 describes the geometry framework of square root Lorentz manifold. 

Based on square root Lorentz manifold, the Pati-Salam model in curved space-time and Einstein-Cartan gravity are 

constructed. The section 6 discusses the formulation of sheaf quantization, and the relation between sheaf quantization 

and path integral.

Category

The category C consist of

a class ob(C) of objects, for example, a, b, c, d ∈ ob(C)

homC(a, b)
 (2.1)

represent all morphisms from a to b in category C. For example,

f, g ∈ hom(a, b), h ∈ hom(b, c), i ∈ hom(a, c). (2.2)

Composition of morphisms is, for objects a, b, c ∈ ob(C),
homC(a, b) × homC(b, c) → homC(a, c). (2.3) 

The morphisms hom(C) in category C satisfy the axiom of associativity and iden-tity:

(Associativity axiom) if

f : a → b, g : b → c, h : c → d, (2.4)
then

h(gf) = (hg)f. (2.5)
(Identity axiom) For every object x, y ∈ ob(C), there exists a morphism

1x : x → x. (2.6)

For every morphism f ∈ hom(C)

f : x → y, (2.7)

we have
1xf = f = f1y. (2.8)

Functor
Functors are structure-preserving maps between categories. A covariant functor F from a category C to a category D is written

F : C → D, (2.9)

and the structure-preserving means

for object x ∈ ob(C) and F (x) ∈ ob(D) and morphisms f ∈ hom(C)

f : x → y, F (f) : F (x) → F (y), (2.10)
where

f ∈ hom(C), F (f) ∈ hom(D). (2.11)

such that,

For every object x ∈ ob(C),

F(1x) = 1F (x); (2.12)

)

Category, functor, topological space, sheaf, manifold and fiber bundle
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for objects x, y, z ∈ ob(C), all morphisms in C

f : x→ y, g : y → z, (2.13)

the functor preserves the composition of morphisms

F (gf) = F (g)F (f). (2.14)

A contravariant functor like structure-preserving covariant functor from categories C to D, but for morphism f, g ∈ hom(C)

f : x→ y, ⇒ F (f) : F (y) → F (x), (2.15)

F (gf) = F (f)F (g). (2.16)

Topological space
The point x0 ∈ x and the neighborhood of x0 (an open covering )

Ux0 = {x|x→ x0} (2.17)

can glun to topological space X (more pricisely, an open covering Hausdorff space X )

X = ∪Ux, (2.18)

where

x→ x0 (19)

is the direct limit from x to x0. For any point x0 ∈ x, there is open covering partial ordered set on topological 
space X

Ux0 ⊂ U1
x0

⊂ U2
x0

⊂ · · ·X. (2.20)

Category Viewing of Topological Space

• The Topological space X is a category with objects

Ux0 ∈ ob(X), x0 ∈ x. (2.21)

and morphisms

⊂,∪,∩ ∈ hom(X). (2.22)

• The category Top with objects

X ∈ ob(Top). (2.23)

and morphisms

continuous map ∈ hom(Top). (2.24)

(2.19)

space X

http://www.tsijournals.com/
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Presheaf and Sheaf

F (Ux0 ) is the presheaf on Ux0 which is isomorphic to Abel group A (F (Ux0 ) means all possible 
functions on neighborhood Ux0 )

F : Ux0 → F (Ux0 ).                                                             (25) 
F is a functor from neighborhood Ux0 to presheaf F (Ux0 ). From presheaf F (Ux0 ) to construct sheaf 
F (X) satisfy the locality axiom and gluing axiom.

• (Locality axiom) If Ux0 is an open covering of an open set X, and if sections

sx, tx ∈ F (X), (2.26)

such that for any x0 ∈ X

s|Ux0
= t|Ux0

, (2.27)

then
(2.28)sx = tx,

where s|Ux0 is the section restricted to neighborhood of x0.

• (Gluing axiom) If

(2.29)x0, x1 ∈ X,

Ux0 and Ux1 are open covering of an open set X, and for sections

(2.30)sx0 ∈ F (Ux0 ), sx1 ∈ F (Ux1 ), the 

sections agree on the overlap

(2.31)sx0 |Ux0 ∩Ux1 = sx1 |Ux1 ∩Ux0 ,

the presheaf gluing aixom (2.31) can be presented by commutative diagram

F (Ux0)
∩F (Ux1 ) F (Ux0 ∩ Ux1)

∩Ux1

F

Ux0 ∩ Ux1

F (2.32)

Ux0

then there is a global section

sx ∈ F (X), x ∈ X, (2.33)

such that

(2.34)
sx0 = sx|Ux0 . The 

stalk of x0 is the sheaf space restricted to x0

(2.25)

www.tsijournals.com | January 2024
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(2.35)Fx0 = F (X)|Ux0 = F (Ux0 )/ ∼, 

where ∼ is an equivalence relation from restriction.

Manifold
For manifold, in the neighborhood Ux0 of x0, there is coordinate

dxµ|x→x0
. (36)

As an example of presheaf, the collection of all possible coordinates in the neighborhood Ux0 of x0 is a 
presheaf

(2.37)d(Ux0 ) = {dxµ|x→x0 }.
The presheaf d(Ux0 ) can gluon to sheaf d(X) because

d(Ux0)
∩d(Ux1 )

d(Ux0 ∩ Ux1)

Ux0

∩Ux1

d

Ux0 ∩ Ux1

d

d : X → d(X).

where differential structure d(X) is collection of all possible globle coordinates on topo-logical space X, d is one kind of 
functor F , and d(X) is one kind of sheaf F (X). Then we can see the manifold M is topological space X with differential 
structure d(X) ( the globle coordinates on (1 + n)-dimensional manifold M might not be parameteried by R1+n)

M = (X, d(X)).

• We point out that the definition of manifold M = (X, d(X)) is equivalent with the definition in usual book with
axioms of locally flatness and atlas compatibility.

• (Locally flatness axiom) The point x0 in (1 + n)-dimensional manifold, then the neighborhood Ux0 can

isomorphic to R1+n.

• (Atlas compatibility axiom) The points x0 and x1 in (1 + n)-dimensional manifold have neighborhood Ux0 and
Ux1 with parametrization {x0

µ, µ = 0, 1, 2, · · · , n} and {x1
µ, µ = 0, 1, 2, · · · , n}. Then, there are coordinates {dx0

µ, 
µ = 0, 1, 2, · · · , n and {dx0

µ, µ = 0, 1, 2, · · · , n}. For the overlap of the two neighborhood

Ux0 ∩ Ux1 ,

there is coordinate transformation

dx0
µ = Λµν (x0)dx

ν
1 = Λµν (x1)dx

ν
1 , Λµν (x0), Λ

µ
ν (x1) ∈ GL(1 + n, R),      

where

Λµν (x0) = Λµν (x)|x→x0 .

(2.36)

presheaf

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

www.tsijournals.com | January 2024
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• For any number of neighborhood, there is

x0
µ = Hom (Λµν (x0), Λµν (xq)) xq

ν + Cq − C0.

C : τ → M, C(τk) = xk, k = 0, 1, 2, · · · , n, 
linear transformation

Hom (Λµ
ν (x0), Λ

µ
ν (xq)) (2.47) 

and the edge function Cq −C0. The solutions of equation (2.44) just the sheaf space d(X) restricted on 
curve C(τ)

d(X)|C(τ ) .                                                               (48) 
From equation (2.45) we can see that the global coordinates in (1 + n)-dimensional manifold might 
not parameteried by R1+n.

Category Viewing of Manifold

• The manifold M is a category with objects

Ux0 , d(Ux0) ∈ ob(M), (2.49)

and morphisms

⊂,∪,∩, d ∈ hom(M). (2.50)

• The category Man with objects

M ∈ ob(Man), (2.51)

and morphisms

continuous differentiable map ∈ hom(Man). (2.52)

Principal Bundle
The fiber E(Ux0 ) of the cotangent principal bundle E(M) on manifold M isomorphic to the freedom G = 

GL(1+n, R) of coordinates can make transformation (left action) locally

E(Ux0 ) = {Λµν (x)|x→x0 | dxµ′|x′→x0 = Λµν (x)dxν |x→x0 , Λ
µν (x)|x→x0 ∈ GL(1 + n, R)}. (2.53) 

The cotangent principal G-bundle E(M) on manifold M is

E(M) = ∪E(Ux), G = GL(1 + n, R), (2.54)

(2.44)

Which means the parameters in x0 and xq relies on the continues path

(2.45)

(2.46)

(2.48) 

www.tsijournals.com | January 2024

dx0
µ = Λµ

ν1
(x0)Λ

ν
ν
1

2
(x1) · · ·Λνq

νq
−1(xq) dxq

νq = Hom (Λµ
ν(x0),Λ

µ
ν(xq)) dxq

ν , (2.44)

where the element in Hom (Λµ
ν (x0), Λµ

ν (xq)) is path dependent and cotangent prin-
cipal bundle section dependent element of linear transformation group GL(n, R)
valued. Then

http://www.tsijournals.com/
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so the cotangent principal bundle is a map π from total space E to base manifold M

π : E → M. (2.55)

E(Ux0)
∪E(Ux)

π

E(Ux0 ∪ Ux)
∪

π

E(M)

π

Ux0

∪Ux Ux0

��

∪ Ux
∪ M

(2.56)

The inverse mapping of π is a section of the sheaf d(M) and bundle E(M)

π−1 ∈ d(M), π−1 ⊂ E(M). (2.57)

Here for inverse mapping of cotangent principal bunlde, the meaning of π−1 is one global coordinate of the
manifold M. The contravariant functor πˆ−1 of π is the differential

structure sheaf of the manifold M (all possible global coordinates). Because we have the commutative 
diagram

d(Ux0)
∪d(Ux)

d(Ux0 ∪ Ux)
∪ d(M)

Ux0

∪Ux

π̂−1 d

Ux0 ∪ Ux
∪

π̂−1 d

M

π̂−1 d

(2.58)

then

πˆ−1 = d. (2.59)

The tangent principal bundle E∗(M) is the dual bundle of cotangent principal bundle E(M)
(2.60)π∗ : E∗ → M.

The section π∗−1 in the neighborhood of Ux0 has the formula

∂
∣∣∣

∂xµ ∣x→x0

(2.61)

and dual with coordinates

⟨dxµ, ∂

∂xν
⟩
∣∣∣∣
x→x0

= δν
µ. (2.62)

The sheaf πˆ∗−1 is dual with πˆ−1. The right action of element of GL(1 + n, R) on tangent principal bundle is
consistent with the definition of left action transformation on cotangent bundle

www.tsijournals.com | January 2024
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(
∂

)′

=
∂

Λν
µ(x). (2.63) ∂xµ                  ∂xν 

The definition of dual basis (2.62) gives us that ∣
Λµ

ρ(x)Λ
ρ
ν(x)∣x→x0

= δν
µ. (2.64)

Principal Bundle Connection
For a section π−1 of the cotangent principal bundle fiber E(Ux0 ) on manifold M, the linear connection operator
∇ρ is ∣∣∣ (δµν∇ρdx

µ =
dxµ −

ρ

Λµ
ν(x

ρ
0)dx

ν
0 =

− Λµ
ν
ρ

(x))dxν
= −Γµ

νρ(x)dx
ν , (2.65)

x − x0
∣
x→x0

dx

then the linear connection operator ∇ρ is a functor connects fiber E(Ux) to E(Ux0 )

∇ρ : E(Ux) → E(Ux0 ), x → x0. (2.66)
We write connection 1-form as follow

(2.67)Γµν (x) = Γµνρ(x)dxρ, and

the linear connection 1-form operator

∇ = ∇ρdxρ, ∇dxµ = −Γµν (x)dxν . (2.68)

The section of the fiber E∗(Ux0) of tangent bundle has the connection

∇ρ
∂xµ

=

(
∂

)
∂

∂xν
Γ̃ν

µρ(x).
(2.69)

We omit the x index some places below. The dual relation (2.62) of bases gives us that

∇ρ⟨dxµ,
∂

∂xν
⟩ = 0, ⇒ Γ̃µ

νρ(x) = −Γµ
νρ(x), (2.70)

then

∇ρ

(
∂

)
= Γν

µρ(x)
∂
. (2.71)

∂xµ ∂xν

We assumpt that the linear connection operator ∇ρ can be defined globally on the manifold M.Under the 

coordinate transformation in the neighborhood Ux, the transformation rule of the principal bundle connection is 
derived

www.tsijournals.com | January 2024
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∇ρdx
′µ = (∇ρ (Λ

µ
ν(x)dx

ν) ,

⇒ −Γ′µ
νρ(x

′)dx′ν =
∂Λµ

σ(x)

∂xρ
− Λµ

ν(x)Γ
ν
σρ(x)

)
dxσ,

⇒ Γ′µ
νρ(x

′)Λν
σ(x) =

(
Λµ

σ(x)

∂xρ

)
,

⇒ Γ′µ
νρ(x

′) =

(Λµ
ν(x)Γ

ν
σρ(x)−

∂

Λµ
ν(x)Γ

ν
σρ(x)−

∂Λµ
σ(x)

∂xρ

)
Λσ

ν(x),
(2.72)

⇒ Γ′µ
ν(x

′) = (Λµ
ν(x)Γ

ν
σ(x)− dΛµ

σ(x)) Λ
σ
ν(x), (2.73)

such that the cotangent principal bundle E(M) has structure of connection preserving left action G = GL(1 
+ n, R) torsors

E(M) =
G× E(M)

G
. (2.74)

Tangent and cotangent associated bundle

The tangent associated bundle T E∗(M) on manifold M is glued with tangent space on neighborhood of x

p∗ : TE∗ → M, TE∗(M) = ∪TE∗(Ux), (2.75)

the section p∗−1 of the bundle is a vector field of manifold M

V (x) = V µ(x)
∂
µ
,

∣∣(V 0(x), V 1(x), · · · , V n(x))
x→x0

∈ R1+n. (76)
∂x

Then the fiber T E∗(Ux0 ) of the bundle T E∗(M) is isomorphic to R1+n. For definite section of the tangent bundle,

there is GL(1 + n, R) freedom to choose the bases of vector in the neighborhood of x0

V (x)|x→x0
= V µ′(x)

∂

∂xν
Λν

µ(x)

∣∣∣∣
x→x0

= V ν(x)
∂

∣∣∣
∂xν ∣x→x0

,
∣∣Λν

µ(x) x→x0 
∈ GL(1 + n, R).(77)

With the help of (2.72) and (2.77), the tangent associated bundle T E∗(M) has the struc-ture of connection preserving 
right action G = GL(1 + n, R) torsors

TE∗(M) =
TE∗(M)×G

G
, (2.78)

the right action structure group G of tangent associated bundle is free and transitive. The contravariant functor 
pˆ∗−1 of tangent associated bundle T E∗(M) is a sheaf on manifold M

p̂∗−1 : M → TE∗, (2.79)

where the sheaf pˆ∗−1 are collections of all tangent vector fields on manifold M. The sheaf pˆ∗−1 has structure 
of connection preserving right action G = GL(1 + n, R) torsors

(2.76)

(2.77)

www.tsijournals.com | January 2024
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p̂∗−1 =
p̂∗−1 ×G

.
(2.80)

G

Similarly, the cotangent associated bundle is

p : TE → M, TE(M) = ∪TE(Ux), (2.81)

and has the structure of connection preserving left action G = GL(1 + n, R) torsors

TE(M) =
G× TE(M)

G
, (2.82)

the section p−1 of the cotangent associated bundle is cotangent vector field (1-form) on manifold M

α(x) = αµ(x)dx
µ, (α0(x), α1(x), · · · , αn(x))|x→x0

∈ R1+n. (2.83)

The contravariant functor pˆ−1 is the sheaf of all cotangent vector field on manifold M

p̂−1 : M → TE. (2.84)

The sheaf pˆ−1 have structure of connection preserving left action G = GL(1+n, R) torsors

G p̂−1

p̂−1 =
×

. (2.85)

Lorentz manifold, Riemann geometry and Cartan geometry Metric

Pseudo Riemann geometry

pR = (M, g) (3.1)

is one of most successful geometry system. The pseudo Riemann geometry pR is a differentiable 
manifold M with smooth metric tensor g

g(x) = −gµν(x)dxµ ⊗ dxν , (3.2)

the metric is symmetric two rank tensor field on manifold M such that the components of metric tensor

gµν(x) = gνµ(x), (3.3)

the metric field is non-degenerate, which means, the determinants of metric tensor com-ponents at any point 
x0 in manifold M are not zero

gv|x→x0
= det(gµν(x))|x→x0

̸= 0. (3.4)
The pseudo Riemann manifold pR has corresponding inverse metric

g−1(x) = −gµν(x)
∂xµ
∂ ∂

∂xν
, (3.5)∣∣where the dual basis

∂
∂
xµ x x0

of coordinate dxµ|x→x0
in the neighborhood of x0 satisfy

the inner product relation
→
with coordinate

www.tsijournals.com | January 2024
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⟨∂µ, dxν⟩|x→x0
= δν

µ. (3.6)

The components of inverse metric gµν (x) are inverse matrix of metric components gµν (x) in any point x0

(3.7)gµν (x)gνρ(x)|x→x0 
= δρ

µ. 

The metric is compatible with linear connection when

∇g(x) = 0, (3.8)

⇒ ∂gµν(x)

∂xρ
− gµσ(x)Γ

σ
νρ(x)− gσν(x)Γ

σ
µρ(x) = 0. (3.9)

We discuss the (1+n)-dimensional pseudo Riemann manifold pR with signature (−, +, +, · · · ), Lorentz manifold L, and 
with signature (−, −, −, · · · ), Riemann manifold R

L,R ⊂ pR. (3.10)

Then, x = (xµ) = (x0, xq) = (t, x), (q = 1, 2, · · · , n) parameterized the (1+n)-dimensional manifold L and R, and dxµ|
x→x0 (µ = 0, 1, 2, · · · , n) is a coordinate in the neighborhood of x0.

Curve on Lorentz manifold and Riemann manifold 

The curve C(τ) on manifold L and R is defined

C : τ → L,R, τ ∈ R. (96)

The curve C(τ) on manifold L and R is an entity then the curve C(τ) satisfy the repa-rameterization symmetry

τ
f

C
  
B

BBBBBBBB

f(τ)

{{xx
xx
x
C

x
′

xx

L,R

(3.12)

The variation of the length s from point x0 to xq screen out the geodesic curve from point x0 to xq on 
manifold L and R

C(τ) = C′(f(τ)), τ, f(τ) ∈ R.

The metric g(x) on manifold L and R defines a line element of the curve C(τ)

ds =

√
−gµν

dxµ

dτ

dxν

dτ
dτ.

The length of the any path C(τ) from x0 point to xq point on manifold L and R is defined

s =
x0

ds =
x0

∫ xq
∫ xq

√
−gµν

dxµ

dτ

dxν

dτ
dτ.

δs = 0.

The definition (3.16) of geodesic curve derives that

d2xµ {
µ

} dxν
+ νρdτ 2 dτ

dxρ

dτ
= 0,

(3.11)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

www.tsijournals.com | January 2024
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the 
{
µ
νρ

} 
is Christoffel symbol and defined by metric components{

µ
νρ

}
=

1

2
gµσ(

∂gσρ
∂xν

+
∂gσν
∂xρ

− ∂gµν
∂xσ

).

The dτ is basis of cotangent vector on curve C(τ), and the dual basis d is defineddτ

d ⟩ = 1.⟨dτ,
dτ

∣∣∣∣
τ=τ0

The restriction of tangent principal bundle E∗ from manifold L and R to curve C(τ) is

E∗(L), E∗(R) restriction

π

E∗(Uτ )

π

L,R restriction
Uτ

The objects in E∗(Uτ ) are tangent vector on the curve C(τ)

d

dτ
∈ E∗(Uτ ), τ ∈ R.

When the linear connection operator ∇ρ acting on tangent vector d  of curve C(τ) equals τ zero, the curve C(τ) is

∇ρ
dτ

(
d
)

= 0.

self-parallel transported

The definition of self-parallel (3.22) derives that

d2xµ

dτ 2
+ Γµ

νρ(τ)
dxν

dτ

dxρ

dτ
= 0.

Principal bundle on Lorentz manifold and Riemann mani-fold

The freedom to choose dxµ|x x0 is isomorphic to the fiber E(Ux0 ) of the cotangent prin-cipal bundle E(L) and 
E(R)→of the (1+n)-dimensional Lorentz manifold L and Riemann manifold R. There is freedom to choose 
coordinate in the neighborhood of x0∣∣E(Ux0 ) = {Λµ

ν (x)|x→x0 
dxµ′|x′→x0 

= Λµ
ν (x)dx

ν |x→x0 
, Λµ

ν (x)|x→x0 
∈ GL(1 + n, R)},

such that the cotangent principal bundle

E(L) = ∪E(Ux), x ∈ L,

and

E(R) = ∪E(Ux), x ∈ R,

has the structure of connection preserving left action G = GL(1 + n, R) torsors

E(L) =
G× E(L)

G
, E(R) =

G× E(R)

G
.

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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For definite metric g(x) of manifold L and R, there is GL(1 + n, R) freedom to choose the coordinate dxµ|x→x0
locally to describe the same metric g(x) in the neighborhood of x0

∣∣ ∣∣g(x)|x→x0
= − g′µν(x)dx

µ′dxν′
x→x0

= − g′µν(x)Λ
µ
ρ(x)Λ

ν
σ(x)dx

ρdxσ
x→x0

= − gρσ(x)dx
ρdxσ|x→x0

.

where ∣∣g′µν(x)Λ
µ
ρ(x)Λ

ν
σ(x) x→x0

= gρσ(x)|x→x0

are used.
For inverse metric, the analyze for tangent principal bundles E∗(L) and E∗(R) are similar, and the tangent 

principal bundle on (1+n)-dimensional manifold L and R has structure of connection preserving right G = GL(1 + 
n, R) action torsors

E∗(L) =
E∗(L)×G

G
, E∗(R) =

E∗(R)×G

G
.

Orthonomal principal frame bundle and Cartan geometry 
The inverse metric g−1(x) in Lorentz manifold L is described by orthonormal frame for-malism (a, b = 0, 1, 2, · · · , n)

g−1(x) = −ηabθa(x)θb(x),

where

ηab = diag(1,−1,−1, · · · ,−1)

and

θa(x) = θa
µ(x)

∂

∂xµ

are orthonormal frames and describe gravitational field.The Riemann manifold R be described by inverse metric 
g−1(x) orthonormal frame formalism as

g−1(x) = −Iabθa(x)θb(x), 

where

Iab = diag(1, 1, 1, · · · , 1). 

For definite inverse metric g−1(x), there is O(1, n) freedom to choose the orthonomal frame θa(x)|x→x0 to
describe the same metric in the neighborhood of x0∣∣θa′(x)|x→x0

= Λa
b(x)θ

b(x)
x→x0

, Λa
b(x)|x→x0

∈ O(1, n),

and ∣∣ ∣∣ ∣∣g−1(x)
x→x0

= − η′abθ
a′(x)θb′(x)

x→x0
= − η′abθ

c(x)Λa
c(x)θ

d(x)Λb
d(x) x→x0∣∣= − ηabθa(x)θb(x) x→x0 

, 

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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where ∣∣η′abΛ
a
c(x)Λ

b
d(x) x→x0

= ηcd|x→x0
, Λa

b(x)|x→x0
∈ O(1, n).

Which means, the fiber OE∗(Ux0 ) of orthonormal principal frame bundle OE∗(L) is iso-morphic to the
orthonormal frame transformation freedom G = O(1, n) (right action) locally

OE∗(Ux0) =
{ ∣∣ ∣∣ ∣∣Λb

a(x) x→x0
| θ′a(x′)|x′→x0

= θb(x)Λ
b
a(x) x→x0

, Λb
a(x) x→x0

∈ O(1, n)
}

The orthonomal frame principal bundle is

OE∗(L) = ∪OE∗(Ux), x ∈ L,

The fiber OE∗(Ux0 ) of orthonormal principal frame bundle OE∗(R) of Riemann manifold R is isomorphic to the
orthonormal frame transformation freedom G = O(1 + n) (right action) locally

OE∗(Ux0) = ∣ ∣ ∣Λb
a(x) x→x0

| θ′a(x′)|x′→x0
= θb(x)Λ

b
a(x) x→x0

, Λb
a(x) x→x0

∈ O(1 + n)
{ ∣ ∣ ∣ }

The orthonomal frame principal bundle is

OE∗(R) = ∪OE∗(Ux), x ∈ R.

The metric g(x) and g¯(x) can be described by cotangent orthonomal frame (orthono-mal co-frame) 
formalism as follow

g(x) = −ηabθa(x)θb(x), ḡ(x) = −Iabθa(x)θb(x),

where

ηab = diag(1,−1,−1, · · · ,−1), Iab = diag(1, 1, 1, · · · , 1)

and

θa(x) = θµ
a(x)dxµ

are cotangent orthonomal frame. It is derived from (3.6) and (3.7) that the cotangent orthonomal frame is 
dual with tangent orthonomal frame

⟨θa(x), θb(x)⟩|x→x0
= δb

a

and

θµ
a(x)θb

µ
∣

(x)∣
x→x0

= δb
a,

∣
θµ
a(x)θa

ν(x)∣
x→x0

= δνµ.

Λa
c(x)Λ

c
b(x)|x→x0

= δb
a.

The structure group of orthonomal co-frame bundles OE(L) and OE(R) are O(1, n) and O(1 + n), also.

The orthonomal frame connection coefficients is defined

∇ρθa(x) = ∇ρ θa
µ(x)

∂

∂xµ

( )
,

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

From equation (3.45) we have

(3.47)

(3.48)
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⇒ Γb
aρ(x)θb

µ(x) =
∂θa

µ(x)

∂xρ
+ θa

σ(x)Γµ
σρ(x),

⇒ Γb
a(x)[θbµ(x) = dθa

µ(x) + θa
σ(x)Γ] µ

σ(x),

⇒ Γb
aρ(x) =

∂θa
µ(x)

∂xρ
+ θa

σ(x)Γµ
σρ(x) θbµ(x).

Eliminating the edge term

∂(θa
µ(x)θbµ(x))

∂xρ
= θa

µ(x)
∂θbµ(x)

∂xρ
+
∂θa

µ(x)

∂xρ
θbµ(x),

can be written as

Γb
aρ(x) =

[
θbσ(x)Γ

σ
µρ(x)−

∂θbµ(x)
]
θa
µ(x),

⇒ Γb
a(x) =

[ ∂xρ

θbσ(x)Γ
σ
µ(x)− dθbµ(x)

]
θa
µ(x).

The compatible connection condition for orthonomal frame connection coefficients is

ηacΓb
cρ(x) + ηcbΓa

cρ(x) = 0,

⇒ Γba
ρ(x) = −Γab

ρ(x).

The connection 1-form on orthonomal frame is defined

Γa
c(x) = Γa

cρ(x)dx
ρ,

then we have

∇θa(x) = Γb
a(x)θb(x),

∇θa(x) = −Γa
b(x)θ

b(x),

Γab(x) = −Γba(x).

The structure of connection perserving right action G = O(1, n) and G¯ = O(1 + n) torsors of 
orthonomal frame principal bundles

OE∗(L) =
OE∗(L)×G

G
, and OE∗(R) =

OE∗(R)× Ḡ

Ḡ
,

derives that

Γ′b
aρ(x

′) =

(
Λb

c(x)Γ
c
dρ(x)−

∂Λb
d(x)

)
Λd

a(x), 

⇒ Γ′b
a(x

′) =
(

)

∂xρ

Λb
c(x(Γc

d(x)− dΛb
d(x)

)
)Λd

a(x) 
,

⇒ Γ′b
a(x

′)Λa
d(x) = Λb

c(x)Γ
c
d(x)− dΛb

d(x) ,

⇒ dΓ′b
a(x

′)Λa
d(x) − Γ′b

a(x
′) ∧ dΛa

d(x) = dΛb
c(x) ∧ Γc

d(x) + Λb
c(x) ∧ dΓc

d(x),

the curvature 2-form is defined

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)
(3.58)
(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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Ωa
b(x) = dΓa

b(x) + Γa
c(x) ∧ Γc

b(x),  
and equation (3.63) derives that the curvature 2-form satisfy the tensor transformation rule

Ω′a
b(x

′)Λb
d(x) = Λb

c(x)Ω
c
d(x).

The relation between curvature 2-form Ωab(x) and curvature tensor Rabµν (x) is

2
Ωa

b(x) =
1
Ra

bµν(x)dx
µ ∧ dxν ,

where

Ra
bµν(x) =

∂Γa
bν
µ

(x) − ∂Γa
bµ(x)
∂xν

+ Γa
cµ(x)Γ

c
bν(x)− Γa

cν(x)Γ
c
bµ(x).∂x 

dxµ = θa
µ(x)θa(x),

after the exterior derivative d being acted on equation, the Cartan sturcture equa-tion is derived

0 = d (θa
µ(x)) ∧ θa(x) + θa

µ(x)d (θa(x)) ,

⇒ dθc(x) = −Γc
b(x) ∧ θb(x) + Γc

µν(x)dx
ν ∧ dxµ.

The trosion 2-form is defined

T c(x) =
1

2
T c

µν(x)dx
µ ∧ dxν = −Γc

µν(x)dx
ν ∧ dxµ,

then the components of torsion is

T cµν (x) = 2Γc
[µν](x) = Γc

µν (x) − Γc
νµ(x), 

and the Cartan sturcture equation is rewritten as

dθc(x) + Γc
b(x) ∧ θb(x) + T c(x) = 0. 

It is easy to prove the torsion satisfy the tensor transformation rule. The exterior deriva-tive d acting on 
equation (3.72) gives us Ricci identity

dΓc
b(x) ∧ θb(x)− Γc

b(x) ∧ dθb(x) + dT c(x) = 0,

⇒ Ωc
b(x) ∧ θb(x) + Γc

b(x) ∧ T b(x) + dT c(x) = 0.

The equation is Ricci identity in Cartan geometry with torsion, and the components formulation is

Ra
[ρµν](x) + Γa

σ[ρ(x)T
σ
µν](x) + ∂[ρT

a
µν](x) = 0,

where

∂ρ =
∂

∂xρ
.

The exterior derivative d acting on Ricci identity (3.74) derives that the Bianchi identity

dΩc
d(x) − Ωc

b(x) ∧ Γb
d(x) + Γc

d(x) ∧ Ωd
b(x) = 0, 

the components formulation of the Bianchi identity is

(3.64)

(3.65)

(3.66)

(3.67)

Equation (3.44) bring us that

(3.68)

(3.69)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.70)

(3.77)
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∂[µR
c
|d|νρ](x) − Rc

b[µν (x)Γ
b
|d|ρ](x) + Γc

d[µ(x)R
d
|b|νρ](x) = 0. 

The determinants of metric components in the neighborhood of x0 gives us the coor-dinate free volume 
element θv(x)

gv(x)|x→x0
= det [gµν(x)]|x→x0

= det
[
ηabθµ

a(x)θbµ(x)
]
= − det2

[
θµ
a(x)

]∣∣
x→x0

,

⇒ θv(x)|x→x0
= det

[
θµ
a(x)

]∣∣
x→x0

=
√

−
∣∣∣gv(x)
x→x0

Category viewing of principal bundle on Lorentz manifold and Riemann manifold

The cotangent principal bundle E∗(L) and E∗(R) are dual to tangent bundle E(L) and E(R), the orthonomal 
functor O acting on associatd bundle gives us orthonomal frame bundle and co-frame bundle

O : E → OE, O : E∗ → OE∗,

and the commutative diagram of these four kinds of associated bundle on Lorentz manifold L and Riemann 
manifold R is as follow.

OE
dual

E dual

ddHHHHHHOHHHH
E∗

OE∗
Hdd HHHHHOHHH

πL,R L,R

L,R

ccGGGGGGGG

L,R

1
ccGGGGGGGG

Clifford algebra and Dirac matrices 
Cl1,n Clifford algebra and Dirac matrices

The Cl1,n(R) Clifford algebra has 1 + n generators γa(a = 0, 1, 2, · · · , n). The Clifford algebra is spanned by the 
bases as follows

Cl1,n(R) = span



C

C

C (a1 < a2 < a3 < · · · < a1+n).

C

0
1+n 0− vector : I,
1
1+n 1− vector : γa1 ,
2
1+n 2− vector : γa1γa2 ,
3
1+n 3− vector : γa1γa2γa3 ,

...
C1+

1+
n
n (1 + n)− vector : γa1γa2γa3 · · · γa1+n ,

The Clifford algebra Cl1,n(R) is 21+n-dimensional linear space and

Cl1,n(R) = {αI + αa1 γ
a1 + αa1a2 γ

a1 γa2 + · · · + αa1a2···a1+n γa1 γa2 · · · γa1+n}, 

where the coefficients before the bases are real valued

α, αa1 , αa1a2 , · · · , αa1a2···a1+n ∈ R.
The matrix representation of generators of Clifford algebra satisfy the restriction

γaγb + γbγa = 2ηabIk,

(3.78)

(3.79)

(3.80)

(3.81)

(4.1)

(4.2)

(4.3)

(4.4)
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where Ik is k × k identity matrix. In physics, the Hermiticity conditions for generators of Clifford algbra can 

be chosen alwaysly

γaγb† + γb†γa = 2IabIk,
where Iab is (1 +n) × (1 +n) identity matrix. The minimal faithfull matrix representation for Cl1,n(R) gives us

the relation

21+n = k × k ⇒ k =
√
21+n,

which means, for any matrix representation of generators of Clifford algebra, there is freedom of U(k) to 
rotate the matrix representation

γa′ = ψ†γaψ, ψ ∈ U(k),

such that the γa′ still the generators of Clifford algebra Cl1,n(R). The Dirac matrices can be represented by
components formula

γa = γaij ej
† ⊗ ei = ψ†γaψ e† ⊗ ei, ψ ∈ U(k), 

i

  j    j  

where ei(i = 1, 2, · · · , k) are the orthogonal bases expanding (1+n)-dimension complex space Ck and

tr(e†j ⊗ ei) = eiej
† = δij.

One simple choice of ei is

e1 = (eiθ1 , 0, 0, · · · , 0),
· · · ,

e2 = (0, eiθ2 , 0, · · · , 0),
ek = (0, 0, 0, · · · , eiθk).

Cl1,3(R) Clifford algebra and Dirac matrices

Particularly, the solution with
n = 3 and 1, k = 4 and 2,

are particular important from the reasons of physics. The corresponding Clifford algebra are Cl1,3(R) and 
Cl1,1(R). The generators of Clifford algebra Cl1,3(R) is well know Dirac matrices and the bases

Cl1,3(R) = span



1 :

(a < b < c < d).

scalar I,

4 vector : γa,
6 bivector : γaγb,
4 pseudovectors : γaγbγc,
1 pseudoscalar : γaγbγcγd,

The Weyl representation (q = 1, 2, 3) of Dirac matrices are

γ0 =
0 I2×2,
I2×2 0

, γq =

( ) (
0 σq,

−σq 0

)
,

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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where σq are Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The components formulation of γa′ is

γa′ = ψ†
liγ

a
ijψjkek ⊗ el

† = ψ†
iγ

aψjej ⊗ e†i , ψ ∈ U(4),

with i, j = 1, 2, 3, 4, where ψ1, ψ2, ψ3 and ψ4 are four kinds of Dirac spinors. The element of U(4) group can be 
presented

ψ = e−iVαT α 
, Vα ∈ R, α = 0, 1, 2, · · · , 15. 

The T α is generators of U(4) group and

T α = T α†.

Cl1,1(R) Clifford algebra
The generators of Clifford algebra Cl1,1(R) can be represented by Pauli matrices, as an example

Cl1,1(R) = span


1 scalar : I,
2 vector : γ0 = σ1, γ1 = iσ2,

1 bivector : −σ3,

Isomorphism between bases of Cl1,3(R) and the generators of U(4) group

An isomorphism between the bases of Cl1,3(R) and the generators of U(4) group can be constructed as 
follow. The modified Dirac matrices could be

T 1,0 = γ̃0 = γ0, T 1,q = γ̃q = iγq.

For modified Dirac matrices
γ̃aγb + γ̃bγc = IabI4,

γ̃a† = γa,

where Iab = diag(1, 1, 1, 1). Then, the isomorphism between the bases of Cl1,3(R) and the generators of U(4)
group is

(a < b < c < d).

T 1,a = γ̃a,

T 2,ab = iγ̃aγ̃b,

T 3,abc = iγ̃aγ̃bγ̃c,

T 4,abcd = γ̃aγ̃bγ̃cγ̃d,

T 0 = I4,

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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It is easy to see that the constructed T α satisfy

T α† = T α, T r T T
(

α β
)
= δαβ.

The commutative and anti-commutative relations of constructed T are

[T 1,a, T 1,b] = −2iT 2,ab,

[T 1,a, T 2,bc] = 0,

[T 1,a, T 2,ab] = 2iT 1,b,

[T 1,a, T 3,bcd] = 2iT 4,abcd,

[T 1,a, T 3,abc] = 0,

[T 1,a, T 4,abcd] = −2iT 3,bcd,

[T 2,ab, T 2,cd] = 0,

[T 2,ab, T 2,bc] = 2iT 2,ac,

[T 2,ab, T 3,bcd] = 2iT 3,acd,

[T 2,ab, T 3,abc] = 0,

[T 2,ab, T 4,abcd] = 0,

[T 3,abc, T 4,abcd] = −2iT 1,d,

{T 1,a, T 1,b} = 0,

{T 1,a, T 2,bc} = 2T 3,abc,

{T 1,a, T 2,ab} = 0,

{T 1,a, T 3,bcd} = 0,

{T 1,a, T 3,abc} = 2T 2,bc,

{T 1,a, T 4,abcd} = 0,

{T 2,ab, T 2,cd} = −2T 4,abcd,

{T 2,ab, T 2,bc} = 0,

{T 2,ab, T 3,bcd} = 0,

{T 2,ab, T 3,abc} = 2T 1,c,

{T 2,ab, T 4,abcd} = −2T 2,cd,

{T 3,abc, T 4,abcd} = 0.

Explicitly, the constructed generators of U(4) are represented by Dirac matrices

T 1 = γ0,

T 3 = iγ2,

T 5 = −γ0γ1,
T 7 = −γ0γ3,
T 9 = −iγ1γ3,
T 11 = −iγ0γ1γ2,
T 13 = −iγ0γ2γ3,
T 15 = −iγ0γ1γ2γ3,

T 2 = iγ1,

T 4 = iγ3,

T 6 = −γ0γ2,
T 8 = −iγ1γ2,
T 10 = −iγ2γ3,
T 12 = −iγ0γ1γ3,
T 14 = γ1γ2γ3,

T 0 = I4.

and we have

[T α, T β ] = fαβγT γ . 
As an example, the Weyl representation of Dirac matrices could gives us a team of explicit matrix 
representation of generators of U(4) group.

Square root Lorentz manifold

Pair of entities

We define a pair of entities

l̃

l(x) = iγ0(x)γa(x)θa(x),

(x) = iγa(x)γ0(x)θa(x),

(4.2)

(4.21)

(5.1)

(5.2)
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we call them square root metric of (1 + n)-dimensional L and R. This pair of entities describes square 
root Lorentz manifold rL. Direct calculations show that the definition (5.1) and (5.2) satisfy

l†(x) = −l(x), l̃†(x) = −l̃(x).

γa′(x) = γa′ij(x)e
†′(x)⊗ e′i(x) = ui

†

j

(x)γa′(x)uj(x)e
†
j(x)⊗ ei(x),

tr(e†j

∣∣∣(x)⊗ ei(x))
x→x0

= ei(x)e
†
j

∣∣∣(x)
x→x0

= δij.

e1(x) = (eiθ1(x), 0, 0, · · · , 0),
· · ·

e2(x) = (0, eiθ2(x), 0, · · · , 0),
ek(x) = (0, 0, 0, · · · , eiθk(x)).

The bases e†′ i

∣∣∣(x)
x→x0

, (i = 1, 2, · · · , k) ∣∣∣ ∣∣∣ei
†′(x) 

x→ 0 
= uij (x)ej

†(x) 
→ 0 

, u(x)|x→x0 
∈ U(k).

x                                       x x 

Similarly, there is another local freedom to choose representation of components of Dirac matrices

γa′(x) = γa′ij(x)e
†′
j (x)⊗ e′i(x) = ui

†(x)γa(x)uj(x)e
†′
j (x)⊗ e′i(x),

with ∣∣γa′ij(x) x→x0
= u†ik(x)γ

a
kl(x)ulj(x)

∣∣∣
x→x0

= u†i

∣∣∣(x)γa(x)uj(x)
x→x0

, u(x)|x→x0 
∈ U(k′). 

than Then, Lorentz there is extra manifold U(L k′) and× U(k) principal bundle on (1 + n)-dimensional square root 

Lorentz manifold rL

k′ = k = 
√
21+n. 

Under local U(k′) × U(k) bases rotation equivalence relation, there still remains U(k) physical freedom

γa(x) = γaijej
†(x)⊗ ei(x) = γaij(x)ej

† ⊗ ei = ψ†
i (x)γ

aψj(x)e
†
j ⊗ ei, (5.10)

where

ψ(x)|x→x0 
∈ U(k) (5.11) 

isomorphic to the extra fiber space of associated bundle UE1∗,2(rL). In the language of mathematic, there are two
extra U(k) associated bundles UE1∗,2(rL) on (1+n)-dimensional

square root metric rL than Lorentz manifold L, with structure of left U(k′) and right U(k) action torsors

The Dirac matrices on rL has potential to write as follow

For any point x0 ∈ L and R

One simple choice of ei(x)(i = 1, 2 · · · , k) on manifold is

on rL has U(k) freedom to choose, locally,

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.11)
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(5.12)

where l(x) and l˜(x) are sections of UE1∗(rL) and UE 2∗(rL) bundles, respectively. An pair can be written as

⊗ eiθa(x), (5.13)

l̃

l(x) = iγ0ik(x)γk
a
j(x)ej

†

(x) = iγaik(x)γk
0
j(x)ej

†

⊗ eiθa(x) = iψ†
i

⊗ eiθa(x) = iψ†
i

(x)γ0γaψj(x)e
†
j

(x)γaγ0ψj(x)e
†
j ⊗ eiθa(x).

(5.14)

The total structure group of principal bundle E∗(rL) on (1 + n)-dimensional rL is

UE1
∗
,2(rL) =

U(k′)× UE1
∗
,2(rL)× U(k)

U(k′)× U(k)
,

21+n. (5.15)G = U(k′) × U(k) × GL(1 + n, R), k = 
√

The fiber space of associated bundles UE1*,2(rL) isomorphic to

(5.16)UE1
∗
,2(Ux0 ) = U(k) × GL(1 + n, R), 

and has structure of G-torsors

UE1
∗
,2(rL) =

U(k′)× UE1
∗
,2(rL)× U(k)×GL(1 + n,R)

U(k′)× U(k)×GL(1 + n,R)
. (5.17)

There are two kinds of inverse metric for the pair of entities

ḡ−1(x) =
1

4
tr[l(x)l(x)] =

1

4
(5.18)

g−1(x) =
1

4
tr[l(x)l̃(x)] =

1

4

tr[l̃(x)l̃(x)] = −Iabθa(x)θb(x),

tr[l̃(x)l(x)] = −ηabθa(x)θb(x), (5.19)

after using γa† = γ0γaγ0, where g¯−1(x) and g−1(x) are inverse metric of Riemann manifold R and Lorentz manifold 
L, respectively. An pair of square root metric for metric of R and L are

(x) = iγ0(x)γa(x)θµa (x)dxµ, (5.20)l̄

¯̃l (5.21)(x) = iγa(x)γ0(x)θµ
a(x)dxµ. 

l̄†(x) = −l̄(x), l̃̄†(x) = −l̃̄(x). (5.22)

The corresponding metric for R and L are

ḡ(x) =
1

4
tr[l̄(x)l̄(x)] =

1

4
(5.23)

g(x) =
1

4
tr[l̄(x)l̃̄(x)] =

1

4

tr[l̃̄(x)l̃̄(x)] = −Iabθa(x)θb(x),

tr[l̃̄(x)l̄(x)] = −ηabθa(x)θb(x). (5.24)

The entities pair (5.20) and (5.21) corresponding principal bundle E(rL) has total structure group

Ḡ 21+n. (5.25)= GL(1 + n, R) × U(k′) × U(k), k′ = k = 

The fiber space of associated bundle UE(rL) isomorphic to

√

Direct calculation gives us that the definition (5.20) and (5.21) satisfy
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UE1,2(Ux0 ) = U(k) × GL(1 + n, R), (5.26)

and has structure of G¯-torsors

GL(1 + n,R)× U(k′)× UE1,2(rL)× U(k)
UE1,2(rL) =

GL(1 + n,R)× U(k′)× U(k)
,

(5.27)

where l¯(x) and l¯˜(x) are sections of UE1(rL) and UE2(rL) bundles, respectively.

The principal bundle connection Wµij (x), flavor interaction gauge field, is defined as follow

∇µei
†

∣∣∣(x)
x→x0

=
e†i (x)− e†i (x0)

xµ − x0
µ

x→x0

=
(δij − u∗ij(x))ej

†(x)

∂xµ
x→x0

= iWµij(x)e
†
j

∣∣∣(x)
x→x0

The conjugate transpose of definition (5.28) gives us that

(5.29)∇µei(x) = −iW ∗µij (x)ej (x), 
The covariant derivative ∇µ acting on (5.4) leads to

Wµij (x) = W ∗µji(x). (5.30)
The flavor interaction gauge field Wµij (x) can be expanded by generators of weak inter-action gauge group U(k)

(5.31)Wµij (x) = Wµ
α(x)Tij

α, α = 0, 1, 2, · · · , k2 − 1. 

∇µei(x) = −iej(x)Wµji(x), ∇µei
†(x) = iWµij(x)e

†
j (x). (5.32)

And the gauge fields W µα(x) are real valued

Wµ
α(x) = Wµ

α∗(x). (5.33)

In Cartan geometry and homology theory, the differential forms are useful. Then, as we use the definition of 
coordinate free covariant derivative,

∇ = ∇µdx
µ, (5.34)

it is easy to see

∇e†i (x) = Wµij(x)e
†
i (x)dx

µ = Wij(x)e
†
i(x), (5.35)

where

Wij(x) = Wµij(x)dx
µ

(5.36)

is flavor interaction gauge field connection 1-form.
Similarly, the principal bundle connection Vµ(x), color interaction gauge field, is de-fined as follow

∇µ[γ
a(x)]|x→x0

=

∣
=

γa(x)− γa(x0) ∣∣ γa(x)− u†(x)γa(x)u(x)

xµ − x0
µ ∣

x→x0
xµ − x0

µ
x→x0

=
[γa(x)− u†(x)γa(x)] + [u†(x)γa(x)− u†(x)γa(x)u(x)]

xµ − x0
µ

x→x0

=
[(Ik − u†(x))γa(x)] + [u†(x)γa(x)(Ik − u(x))]

xµ − x0
µ

∣∣∣∣∣∣∣∣∣∣∣∣
x→x0∣∣= i[Vµ(x)γ

a(x)− γa(x)V̄µ(x)] x→x0
,

(5.37)

Connection of extra bundles and gauge field

(5.28)

In a word, the flavor interaction gauge field is defined

www.tsijournals.com | January 2024



24

V̄µ(x) = Vµ
†(x). (5.38)

Then, ∣∣∇µ[γ
a(x)]|x→x0 

= i[Vµ(x)γa(x) − γa(x)Vµ
†(x)] 

x→x0 
, (5.39)

The conjugate transpose of (5.39) is ∣∣ ∣∣∇µ[γ
a†(x)] 

x→x0 
= i[Vµ(x)γa†(x) − γa†(x)Vµ

†(x)] 
x→x0 

, (5.40)

∣∣γa†(x)γb(x) + γb†(x)γa(x)
x→x0

= IabIk, (5.41)

we act covariant derivative ∇µ on (5.41), after using γa† = γ0γaγ0, it is easy to find out that

Vµ(x) = Vµ
†(x). (5.42)

The Vµ is k × k matrix valued field, and can be expanded by generators of U(k) group

Vµ(x) = Vµ
α(x)T α, α = 0, 1, 2, · · · , k2 − 1. (5.43)

In a word, the color interaction gauge field Vµ(x) is defined

∇µ(γ
a(x)) = i[Vµ(x)γa(x) − γa(x)Vµ(x)]. 

∇µ(γ
a†(x)) = i[Vµ(x)γ

a†(x)− γa†(x)Vµ(x)].
The conjugate transpose of equation (5.44) is

(5.44)

(5.45)
The connections preserving G and G¯-torsors on principal bundles E (rL) and E(rL) lead to the transformation 
rules of connections Wµij (x) and Vµ(x)

(5.46)
W ′

µij(x
′) = u∗ki(x)Wµkl(x)ulj(x) + u∗ki(x)∂µukj(x), u(x)|x→x0

∈ U(k),

Vµ
′(x′) = u(x)Vµ(x)u

†(x)− (∂µu(x))u
†(x), u(x)|x→x0

∈ U(k′), (5.47)

where ∣∣ ∣∣∣uj
∗
i(x)ujk(x) x→x0

= δik, u(x)u†(x)
x→x0

= Ik. (5.48)

The gauge field strength tensors are defined as follows [18]
Fµνij(x) = ∂µWνij(x)− ∂νWµij(x)− iWµik(x)Wνkj(x) + iWνik(x)Wµkj(x),

Hµν(x) = ∂µVν(x)− ∂νVµ(x)− iVµ(x)Vν(x) + iVν(x)Vµ(x),

and the transformation rules satisfy

F ′µνij (x
′) = u∗ki(x)Fµνkl(x)ulj (x), H′

µν (x
′) = u(x)Hµν (x)u

†(x). (5.49) 
From the Hamiticity condition of gauge fields Wµij and Vµ, the Hamiticity condition of gauge field strengths are

H†
µν (x) = Hµν (x), F ∗µνij (x) = Fµνji(x). 

The gauge field strength tensors can be written by strength 2-form
(5.50)

H(x) =
1

2
Hµν(x)dx

µ ∧ dxν , Fij(x) =
1

2
Fµνij(x)dx

µ ∧ dxν , (5.51)

Fij(x) = dWij(x)− iWik(x) ∧Wkj(x), (5.52)

H(x) = dV (x) − iV (x) ∧ V (x),

V (x) = Vµ(x)dx
µ

and

(5.53)
where

(5.54)

we can see

As we have Hamiticity condition on square root Lorentz manifold rL
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dH(x)− iH(x) ∧ V (x) + iV (x) ∧H(x) = 0,

dFij(x)− iFik(x) ∧Wkj(x) + iWik(x) ∧ Fkj(x) = 0.

(5.55)

(5.56)
The tensor formulation of Bianchi identity on this geometry structure as follows

∂[µHνρ](x) = H[µν(x)Vρ](x)− V[µ(x)Hνρ](x),

∂[µFνρ]ij (x) = F[µν|ik|(x)Wρ]kj (x) − W[µ|ik|(x)Fνρ]kj (x).

(5.57)

(5.58)

Lagrangian submanifold and Yang-Mills theory in curved space-time

An pair of equations which satisfying the U(k′) × U(k) gauge invariant, locally Lorentz invariant and generally
covariant principles are constructed in (1 + n)-dimensional square root Lorentz manifold rL

tr∇[l(x)] = 0,
tr∇[l̃(x)] = 0,

(5.59)
(5.60)

those equations are generalized self-parallel transportation principle. Eliminating index x, the explicit formulas of 

equations (5.59) and (5.60) are[ ]
θa
µ = 0,(i∂µψ̄i − ψ̄iṼµ +Wµijψ̄j)γ

aψi + ψ̄iγ
a(i∂µψi + Vµψi − ψjWµji) + iψ̄iγ

bψiΓ
a
bµ[

(i∂µψi
† − ψ†Ṽ +W ψ†)γaψ̄† + ψ†γa(i∂ ψ̄† + V ψ̄† − ψ̄†W ) + iψ†γbψ̄†Γa

bµ

]
θa
µ = 0,

where

V˜µ = γ0Vµγ0, ψ¯† = γ0ψ. (5.61)

The Lagrangians corresponding to equations (5.59) and (5.60) are

L = ψ̄iγ
a(i∂µψi + Vµψi − ψjWµji)θa

µ +
i

2

L̃ = ψ†
iγ

a(i∂µψ̄
†
i + Vµψ̄

†
i − ψ̄j

†Wµji)θa
µ +

i

2 i i

ψ̄iγ
bψiΓ

a
bµθa

µ,

ψ†γbψ̄†Γa
bµθa

µ.

(5.62)

(5.63)

The last term in Lagrangian (5.62) is Yukawa coupling term ψ¯iϕψi and the scalar (Higgs) field is Dirac matrix valued and 
originated from gravitational field

ϕ =
i

2 γbΓa
bµθa

µ. (5.64)

Then, the Lagrangian (5.62) describes U(k′) × U(k) Yang-Mills theory in curved space-time. The Lagrangian (5.62)
and (5.63) has relation with (5.59) and (5.60)

tr∇l(x) = L − L†,

tr∇l̃(x) = L̃ − L̃†.

(5.65)

Then, we say l(x) and l˜(x) are a Lagrangian submanifolds in UE1∗ (rL) and UE2∗(rL) ,  being satisfied, the Lagrangian 

(5.66) 

L = L†,

L̃ = L̃†.

So, the unitary principle (5.67) and (5.68) of quantum field theory consistents with gen-eralized self-parallel transportation 
principle (5.59) and (5.60). The equations of motion for the Lagrangian (5.62) and (5.63) are

γa(i∂µψi + Vµψi − ψjWµji)θa
µ +

i

2
γaψiΓ

b
aµθb

µ = 0,

γa(i∂µψ̄
†
i + Vµψ̄

†
i − ψ̄j

†Wµji)θa
µ +

i

2
γaψ̄†

iΓ
b
aµθb

µ = 0,

(5.69)

(5.70)

s and these equations conjugate transpose. Then, a pair of Lagrangian (5.62) and (5.63) which describes the U(k′) × U(k) Pati-
Salam model type Yang-Mills theory in curved space-time are constructed.

is color interaction gauge field connection 1-form. The exterior derivative acting on (5.52) and (5.53) gives us 
Bianchi identity of strength 2-form

(5.62) and (5.63) are Hermitian

www.tsijournals.com | January 2024



26

The Yang-Mills Lagrangian for gauge bosons in this geometry can be constructed

LY =
−1

2
tr (HµνHµν)−

ζ

2
Fij

µνFµνji,
(5.71)

where ζ ∈ R is constant.
In this geometry framework, the equations can be derived as follows

∇[µ∇ν]l =
−1

2

(
ψ̄iγ

aψkFµνkj − F ∗
µνkiψ̄kγ

aψj
(5.72)

+ ψ̄iH̃µνγ
aψj − ψ̄iγ

aHµνψj +
i

2
ψ̄iγ

bψjR
a
bµν

)
e†j ⊗ eiθa,

∇[µ
˜∇ν]l =

−1

2

(
ψ̄iγ

a†ψkFµνkj − F ∗
µνkiψ̄kγ

a†ψj
(5.73)

+ ψ̄iHµνγ
a†ψj − ψ̄iγ

a†H̃µνψj +
i

2
ψ̄iγ

b†ψjR
a
bµν

)
e†j ⊗ eiθa,

∇ν]dxµ ∧ dxν , the equation of motion of this gravity theory is constructedwhere H˜µν = γ0Hµν γ0. We define ∇2 = ∇[µ 

tr∇2[l̃(x)l(x)] = 0. (5.74)

This equation (5.74) is obviously U(k′) × U(k) gauge invariant, locally Lorentz invariant and generally covariant. The
explicit formula of equation (5.74) is

R =
i

4
Fabijψj

†(γaγb − γb†γa†)ψi −Hab(γ
aγb − γb†γa†)

( )
, (5.75)

where

∂µdx
ν ⊗ dxρ∂σ = δνµδσ

ρ, dxµ ⊗ dxν∂ρ∂σ = δρ
νδµσ

(5.76)

are used and

Fabij = Fµνijθa
µθb

ν , Hab = Hµνθa
µθb

ν . (5.77)

So we define a U(k′) ×U(k) gauge invariant, locally Lorentz invariant, generally covariant Lagrangian

Lg = Rψi
†ψi − i

(
Fabijψj

†(γaγb − γb†γa†)ψi − ψi
†Hab(γ

aγb − γb†γa†)ψi

)
. (5.78)

Lg = L†
g. 

The Rψi
†ψi in Lagrangian (5.78) is the Einstein-Hilbert action. The equation (5.75) and the Einstein tensor can be derived

from the Einstein-Hilbert action.

(5.79) 

Conservative currents
The Noether currents for Lagrangian system can be derived from Euler-Lagrangian equa-tions. For action

S(ϕκ, ∂µϕκ) = dx0 ∧ dx1 · · · ∧ dxnL̄(ϕκ, ∂µϕκ) =

∫ ∫
dx0 ∧ dx1 · · · ∧ dxnθv(x)L(ϕκ, ∂µϕκ), (5.80)

The Euler-Lagrangian equations are

∂L̄ − ∂µ

(
∂L̄

)
= 0. (5.81)

∂ϕκ ∂(∂µϕκ)

As an example, after careful oberserving of the Lagrangian
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L̄ =

[
ψ̄iγ

a(i∂µψi + Vµψi − ψjWµji)θa
µ +

i

2
ψ̄iγ

bψiΓ
a
bµθa

µ

]
θv, (5.82)

we set
ϕκ = {ψi}, (5.83)

then the Euler-Lagrangian equation gives us four conservative currents equations

Jµ
i = ψ̄iγ

aθa
µθv, ∂µJi

µ = 0. (5.84)

Similarly, the conservative currents can be

Jµ
i = ψ̄iγ

aθa
µθv, γaψiθa

µθv, ψ†
iγ

aθa
µθv, γaψ̄†

i θa
µθv, (5.85)

¯̃ ¯̃for four Lagrangian densities L¯, L¯†, L and L†, respectively. Note that Γa
bµθa

µ = 
[
∂µθ

µ 
b+ θσb Γ

µ
σµ
] , we set

ϕκ = {θµa}, (5.86)then

J b = ψ̄iγ
bψiθv. (5.87)

Sheaf quantization and path integral quantization 

UE1
∗(rL) and UE 2

∗(rL) , are two associated bundles on square root Lorentz manifold rL

UE1
∗ γa→γa†

∗
""E

E

π

EEEEEE

UE2
∗

||yy
yy
y
π

yy
∗

y

rL

(6.1)

Pair of entities l(x) and l˜(x) are sections of the bundles UE∗
1 (rL) and UE2

∗ (rL), respectively

SH1
γa→γa†

SH2

rL
π̂∗−

b bEEE
1

EEEEE ∗−1

<<y

yy
yy
y
π̂

yy
(6.3)

The sheaf spaces SH1(rL) and SH2(rL) are dual to each other. The superposition prin-ciple in quantum mechanics tells us that 
if the quantum state |Ψ⟩1 and |Ψ⟩2 exist, the superposition state

ˆ
l̃

|Ψ⟩ = α1|Ψ⟩1 + α2|Ψ⟩2, α1, α2 ∈ C,  
exist also. For pure state, the sheaf space SH1(rL) and SH2(rL) valued entities lˆ(x) and   (x) can be defined

l̂(x) =
∑
κ

ακ(x)α
∗
κ(x)|κ, x⟩⟨κ, x|lκ(x),

ˆ̃l(x) =
∑
κ

ακ(x)α
∗
κ(x)|κ, x⟩⟨κ, x|l̃κ(x),

(6.5)

(6.6)

with the quantum field theory quantum state

|Ψ(x)⟩ =
∑
κ

ακ(x)|κ, x⟩, (6.7)

Sheaf quantization

In mathematic, the sheaf space SH1(rL) and SH2(rL) are spanned by collection of one kind sections of the bundles
(6.2)

(6.4)
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where κ is sheaf space index and evaluated in an abelian group. The orthgonalization relation of bases in sheaf spaces SH1(rL), 
SH2(rL) and probability complete formulas can be defined

∑−⟨κ, x|κ′, x′⟩ = δ∫(x x′)δ(κ− κ′),∫
tr (|Ψ(x)⟩⟨Ψ(x)|) dx =

κ

ακ(x)α
∗
κ(x)dx = 1,

(6.8)

(6.9)

where
dx = dx1 ∧ · · · ∧ dxn. (6.10)

The exterior derivative acting on (6.9)

d tr (|Ψ(x)⟩⟨Ψ(x)|) dx =

[∫ ] ∫
tr [d (|Ψ(x)⟩⟨Ψ(x)|)] dx = 0, (6.11)

28

gives us the Schordinger equations

i
∂|Ψ(x)⟩
∂t

i
∂|Ψ(x)⟩
∂xq

= Ĥ(x)|Ψ(x)⟩, Ĥ(x) = Ĥ†(x),

= P̂q(x)|Ψ(x)⟩, P̂q(x) = P̂q
†(x).

(6.12)

(6.13)

The quantum state of quantum field theory might be presented by mixed state

ρ(x) =
∑
κ

ηκ(x)|κ, x⟩⟨κ, x|.
(6.14)

Further, the correspongding sheaf valued entities lˆ(x) and lˆ˜(x) can be written

l̂(x) =
κ
ηκ(x)|κ, x⟩⟨κ, x|lκ(x),

ˆ̃l(x) =
∑
κ

ηκ(x)|κ, x⟩⟨κ, x|l̃κ(x),

(6.15)

(6.16)

where ηκ(x) are probability density of corresponding section lκ(x) and l˜κ(x). The proba-bility complete formulas in mixed 
state case is ∫

trρ(x)dx =

∫ ∑
κ

ηκ(x)dx = 1. (6.17)

The sheaf spaces SH1(rL) and SH2(rL) are linear spaces, which means, for example, any two entitis in SH1(rL), there is 
a entity equals to the mixing of the two entitis

l̂

⇒ l̂(x) ∈ SH1(rL),
(x) = η1(x)lˆ1(x) + η2(x)lˆ2(x); lˆ1(x), lˆ2(x) ∈ SH1(rL) 

where ∫
dxη1(x),

∫
dxη2(x) ∈ [0, 1], (6.19)

and ∫
dx [η1(x) + η2(x)] = 1.

(6.20)

We call it sheaf quantization which switching study objects from single section to one kind of possible sections of the bundle. 
Sheaf quantization method find out a pair of linear space SH1(rL) and SH2(rL) even the rL is curved space-time, sheaf 
quantization method consistent with superposition principle. The equations of motion for entities lˆ(x)

and lˆ˜(x) after sheaf quantization are

tr∇[l̂(x)] = 0, tr∇2[l̃̂(x)l̂(x)] = 0. (6.21)

The corresponding total Lagrangian density is

L̂ =
∑

κ

ηκ(Lκ + gLg,κ + g̃LY,κ),
(6.22)

where g, g˜ are Lagrange multipliers and
g, g̃ ∈ R. (6.23)

(6.18)
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The relations between sheaf quantization and path integral quantization
The Schordinger equation (6.12) derives that

|Ψ(t + ∆t, xq)⟩ = U(t + ∆t, t)|Ψ(t, xq)⟩ = e−iHˆ (t,xq)∆t|Ψ(t, xq)⟩, 

 where t = x0, q = 1, 2, · · · , n and

(6.24)

∆t → 0. 
By using the orthgonalization relation (6.8) of bases in the sheaf spaces SH1(rL) and SH2(rL), and we choose the 
orthgonal bases to be |ϕκ(t, xq) to span the quantum state of quantum field theory

|Ψ(t, xq)⟩ =
∑

ακ(t, x
q)ϕκ(t, x

q)|0⟩ =
∑
κ

ακ(t, x
q)|ϕκ(t, x

q)⟩,
κ

the equation (6.24) can be written

(6.26)

ακ′′(t+∆t, xq) =
κ

=
∑
κ,κ′

⟨ϕκ′′(t+∆t, xq)|e−iĤ(t,xq)∆t|ϕκ(t, x
q)⟩ακ(t, x

q)∫
dπκ′(t+∆t, xq)⟨ϕκ′′(t+∆t, xq)|πκ′(t+∆t, xq)⟩

∑

⟨πκ′ (t + ∆t, xq)|e−iHˆ (t,xq)∆t|ϕκ(t, xq)⟩ακ(t, xq).

We know the relation of canonical position |ϕκ(t, xq)⟩ and momentum |πκ(t, xq)⟩

(6.27)

⟨ϕκ(t, xq)|πκ′ (t, xq)⟩ = eiπκ(t,xq )ϕκ(t,xq )δκκ′ , 

⟨x|p⟩ = eipx,

this is second quantized version of

(6.28)

(6.29)

ακ(t + ∆t, xq) =
∑
κ

∫
dπκ(t+∆t, xq)eiπκ(t+∆t,xq)[ϕκ(t+∆t,xq)−ϕκ(t,xq)]e−iĤ(t,xq)∆tακ(t, x

q)

=
∑∫

dπκ(t + ∆t, xq)eiπκ(t+∆t,xq )ϕ˙κ(t,xq)∆te−iHˆ (t,xq)∆tακ(t, xq) 

then

(6.30)

L̂ =
κ

πκϕ̇κ − Ĥ =
∑

κ

dxθvL̂,
(6.31)

then

ακ(t+∆t, xq) =

∑
κ

∫
dπκ(t+∆t, xq)ei(πκϕ̇κ−H)∆tακ(t, x

q)

=

∑
κ

∫
t′=t+∆t

dπκ(t
′, xq)eiL̂∆tακ(t, x

q)

=

∑
κ

∫
t′=t+∆tdπκ(t

′, xq)ei
∫
ωL̂ακ(t, x

q),

(6.32)

where ω is volume form

ω = θvdx0 ∧ dx1 ∧ · · · ∧ dxn (6.33)

then Then, the transition amplitude can be defined through path integral formula
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(6.25)

There is Legendre transformation between Hamiltonian and Lagrangian∫

www.tsijournals.com | January 2024



ακ(t, x
q) =

κ t′∈(t0,t)
Dπκ(t

′, xq)ei
∑∫ ∫

ωL̂[ϕκ(t′,xq),∂µϕκ(t′,xq)]ακ(t0, x
q). (6.34)

Conclusion and Discussion
The existence of extra bundles on square root Lorentz manifold and the self-parallel transportation principle lead us to 
the Pati-Salam model in curved space-time and the Einstein-Cartan gravity. The relations between sheaf quantization 
method and path inte-gral quantization method is proved. The prove shows that the sheaf quantization method is 
consistent with path integral method even the base manifold with curvature.

The discussions about homology theory, homotopy theory, characteristic class in square root Lorentz manifold will be 
wonderful. The global solutions of square root Lorentz manifold with topologies S1 × S3 and S1 × S1 of base manifold 
are interesting. The micro support language of sheaf of square root Lorentz manifold might trigger a meaningful 
collision between mathematic theory and physical theory.
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