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Introduction

Square root metric manifold has extra U(k") xU(k) principal bundle and U(k)-associated bundle than usual Lorentz manifold. These
extra bundles gives us opportunity to con-struct Yang-Mills theory in curved space-time [1], especially the Pati-Salam type Yang-
Mills theory [2, 3] in curved space-time. Sheaf as a natural mathematic structure being found by mathematicians [4], for example,

Jean Leray, long ago.

Sheaf theory has deep relation with fiber bundle theory [5] (Yang-Mills theory [6, 7]) and superposition principle. Sheaf can be
derived from contravariant functor in category theory, the sheaf cohomology and spectral sequences is fascinating and useful. The

micro support language of sheaf the-ory [4] from Mikio Sato might be popular in future mathematic-physicsts.

Sheaf as a basic language of topos from Grothendieck [8], “we cannot even define a scheme without using scheaves” [9]. Sheaf
quantization might be a method to quantize quantum field theory in curved space-time which avoiding problem of infinities [1,
16-17].

The sheaf space is linear space and coherent with superposition principle, even the base manifold is curved. The sheaf quantization

method is consistent with path integral quan-tization method.

In this paper, the section 2 gives us a priliminary concepts introduction of category, functor; and the topological space, sheaf,

manifold, bundle from the category point of view.
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The section 3 talk about Einstein-Cartan geometry of Lorentz and Riemann manifold. The section 4 is a brief introduction of
generators of Clifford algebra. The section 5 describes the geometry framework of square root Lorentz manifold.
Based on square root Lorentz manifold, the Pati-Salam model in curved space-time and Einstein-Cartan gravity are
constructed. The section 6 discusses the formulation of sheaf quantization, and the relation between sheaf quantization

and path integral.

Category, functor, topological space, sheaf, manifold and fiber bundle

Category
The category C consist of
a class ob(C) of objects, for example, a, b, ¢, d & ob(C)

homc(a, b) @1
represent all morphisms from a to b in category C. For example,
f, g € hom(a, b), h € hom(b, ¢), i € hom(a, c). (2.2)
Composition of morphisms is, for objects a, b, ¢ & ob(C),
homc(a, b) x homc(b, ¢) — hom(a, c). 2.3)
The morphisms hom(C) in category C satisfy the axiom of associativity and iden-tity:
(Associativity axiom) if
f:ra—b,g:b—ch:c—d) 24
then
h(gf) = (hg)f. (2.5)
(Identity axiom) For every object x, y & ob(C), there exists a morphism
1,1 x—>x (2.6)
For every morphism f & hom(C)
f:x—y, (2.7
we have
1,f=f=fly. (2.8)
Functor

Functors are structure-preserving maps between categories. A covariant functor F from a category C to a category D is written
F:C—-D, (2.9)

and the structure-preserving means

for object x & ob(C) and F (x) € ob(D) and morphisms f & hom(C)

f:x—->y, F(f):Fx) —F(y), (2.10)
where
f € hom(C), F (f) € hom(D). (2.11)
such that,
For every object x & ob(C),
F(1) = 1r oy (2.12)
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for objects x, y, z € 0b(C), all morphisms in C

fiz—=y, gy — 2,

the functor preserves the composition of morphisms

A contravariant functor like structure-preserving covariant functor from categories C to D, but for morphism f, g € hom(C)

Topological space

Flgf) = F(9)F(f).

frz—y, = F(f): Fly) = F(z),

Flgf) = F()F(9).

The point x() € x and the neighborhood of x() (an open covering )

can glun to topological space X (more pricisely, an open covering Hausdorff space X )

where

is the direct limit from x to x(. For any point x( € x, there is open covering partial ordered set on topological space X

Upo, = {x|z — 20}

X = Ul,,

T — X

U, CU,, CUZ C--X.

Category Viewing of Topological Space

o The Topological space X is a category with objects

and morphisms

U, € 0b(X), x4 € x.

C,U,N € hom(X).

o The category Top with objects

and morphisms

X € ob(Top).

continuous map € hom(Top).

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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Presheaf and Sheaf

F (Uxp ) is the presheaf on Uyp which is isomorphic to Abel group A (F (Uxp ) means all possible
functions on neighborhood Ux( )

F:U— F(Uy).
F is a functor from neighborhood Uy to presheaf F(Uyxp). From presheaf F'(Uyxp) to construct sheaf
F(X) satisfy the locality axiom and gluing axiom.

o (Locality axiom) If Uy is an open covering of an open set X, and if sections
Sz, by € F(X),
such that for any x0 € X
S|Ux0 - t|U.rO7
then

Sy = Iy,

where s|Uy( is the section restricted to neighborhood of x.

¢ (Gluing axiom) If
x0, x]1 € X,

Uxp and Uy are open covering of an open set X, and for sections

Sx0 c F(UXO ), Sx1 S F(le ), the

sections agree on the overlap

sx0 |Uxp NUx1 = sx1 1Ux1 NUxq -

the presheaf gluing aixom (2.31) can be presented by commutative diagram

F(Uyg
F(Uyy) — 2 p(u,, 0 U,
F F
U R N
o xo x1

then there is a global section

s; € F(X), ze€X,

such that

Sxo = SX\UXO. The

stalk of x, is the sheaf space restricted to x,

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)
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Fyy=F (X)|Uyxy = F (Uxy )/ ~, (2.35)

where ~ is an equivalence relation from restriction.

Manifold

For manifold, in the neighborhood Uy, of xp, there is coordinate

dat| (2.36)

T—xo *

As an example of presheaf, the collection of all possible coordinates in the neighborhood Uy of x( is a presheaf

d(Uxg) = {dx |10 /- (2.37)
The presheaf d(Ux() ) can gluon to sheaf d(X) because

A(Usy) — (U, N UL >
d d
Uyy ———— U, AU,
d:X — d(X). (239)

where differential structure d(X) is collection of all possible globle coordinates on topo-logical space X, d is one kind of
functor F', and d(X) is one kind of sheaf F' (X). Then we can see the manifold M is topological space X with differential
structure d(X) ( the globle coordinates on (1 + n)-dimensional manifold M might not be parameteried by R!"")

M = (X, d(X)). (2.40)
o« We point out that the definition of manifold M = (X, d(X)) is equivalent with the definition in usual book with

axioms of locally flatness and atlas compatibility.

(Locally flatness axiom) The point x( in (1 + n)-dimensional manifold, then the neighborhood Ux( can

isomorphic to R17.

(Atlas compatibility axiom) The points x( and x] in (1 + n)-dimensional manifold have neighborhood Uy and

Ux1 with parametrization {x¢*, u =0, 1,2, - - -, ntand {x#, u =0, 1, 2, - - -, n}. Then, there are coordinates {dx,",
pu=0,1,2,- -, nand {dx*,n=0, 1,2, - - -, n}. For the overlap of the two neighborhood
UzoNUz1, (2.41)

there is coordinate transformation

deght = APy, (20)da¥1 = AHy, (21)d2"7 A, (z0), AHy (21) € GL(1 4 n, R), (2.42)

where

AH Y (20) = Ay (2) ] 5—y 20 - (2.43)
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o For any number of neighborhood, there is

drly = AP (x) A" (1) - - 'A”f,q*l(xq) dayt = Hom (A", (20), A", (24)) da?), (2.44) (2.44)

where the element in Hom (A* (zo), A" (z,)) is path dependent and cotangent prin-
cipal bundle section dependent element of linear transformation group GL(n,R)
valued. Then

zoft = Hom (AM, (z0), APy (2q)) l’q’/ + Cq — Co. (2.45)
Which means the parameters in x0 and xq relies on the continues path
C:t—=M,C(7)=2"k=0,1,2,--- ,n, (2.46)
linear transformation

Hom (A", (z0), A*, (x,)) (2.47)
and the edge function Cg —C,. The solutions of equation (2.44) just the sheaf space d(X) restricted on

curve C(7)

dX) ey - (2.48)
From equation (2.45) we can see that the global coordinates in (1 + n)-dimensional manifold might
not parameteried by R!**

Category Viewing of Manifold

o The manifold M is a category with objects

Uy, d(Us,) € 0b(M), (2.49)
and morphisms
C,U,N,d € hom(M). (2.50)
e The category Man with objects
M € ob(Man), (2.51)
and morphisms
continuous differentiable map € hom(Man). (2.52)

Principal Bundle
The fiber E(Uxp ) of the cotangent principal bundle £(M) on manifold M isomorphic to the freedom G =

GL(1+n, R) of coordinates can make transformation (left action) locally
E(Ux0) = {A*y @)y xg | d 13 xg = Ay @ [y Ay @)y xg € GL(L+ 1, R 233)
The cotangent principal G-bundle £(M) on manifold M is

E(M) = UE(Uy), G =GL(1+n,R), (2.54)
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so the cotangent principal bundle is a map 7z from total space E to base manifold M

m: E — M. (2.55)
EU,,) —22Y% pw, uu,) —Y B(M) (2.56)
Us, Y U, Ul —Y M

The inverse mapping of x is a section of the sheaf d(M) and bundle £(M)

rtedM), 7 'cEM). (2.57)

Here for inverse mapping of cotangent principal bunlde, the meaning of !

is one global coordinate of the
manifold M. The contravariant functor z° ! of 7 is the differential

structure sheaf of the manifold M (all possible global coordinates). Because we have the commutative

diagram
d(U,y) —2 4, 0 U,) —%—— (M) (258)
a=11d a=11d #=1\|d
Usy Y U, VU, — M
then
o (2.59)

The tangent principal bundle £*(M) is the dual bundle of cotangent principal bundle E(M)
™ E¥ > M. (2.60)

1

The section 7*~ ! in the neighborhood of Uy has the formula

0 (2.61)
(9.%“ T—T0
and dual with coordinates
0
(da, 8x”> =3 (2.62)
Tr—T0

The sheaf 7%~ 1 is dual with z°~!. The right action of element of GL(1 + n, R) on tangent principal bundle is
consistent with the definition of left action transformation on cotangent bundle
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o\ 9
(@) = (7). (2.63)
The definition of dual basis (2.62) gives us that
— 2.64
A (@) A2 (2)], =0l (2.64)

Principal Bundle Connection

For a section 71 of the cotangent principal bundle fiber £(Uy, ) on manifold M, the linear connection operator
VP is

v it = dat — A" (zo)dy _ (0 A (@))dz o, (2)dz", (2.65)

P vp
TP — xh ez dzr

then the linear connection operator V) is a functor connects fiber £(Ux) to E(Ux( )

Vp: E(Uz) = E(UzQ ), v — 20. (2.66)

We write connection 1-form as follow

T4y, (1) = TH,,(0)dy”, and (2.67)

the linear connection 1-form operator

V =Vpd’, Vdxt = -TH, (x)dx” . (2.68)
The section of the fiber E*(U,,) of tangent bundle has the connection

9\ _ 0~ (2.69)
Ve (a?) = gt wl?)

We omit the x index some places below. The dual relation (2.62) of bases gives us that

0 -
Vp<dx“, @> = O, = F'uyp<3;') = —F“Vp(x)’ (2.70)
then
B o
Vp <a$_“> =T HP(ZE)%}' (2.71)

We assumpt that the linear connection operator V) can be defined globally on the manifold M.Under the

coordinate transformation in the neighborhood Ux, the transformation rule of the principal bundle connection is

derived
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V,dz™" = V, ( )dm)

AH
= =TI (2)dx" = ( 8xﬂ ) dx?,
, y 8/\“
= I’ﬁﬁp(x/)/\ (z) = (A“ )
,u,
=17 (") = [ A( 8A ) A (

=T ) = (A (x () d/\"“ A% (),

such that the cotangent principal bundle E(M) has structure of connection preserving left action G = GL(1
+ n, R) torsors

o) — SXEOD

Tangent and cotangent associated bundle

The tangent associated bundle 7 £*(M) on manifold M is glued with tangent space on neighborhood of x
p*:TE* — M, TE*(M) = UTE*(UI),

the section p"‘_1 of the bundle is a vector field of manifold M

0
ort’
Then the fiber 7 E*(Ux( ) of the bundle 7 £*(M) is isomorphic to R, For definite section of the tangent bundle,

V( ) Vﬂ( ) (Vo(x)7vl(x)v 7Vn(x))| S R1+n'

T—T0
there is GL(1 + n, R) freedom to choose the bases of vector in the neighborhood of x()

o ., i 0
axl,A (I’) - V (x)ax,j )

T—T0 Tr—T0

V()| = V¥ (x) A”M(w)‘ € GL(1 +n, R).

T—T0 T—rT0

With the help of (2.72) and (2.77), the tangent associated bundle 7 E*(M) has the struc-ture of connection preserving
right action G = GL(1 + n, R) torsors
TE*M) x G

G 7
the right action structure group G of tangent associated bundle is free and transitive. The contravariant functor
pA*_l of tangent associated bundle 7 E*(M) is a sheaf on manifold M

1M — TE*,

TE*(M) =

where the sheaf p™* 1 are collections of all tangent vector fields on manifold M. The sheaf p™* ™~ ! has structure
of connection preserving right action G = GL(1 + n, R) torsors

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)
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.1 PTIxG
B G
Similarly, the cotangent associated bundle is
p:TE — M, TE(M) = UTE(U,),

and has the structure of connection preserving left action G = GL(1 + n, R) torsors

_ G xTE(M)

TE(M) —,

the section p_1 of the cotangent associated bundle is cotangent vector field (1-form) on manifold M

o(a) = au@)de”,  (aole),an(), - 0n (@), € RV

The contravariant functor pﬁ1 is the sheaf of all cotangent vector field on manifold M
Pt M TE.

The sheaf pA_1 have structure of connection preserving left action G = GL(1+n, R) torsors

., Gxpt
pt= :

Lorentz manifold, Riemann geometry and Cartan geometry Metric

Pseudo Riemann geometry

pR = (M, g)

is one of most successful geometry system. The pseudo Riemann geometry pR is a differentiable
manifold M with smooth metric tensor g
9(x) = —gu(x)ds" @ dz”,

the metric is symmetric two rank tensor field on manifold M such that the components of metric tensor

G (2) = Gup (),

the metric field is non-degenerate, which means, the determinants of metric tensor com-ponents at any point
x(0 in manifold M are not zero

g'U|:c—>:co - det(gl’l”(‘r))’x%xo ?A O

The pseudo Riemann manifold pR has corresponding inverse metric

o 0
—1 _ v
g (@) = =" (@) 525

o)

where the dual basis 87‘ of coordinate dz*|
Tr—TQ

the inner product relation with coordinate

in the neighborhood of xz( satisfy

T—rT0

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

3.1)

(3.2)

3.3)

(3.4)

(3.5)

10
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(0, dx")| = ol (3.6)

T—T0

The components of inverse metric g#Y (x) are inverse matrix of metric components guv (x) in any point xo

9" (2)gup(7)] Ly = 0,/ (3.7)

The metric is compatible with linear connection when

Vg(z) =0, (3.8)
99w (@)
= S = (217, (1) = g (2)17,(2) = 0. (3.9)
We discuss the (1+n)-dimensional pseudo Riemann manifold pR with signature (—, +, +, - - - ), Lorentz manifold L, and
with signature (—, —, —, - - - ), Riemann manifold R
L,R C pR. (3.10)
Then, x = () = 0 x9) = (4 x), (¢=1,2, - - -, n) parameterized the (1+n)-dimensional manifold L and R, and dx“|
x—x0 w=0,1,2, -+, n)isacoordinate in the neighborhood of x(.

Curve on Lorentz manifold and Riemann manifold

The curve C(r) on manifold L and R is defined

CIT-)L,R, 7€ R. (3_11)

The curve C(7) on manifold L and R is an entity then the curve C(7) satisfy the repa-rameterization symmetry

T L )
x % (3.12)
LR

1=1C (f(r) I f(DIER. (3.13)

The metric g(x) on manifold L and R defines a line element of the curve C(7)

dz# dxv
dr dr
The length of the any path C(z) from x( point to x4 point on manifold L and R is defined

dzt dxv
s—/ ds—/ \/gu,,; ded (3.15)

The variation of the length s from point x( to x4 screen out the geodesic curve from point xQ to x4 on
manifold L and R

ds = \| —guw— dr. (3.14)

ds = 0. (3.16)
The definition (3.16) of geodesic curve derives that
d?xH dx" dx”
+ u =0, (3.17)
dr? dr dr

11
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the {“V p} is Christoffel symbol and defined by metric components

p}—

The dT is basis of cotangent vector on curve C(z), and the dual basisd is defined

090,) ov 3gw)
8x” oxP oxo
d
<d7', E> = 1

The restriction of tangent principal bundle £* from manifold L and R to curve C() is

E* (L), E* (R) restriction

L. R

restriction

B (U,)

U,

The objects in £*(Uy ) are tangent vector on the curve C(z)

d
— e E*(U;

dr

),

T € R.

When the linear connection operator V) acting on tangent vector d of curve C(z) equals 7 zero, the curve C(7) is

d
V, = 0.
The definition of self-parallel (3.22) derives that
dx” dx”

self-parallel transported

d?xH
dr?

I, (r) ==

dr

dr

Principal bundle on Lorentz manifold and Riemann mani-fold

The freedom to choose dxp|x x0 is isomorphic to the fiber E(Uxo ) of the cotangent prin-cipal bundle E(L) and
E(R)—of the (1+n)-dimensional Lorentz manifold L and Riemann manifold R. There is freedom to choose

coordinate in the neighborhood of xo

E<Uﬂﬁo) = {A#l/ (xﬂx*)mo(imul‘:z‘/*)mo: AM ( )dxy‘x%x(ﬂ Ml/( )‘m%xoe GL<1 + n R)}

such that the cotangent principal bundle

and

E(L) = UE(Ua:)a

E(R) = UE(U.),

r €L,

r € R,

has the structure of connection preserving left action G = GL(1 4 n,R) torsors

G x E(L)

E(L) =

G

Y

E(R) =

G x E(R)
—

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

12
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For definite metric g(x) of manifold L and R, there is GL(1 + n, R) freedom to choose the coordinate dx“| x—x0
locally to describe the same metric g(x) in the neighborhood of x(

g<$>|z—>z0 - - g;w(x)dxwdxw‘x_)xo - = g;w(x)A#p(x)Aya(‘r)dmpdxg‘
= — gpo(x)da’dx’|

T—0 (3.28)

rx—xg

where

G (@) A ()N, (2)] = Gpo ()],
are used.

For inverse metric, the analyze for tangent principal bundles £*(L) and E*(R) are similar, and the tangent
principal bundle on (1+n)-dimensional manifold L and R has structure of connection preserving right G = GL(1 +
n, R) action torsors

E*(L) x G
G )

B (L) = _EFR)xG (3.29)

Orthonomal principal frame bundle and Cartan geometry

The inverse metric g_l(x) in Lorentz manifold L is described by orthonormal frame for-malism (a, 5=0, 1,2, -+ -, h)
g () = =0, (2)6s(x), (3.30)
where
0" = diag(1,=1,—1,--- ,=1) (3.31)
and
fal) = gu(x)i (332)
“ @ 81‘# .

are orthonormal frames and describe gravitational field. The Riemann manifold R be described by inverse metric

gil(x) orthonormal frame formalism as

g (@) = —1"04(x)0s(x), (3.33)
where
I°° = diag(1,1,1,--- ,1). (3.34)

For definite inverse metric gil(x), there is O(1, n) freedom to choose the orthonomal frame 6%(x)|y_, 0 to

describe the same metric in the neighborhood of x,

0V (@) g = AY@O@)], LAY, € O(1in), (339)
and
g (@)], L, = =m0 (@)0"(2)],_, = — Ml (@) A (2)0 () A’ (2)] . (3.36)
= — (@) (@) |, .

13
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where

n(/szac(I)Abd(x)‘m_)xo = nCd|x—>wo ) Aab($)|x—>xo 6 O<]" n)

Which means, the fiber OE™(Uxg ) of orthonormal principal frame bundle OE*(L) is iso-morphic to the
orthonormal frame transformation freedom G = O(1, n) (right action) locally

OF" (Usy) = { N'u(@)] 0 1 000y = B@N0 ()], A% ()], € OLm)}

The orthonomal frame principal bundle is

OE*(L) = UOE*(U,), z €L,

The fiber OE*(Ux( ) of orthonormal principal frame bundle OE*(R) of Riemann manifold R is isomorphic to the
orthonormal frame transformation freedom G = O(1 + n) (right action) locally

OB (Usy) = { N (@), 0 1 0@ sy = ()N (2], o A ()], € OL+m) }
The orthonomal frame principal bundle is

OE*(R) = UOE*(U,), z€R.

The metric g(x) and g (x) can be described by cotangent orthonomal frame (orthono-mal co-frame)
formalism as follow

9(x) = —nab(2)6°(x),  g(z) = —I40°(2)0" (),
where
Na = diag(1,—1,=1,--- ,=1), Iy = diag(1,1,1,---,1)
and
0%(x) = 0 (x)dx"

are cotangent orthonomal frame. It is derived from (3.6) and (3.7) that the cotangent orthonomal frame is
dual with tangent orthonomal frame

(0°(2), O6(2)) |0y = 9

and

0h(@)0 ()], =%, 0(2)0; ()|, = 0y

r—x T—x0 2

From equation (3.45) we have

A (@) A ()0 = 0

Tr—xTQ

The structure group of orthonomal co-frame bundles OE(L) and OE(R) are O(1, n) and O(1 + n), also.

The orthonomal frame connection coefficients is defined

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

14
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= I", (2)0} () = ‘998; 7) + 6 (@)1, , (),
= I, (2)0) (z) = dok(x) + 07 (x)T*", (x),
~ [0908(x)

= Fbap(:v) il + 07 ()", () 92(9&)

Eliminating the edge term

— a b
axp 9(1 (,I) aa:p a$p 0;;( )7
can be written as
00" ()
Fbap(x) = leg(x)ra,up(x) - a,uxp 95('%.)7

= I*,(2) = [05(2)17,(x) — db}, ()] 04 ().

The compatible connection condition for orthonomal frame connection coefficients is
b b
nacr cp(x) + /’70 Facp(l‘) = 07
b _ b
=T “p(x) = I p(m).

The connection 1-form on orthonomal frame is defined
e (z) = Facp(:z:)d:z;p,
then we have
Vou(x) = T'(x)0(x).

Vot (z) = —I%(@)
r*(z) = —T"(x).

The structure of connection perserving right action G = O(1, n) and G

orthonomal frame principal bundles

op ) = 2B XG L opRr) = ORI X G
G G
derives that
8Ab ( )

oxP

8
=
e}
a

) )
Ay (x) = (A" (2)1y()

= ", (') A%(x) = T (2') A dA® () = dA°,(2) AT () + A (x) A dF” a(2),

the curvature 2-form is defined

O(1 + n) torsors of

x) — dAb( )) A?

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)
(3.55)

(3.56)

(3.57)
(3.58)
(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

15
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Q% (z) = dI'y(x) + I (z) AT (),
and equation (3.63) derives that the curvature 2-form satisfy the tensor transformation rule
b b
()N y(x) = A° () Q2 ().
The relation between curvature 2-form Q% (x) and curvature tensor R%, . (x)is

1
Q% (z) = ER“bW(x)dx“ Adx”,

where

a ore T a a c a c
R buu(x) - abxlf ) - ;)T‘ab:fly(m) +T c,u(x)r bu(x) -I cz/(x)r by<x>‘

Equation (3.44) bring us that
dat = 0% (x)0%(z),
after the exterior derivative d being acted on equation, the Cartan sturcture equa-tion is derived

0= d (0 (x)) A0 (x) + 07 ()d (6°(x)),
= di°(z) = —T%(x) A" (z) +T°,, (x)dz" A da*.

The trosion 2-form is defined

1
T(z) = ETCW(:E)dx“ Ndz" = —=T°, (z)dz" A dz",

then the components of torsion is

Tc/.uz (‘/E) = 2Fc[p,l/}<m> = Fc,u,u (l’) - Fcl/,u,<x>7
and the Cartan sturcture equation is rewritten as

do°(x) +T%(z) A 0°(z) + T(x) = 0.

It is easy to prove the torsion satisfy the tensor transformation rule. The exterior deriva-tive d acting on
equation (3.72) gives us Ricci identity

dl%(z) A 0°(z) — T%(z) A do°(z) + dT¢(x) = 0,
= Q% (2) A 0°(2) +T%(2) AT(z) + dT¢(x) = 0.

The equation is Ricci identity in Cartan geometry with torsion, and the components formulation is

Ra[puu] (l’) + Fao[p(x) O/:LI/] (ZL’) + a[pTa,u,u] (ZE) = 07

where

0

P Qar’
The exterior derivative d acting on Ricci identity (3.74) derives that the Bianchi identity
b d
dQ2(x) — Q% (x) A7 (z) + T (z) A Q% (z) =0,

the components formulation of the Bianchi identity is

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)
(3.74)

(3.75)

(3.76)

(3.77)

16
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OB ) () = Ry, (2)T7) (@) + T (2) Ry () = 0. (3.78)

The determinants of metric components in the neighborhood of x( gives us the coor-dinate free volume
element 6y(x)

gv(:v)]xﬁxo = det [gu,,(:v)]\x_}xo = det [nabQZ(x)HZ(x)} = — det? [HZ(x)] !z_mo ,
= @), = et (0260, = Vo) 879

Category viewing of principal bundle on Lorentz manifold and Riemann manifold

The cotangent principal bundle £%(L) and E*(R) are dual to tangent bundle E(L) and E(R), the orthonomal
functor O acting on associatd bundle gives us orthonomal frame bundle and co-frame bundle

O:FE— OF, O:FE"— OF", (3.80)

and the commutative diagram of these four kinds of associated bundle on Lorentz manifold L and Riemann
manifold R is as follow.

OE dual OE* (3.81)
X J X
E dual E*
LR LR .
\ \
LR LR

Clifford algebra and Dirac matrices
Cl,, Clifford algebra and Dirac matrices

The CI1,5(R) Clifford algebra has 1 + n generators y%(a =0, 1, 2, - - -, n). The Clifford algebra is spanned by the
bases as follows

(CY,,, 0— vector : [
Ci,, 1 — vector : v,
C3., 2 — vector : Y"1y, (a1 < ag <az <--- < apyy).

Clin(R) = span C3,, 3 — vector : Y124,

\Cijg (1 4+ n) — vector : 482 ... 340 (4.1)
The Clifford algebra CI1,,(R) is 21%7_dimensional linear space and

Clin(R) = {al + ag, ¥ + Qajax V" Y2+ - - - + Qajagearsn Y72 - - 47}, (42)
where the coefficients before the bases are real valued

Q, Qay s Qlayags * 5 Qagag-arpn, € R (4.3)

The matrix representation of generators of Clifford algebra satisfy the restriction

Y+ APy = 2P, (4.4)
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where [f; is k x k identity matrix. In physics, the Hermiticity conditions for generators of Clifford algbra can
be chosen alwaysly

,ya,be 4 ,yb‘[,ya — QIabIk, (4'5)
where 190 is (1+n) x (1 +n) identity matrix. The minimal faithfull matrix representation for CI1,»(R) gives us

the relation

2 =k x k = k =2+, (4.6)

which means, for any matrix representation of generators of Clifford algebra, there is freedom of U(k) to
rotate the matrix representation

v =iy, Y e Uk), (4.7)

such that the ya' still the generators of Clifford algebra C/1 »(R). The Dirac matrices can be represented by
components formula

V= 'Yaij ejT ®e;= @DWW ej'T &€, Ye U(k)7 (4.8)
i
where ej(i = 1,2, , k) are the orthogonal bases expanding (1+n)-dimension complex space ck and
tr(e} X 61') = eie; = 61] (4.9)
One simple choice of e; is
ey = (€%,0,0,---,0), ea = (0,¢%,0,---,0), (4.10)
) €L = (0a0’0>"' ’610;@)' (4.11)

CI1,3(R) Clifford algebra and Dirac matrices

Particularly, the solution with

n=3andl, k=4and?2, (4.12)

are particular important from the reasons of physics. The corresponding Clifford algebra are CI1,3(R) and
CI1,1(R). The generators of Clifford algebra C/1,3(R) is well know Dirac matrices and the bases

(1 scalar : [,

4 vector : v“,

Cly 3(R) = span ¢ 6 bivector : 7P (a<b<e<d). (4.13)
4 pseudovectors : Y77,

.abacd
| 1 pseudoscalar : v+ y“y%,

The Weyl representation (¢ = 1, 2, 3) of Dirac matrices are

0 __ O ]2)(2, q __ 0 0-(]7 (414)
v ( ]2><2 0 ’ 7= —0yq 0 ’

18
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where og are Pauli matrices

0 1 0 —i 10
= (o) = (0) (0 h)

The components formulation of ya, is
v = ¢;i7aij¢jkek ® elT = @7&%‘%‘ ® 617 v eU),

with i, j =1, 2, 3, 4, where y1, w2, w3 and w4 are four kinds of Dirac spinors. The element of U(4) group can be
presented

v=e"T" V. eR, a=0,1,2,---,15.

The T % is generators of U(4) group and
To =T

Cl1,1(R) Clifford algebra

The generators of Clifford algebra CI1,1(R) can be represented by Pauli matrices, as an example

1 scalar : I,
Cly1(R) = span { 2 vector : 7° = 01, 7' = ioy,
1 bivector : —o3,
Isomorphism between bases of C/1,3(R) and the generators of U(4) group

An isomorphism between the bases of CI13(R) and the generators of U(4) group can be constructed as

follow. The modified Dirac matrices could be
7-1,0 — :)/O — 70’ Tl,q — ;yq — Z,}/q

For modified Dirac matrices

;}*/a,yb _|_;§/b,yc — Iab[4,

7=,
where /40 = diag(1l, 1, 1, 1). Then, the isomorphism between the bases of CI/1,3(R) and the generators of U(4)
group is
l.a _ «
T ¢ = ’yaa
7”2,(11) — Z,S/a,?b

A, (a<b<c<d).

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

19
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It is easy to see that the constructed 7' ¢ satisfy

January 2024
TaT — Ta’

7—1 ,a 7—1 b] 22-7-’2,ab,
T, T =0,
The T2 = 2T,

7— 7—3 bcd] — 227—4 abcd

T2 ,ab T3 bcd] 2i7—3,acd
7~2 ab 7~3 abc] —

[
[
[
[
[
[
[
[
[
[
[7-2 ,ab 7—4 abcd] 0’
[

7—1 ,a T3 abc] — O

Tl a T4 abcd] iTg’de
7-2 ab 7-2 cd] — 0

7—2 ,ab 7—2 bc] 227—’2,ac,

7—3 ,abc 7'4 abcd] 22-7'1,d7

Tr (TaTﬁ) = %P,

The commutative and anti-commutative relations of constructed 7' are

{Tl,a77-1,b} — O,
{Tl,a’ 7—”2,(;0} — 27—3,ab67
{Tl,a’ 7—'2,ab} — O,

(T ha TBbedy —
[Tha, Taabey — g2be
[T he, Thabed) — o
{7-’2,ab77-'2,cd} — _9
[T2ab T2be} —

[T2ab T3bed) —
(T2 TBabey — o le,

{Tﬁ,ab77‘4,abcd} — _27-2,cd’

{7-3,abc’ 7—4,abcd} =0.

Explicitly, the constructed generators of U(4) are represented by Dirac matrices

and we have

T =0
T =i,
T5 = —A01
TT = 043,
T = —iv'y’,
T _ 1707172,
T = —in"y*,
T — _jnOyla2y3
[T T7]

representation of generators of U(4) group.

Square root Lorentz manifold

Pair of entities

We define a

pair of entities

o~

—~
8

~—

Py

—
8

~—
|

T? =i,

T4 — i73;

76 _ _7072

T® = —iv'y",

10 _ W2

T = —ir"y'y,
T14 — 717273,
TO == 14.

=[O

As an example, the Weyl representation of Dirac matrices could gives us a team of explicit matrix

4,abed
TG/C’

(4.21)

20
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we call them square root metric of (1 + n)-dimensional L and R. This pair of entities describes square
root Lorentz manifold rL. Direct calculations show that the definition (5.1) and (5.2) satisfy

(x) = —l(z), '(x)=—(z). (5.3)
The Dirac matrices on rL has potential to write as follow

7 (x) = 7% (@)l (@) © €(x) = uf(2)7" (2)uy(2)e} (x) @ eia),

J
For any point x0 € L and R
tr(eh(z) ® e;(z)) = ¢;(z)el(2) = 0y (5.4)
Tr—x0 T—T0
One simple choice of ei(x)(i=1,2 - - -, k) on manifold is
er(z) = (10,0, ,0), ea(z) = (0,2 0,... . 0), (5.5)
6k<l') = (07 0,0,--- 7€i6k(z))' (5.6)
The bases e’ ; () ,(1=1,2,--- k) onrL has U(k) freedom to choose, locally,
T—T0
11 _ T
e'(@) _ =uy(@e(@) | ul@)l, € UK. 5)

Similarly, there is another local freedom to choose representation of components of Dirac matrices
(@) = % ()e] (2) @ €i(x) = uf (@) (2)us(@)ef () @ €f(x),
with

@), = @ @) = d@r @) @), UF). 58

T—x0 T—rT0

than Then, Lorentz there is extra manifold U(L k) andx U(k) principal bundle on (1 + n)-dimensional square root

Lorentz manifold rL

E=k=V2ltn (5.9)

Under local U(k’) x U(k) bases rotation equivalence relation, there still remains U(k) physical freedom

7 (@) = 7el(x) ® ei(z) = 1% (x)e] @ e = Y]()yYi(2)e} ® e, (5.10)
where
V()]0 € Uk) (5.11) (5.11)

isomorphic to the extra fiber space of associated bundle UE| *’z(rL). In the language of mathematic, there are two

extra U(k) associated bundles UE| *,2(rL) on (1+n)-dimensional

square root metric rL than Lorentz manifold L, with structure of left U(k’) and right U(k) action torsors
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U(K) x UE,(rL) x U(k)

UE;,(rL) = (5.12)
12(rL) UK) = U(k) ’
where /(x) and / (x) are sections of UE1*(rL) and UE 2*(rL) bundles, respectively. An pair can be written as
e) = inlehiy(e)e] @ eba(n) = i) (@n "y (@)e) © eib(), 6.13)
l(z) = (@) (@)e] @ efa(w) = i) (2)7"7"%;(x)e] © eiba(x). 149
The total structure group of principal bundle £*(rL) on (1 + n)-dimensional rL is
G=U) x Uk) x GL(1 +n,R), k= 2" (5.15)
The fiber space of associated bundles UE,*,,(rL) isomorphic to
UE," 5(Uy,) = U(k) x GL(1 +n, R), (5.16)
and has structure of G-torsors
U(K) x UE;(rL) x U(k) x GL(1 +n,R) (5.17)
UE],(rL) = ’
’ U(k') x U(k) x GL(14+n,R)
There are two kinds of inverse metric for the pair of entities
1 1 - -
g (z) = ptrll@)i(@)] = Jrll(2)i(@)] = —1"0a(x)0(), (5-18)
1 ~ 1 -
g~ (z) = ptrll(@)l(@)] = Jtrll(2)i(z)] = —n"ba(x)6y(z), (5.19)
after using y‘”L = yoyayo, where g 1 (x)and g 1 (x) are inverse metric of Riemann manifold R and Lorentz manifold
L, respectively. An pair of square root metric for metric of R and L are
7 () = i’yo(mz)’ya(x)eu(x)dx“, (5.20)
! () = 17a(@)70(2)8," () da" (s521)
Direct calculation gives us that the definition (5.20) and (5.21) satisfy
H(z) = —l(z), [(z)=—l(x). (5.22)
The corresponding metric for R and L are
1 - - 1 = .=
g(x) = Jtefl(@)i(2)] = Jtrll(@)l(@)] = —Lwd"()6"(z), (5.23)
1 - = 1 = _
g(z) = tell(e)i(2)] = Jtrll(@)(2)) =~ (2)6" (). 524
The entities pair (5.20) and (5.21) corresponding principal bundle E(rL) has total structure group
G=GL(1+n,R) x UK) x Uk), K =k=/2T" (5.25)

The fiber space of associated bundle UE(rL) isomorphic to
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UFE:15(Us,,) =U(k) x GL(1 4+ n,R), (5.26)
and has structure of G -torsors

GL(14+n,R) x U(k') x UE, »(rL) x U(k) (5.27)

UE; »(rL) = GL(1+n,R) x U(K') x U(k) ;

where l_(x) and | "(x) are sections of UE1(rL) and UE(rL) bundles, respectively.

Connection of extra bundles and gauge field

The principal bundle connection W;jj (x), flavor interaction gauge field, is defined as follow

T T ¥ T
el(z) — el (x0) (6ij — uj;(z))ej () .
V“(f;r(:l}) . = _$“ — x,[L)L 0 — J ajxu J = ZWHij(.QZ)e;r'(x) - (5.28)

The conjugate transpose of definition (5.28) gives us that

V,ei(z) = —iW" (x)ej(x), (5.29)
The covariant derivative V , acting on (5.4) leads to
Wi (z) = W*,uji<x)' (5-30)
The flavor interaction gauge field Wpij (x) can be expanded by generators of weak inter-action gauge group U(k)
W/“:j <I> = WHO{(x)?;jaJ o= 07 17 27 ) kz -1 (5.31)

In a word, the flavor interaction gauge field is defined

Vyuei(w) = —iej(2)Wyi(z), Vel (z) = iW;(2)el (2). (5.32)

7

And the gauge fields W #“(x) are real valued
5.33
We(x) = We(x). (5.33)

In Cartan geometry and homology theory, the differential forms are useful. Then, as we use the definition of
coordinate free covariant derivative,

V = V,dat, (5.34)
it is easy to see
Vel (z) = ij(:z)ej(x)dx“ = Wi;(z)el(z), (5.35)
where
VVZ(.T) = ij (.ﬁC)d.ﬁEu (5.36)

is flavor interaction gauge field connection 1-form.
Similarly, the principal bundle connection Vu(x), color interaction gauge field, is de-fined as follow

“x) —v*(xo () — ul () (2)u(x

GO, - L) )t
_ (@) —ul(@)y(@)] + [u @)y (2) — ul(@2)y*(z)u(@)]

_ Uk = uf(2)y*(@)] + [wf (2)y (@) (T — u(2))]

= i[Vu (@) (@) = (@) V)], . - 537
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we can see
V() = V(). (538)
Then,
Vil (@)l say = Vi@V () = (@)1 (@2)] |, (5.39)
The conjugate transpose of (5.39) is
V@, = iV (@) — @)V L (5.40)
As we have Hamiticity condition on square root Lorentz manifold rL
V@) (@) + 4@ (@), = 1, (5.41)
we act covariant derivative V on (5.41), after using yaf yoyayo it is easy to find out that
Vi(z) = Vi(z). (5.42)
The Vy is k x k matrix valued field, and can be expanded by generators of U(k) group
Vl.b(x) = V,ua(x)Ta7 o= 071727"' 7k2 - L (5.43)
In a word, the color interaction gauge field V(x) is defined
V(Y (2)) = i[Vu(2)7* (z) — 5" (2)Va(2)]. (544)
The conjugate transpose of equation (5.44) is
V(7! (@) = i[Vu(2)y™ (@) — T (@) Vi (@)]. (5:45)

The connections preserving G and G -torsors on principal bundles E  (rL) and E(rL) lead to the transformation
rules of connections W i (x) and V,(x)

* . 5.46
W55(2") = wis(@) Wt (@) (@) + 1ty (@) 0y (@), ul@)], -, € U(R), (40
Vi(a') = u(@)V (@)l (2) — @)l (@), u(@)],,, € UK), (547
where
wi(@)up(@)] = O, ulz)ul(w) o I (5.48)
The gauge field strength tensors are defined as follows [18]
Fuij(x) = 0.W,i(x) — 0,Wij(x) — iW,n(2) Wk () + iWoin (2) Wy (),
Hy(z) = 0,Vi(x) = 9, Vu(x) — iVu(w) ( )+ iV (2)Viu(2),
and the transformation rules satisfy
F' i (@) = (@) Fua(@)wy (2), H'y, (2) = (@) Hyy (2)ul (2). (5.49)
From the Hamiticity condition of gauge fields Wpij and Vp, the Hamiticity condition of gauge field strengths are
HT,LLI/ (SL’) = H ( ) F*,uuzj< ) FHVji(x)' (5.50)
The gauge field strength tensors can be written by strength 2-form
1 1
H(x) = EHHV(ZE)CZZE“ Ndz¥,  Fi(z) = §Fuyij(a:)dx“ A dzx”, (5.51)
and
Fl](l') = dWZ] (.CC) — ka(l') VAN ij (3}'), (5.52)
H(x) = dV(x)—iV(x) ANV (x), (5.53)
where
V(z) = V,(z)dx" (5.54)
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is color interaction gauge field connection 1-form. The exterior derivative acting on (5.52) and (5.53) gives us
Bianchi identity of strength 2-form

dH(xz) —iH(x) ANV (x) +iV(z) NH(z) = 0, (5.55)
dF;j(x) — iFy(z) AN Wii(z) + iWi(z) A Fij(z) = 0. (5.56)
The tensor formulation of Bianchi identity on this geometry structure as follows
Oty () = Hyw(2)Vy(x) — Viu(@) Hypy (), (5.57)
OuFrp)ij (@) = Flunjin (@)W (2) — Wiajin (@) F i (@) (5.58)

Lagrangian submanifold and Yang-Mills theory in curved space-time

An pair of equations which satisfying the U(k') x U(k) gauge invariant, locally Lorentz invariant and generally
covariant principles are constructed in (1 + n)-dimensional square root Lorentz manifold rL (5.59)

trV[i(x)] =0, (5.60)
trV[l(z)] =0,
those equations are generalized self-parallel transportation principle. Eliminating index x, the explicit formulas of
equations (5.59) and (5.60) are
. i Y n 7 . .7 b
(Zau i ¢iVu + Wuij¢j)7a¢i + @Z)ﬂa(laﬂ/ﬁ + Vu@bi - @bquji) + iy @Diq‘abu 0 =0,

(0] = 0tV + W ol phyeo o 4V ot = BTW ) 4 igtytetre, | o = o,

where
VN’u: ’yOVu’YOa ¢_T: 70,40 (5.61)
The Lagrangians corresponding to equations (5.59) and (5.60) are
= s 1 - a (5.62)
L = by (i0u10i + Vb — W .50) 05 + §¢i’7b¢i ol
L =iy (i0,0] + Vbl — PIW,)0" + iw bpire, gr
iV oLy, 2a) 7Y a 2 i W bu’a- (5.63)

The last term in Lagrangian (5.62) is Yukawa coupling term l//_i¢l//i and the scalar (Higgs) field is Dirac matrix valued and
originated from gravitational field

(5.64)

i a
2 ¢ = _,be bueg‘

Then, the Lagrangian (5.62) describes U(k') x U(k) Yang-Mills theory in curved space-time. The Lagrangian (5.62)
and (5.63) has relation with (5.59) and (5.60)
trVi(z) = L — LT,
trVi(z) = L — L. (5.66)
Then, we say /(x) and [(x) are a Lagrangian submanifolds in UE1* (rL) and UE»*(rL) , being satisfied, the Lagrangian
(5.62) and (5.63) are Hermitian

(5.65)

L=LT

L=17L"
So, the unitary principle (5.67) and (5.68) of quantum field theory consistents with gen-eralized self-parallel transportation
principle (5.59) and (5.60). The equations of motion for the Lagrangian (5.62) and (5.63) are

a(; [
Y (i0ubs + Vb — ;W) 04 + 37 winaMG{f =0, (5.69)
a(; n n 7 l a7
Y (i8,3b) + Vbl — w;WMji)eg + 57 0] .00 =0, (5.70)
and these equations conjugate transpose. Then, a pair of Lagrangian (5.62) and (5.63) which describes the U(k’) x U(k) Pati-

Salam model type Yang-Mills theory in curved space-time are constructed.
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The Yang-Mills Lagrangian for gauge bosons in this geometry can be constructed

—1
EY = Ttr (H/WH/W) — 2F/WFW,]“ (5.71)
where " € R is constant.
In this geometry framework, the equations can be derived as follows
-1 - a x 7 _a 5.72
V[Nv’/]l - 5 (wlfy l/JkFP»ij - Fpukiwk/}/ ¢j ( )
7 A Lo a
+ ¢z A 77D 1/%7 /ﬂ/wj + 5 ¢i7b¢j bp,l/) 6;- X eieaa
(5.73)

V[“Vy]i = _7 (J%’YCLTWF vkj —F,i‘,,kﬂﬁkv“%-
+ djz ,uzf)/ w wﬂ/ HHV¢j+ wz bij ab;w)e ® eilly,

where H~,uv = yOH v yo. We define V2 = Vu VydeH A dx" , the equation of motion of this gravity theory is constructed
trV2[{(x)l(z)] = 0. (5.74)

This equation (5.74) is obviously U(k') x U(k) gauge invariant, locally Lorentz invariant and generally covariant. The
explicit formula of equation (5.74) is

R=- ( abww ( bT,.YaT)w Hab<7a7b _ ,YbT,YaT)) : (5.75)

where

Duda® ® a0, = 0757, da* © dr*,d, = O%0" (.76)

uooo
are used and

Fupij = F:;040;, Ha = H,,046; . (5.77)

So we define a U(k’) xU(k) gauge invariant, locally Lorentz invariant, generally covariant Lagrangian
g — R%wz -1 ( abzﬂ/} ( bT'}/aT)@Z} @DTHab( fbeyaT)zﬁi) . (5.78)
Ly=LT, (5.79)

The Rz//ify/i in Lagrangian (5.78) is the Einstein-Hilbert action. The equation (5.75) and the Einstein tensor can be derived

from the Einstein-Hilbert action.

Conservative currents
The Noether currents for Lagrangian system can be derived from Euler-Lagrangian equa-tions. For action

S, 0ur) = /dfvo Ndat - N de"L( G, 0udr) = / dz® A dxt- - A da"0y(2) L b, Oudy),  (5.80)

The Euler-Lagrangian equations are
oL oL
hadn Y= ) (5.81)
Tl ) o

As an example, after careful oberserving of the Lagrangian
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_ ] i - .
Yy (10,0 + Vb — i W50) 08 + ézbmb@/}i ACS (5.82)
we set

= {i}, (5.83)

then the Euler-Lagrangian equation gives us four conservative currents equations
— 7010, 9,J" =0. (5-84)
Similarly, the conservative currents can be
JE =i 0400, VUi0M0s, VI 040, DI040, (5:89)
for four Lagrangian densities ﬁ_, ,CMT, L and ,CT, respectively. Note that Falm@a“ = [(9“9“ b+ QgITU u o Wweset
— [pm
= {Qa h (5.86)

= iy i, (5.87)

Sheaf quantization and path integral quantization

then

Sheaf quantization
UE*(rL) and UE ,*(rL) , are two associated bundles on square root Lorentz manifold rL
a at
UE; — " UE}

6.1)
rL
Pair of entities l(x) and [ (:C) are sections of the bundles UE*; (I'L) and UL,* (I‘L), respectively
E'[:t?}_ A s | N[r]
._*il\\\\\ /,//;*—1
rL (6.2)
In mathematic, the sheaf space SHl(rL) and SH2(rL) are spanned by collection of one kind sections of the bundles
e
(6.3)

\/

The sheaf spaces SH1(rL) and SH2(rL) are dual to each other. The superposition prin-ciple in quantum mechanics tells us that
if the quantum state |¥)1 and |¥)2 exist, the superposition state

W) = | W) + | V), ay, ap € C,
exist also. For pure state, the sheaf space SH1(rL) and SH2(rL) valued entities lA(x) and Z(x) can be defined

Zaﬁ )|k, ) (K, x|l (), (6.5)
I(z) Zaﬂ )|k, ) (s, 2| (), (6.6)

with the quantum field theory quantum state

Z ()], 2) 6.7)

(6.4)

~
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where « is sheaf space index and evaluated in an abelian group. The orthgonalization relation of bases in sheaf spaces SH;(rL),
SH,(rL) and probability complete formulas can be defined

(k, x|, 2"y = §(x —2")o(k — k), (6.8)

/MWMMWMMm:/Z%@@@MzL 69)

de =dz* A - - Ada™. (6.10)

where

The exterior derivative acting on (6.9)

{/‘\Ij d“f} :/tr [d (|9 (2)) (¥ (z)])] dz = 0, (6.11)

gives us the Schordinger equations

O0|¥ . N
D e, @) = i), 612
OW(r)) - : :
i Py Ue)), Py(e) = Ba). (613
The quantum state of quantum field theory might be presented by mixed state
(6.14)
Z N ()| K, ) (K, z|.
Further, the correspongding sheaf valued entltles I (x) and l “(x) can be written
Z(x) = Ne () |k, ) (K, 2|l (), (6.15)
K
I(x) Zn,,b V&, 2) (k5 x|l (2), (6.16)
where 7x(x) are probability den51ty of corresponding section /x(x) and Z~K(x). The proba-bility complete formulas in mixed

state case is

trp(z) > ne(z)dz = 1. (6.17)

The sheaf spaces SH] ZL) and SH2(rL) are Tinear spac€s, which means, for example, any two entitis in SH](rL), there is
a entity equals to the mixing of the two entitis

A~

o) =m(@)l 1(2) + me(2)] o(2); 1 1(2), 1 o(x) € SHy(rL) (6.18)
= I(z) € SH(rL),

where

/mm@%/wm@em@, (6.19)

and

(6.20)
[ i =1
We call it sheaf quantization which switching study objects from single section to one kind of possible sections of the bundle.

Sheaf quantization method find out a pair of linear space SH](rL) and SH2(rL) even the rL is curved space-time, sheaf
quantization method consistent with superposition principle. The equations of motion for entities IA(x)

and / ~(x) after sheaf quantization are

trV[i(z)] =0, trV>[i(2)l(z)] = 0. (6.21)
The corresponding total Lagrangian density is
L= UEH + 9Ly ks + GLyx), (6:22)

where g, g~ are Lagrange multipliers and

g.GER. (6.23)
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The relations between sheaf quantization and path integral quantization
The Schordinger equation (6.12) derives that
[W(t+ At ) = Ut + A, D|E(E, 2) = T EI¥G (1, o),
where t =2°, ¢ =1,2,--- ,n and
At — 0.

By using the orthgonalization relation (6.8) of bases in the sheaf spaces SH;(rL) and SHy(rL), and we choose the
orthgonal bases to be |d.(t, x9) to span the quantum state of quantum field theory

W (t, 27)) Zaﬁmq%mqm Zantmm(mq»

the equation (6.24) can be written

an”(t + At, xq) = Z <¢f€” (t + At, xq)|€—iﬁ(t,mq)At|¢H(t’ :L'q)>0é,§(t, l,q)

K

S / dmo(t + A, 29) (G (¢ + AL, 29w (t + At, 1))

(T (£ + AL, 29 |e ™ CED8 (1 29)) o (t, 29).
We know the relation of canonical position |¢, (¢, £9)) and momentum |7, (¢, 27))

<¢R(t, Iq)‘m, (t, xq» — em(t,w“)%(t,rq)(;m,’

this is second quantized version of

(xlp) =™
then

oz,{(t + At,xq) :Z/dﬂ"(t T At,xq)eiﬂ,,@(t-‘rAt,zq)[qﬁ,ﬂ(t—l—At,wq)_d)K(t,;cq)]e—iﬁ(t,xq)AtaH(t’xq)

Z/dﬂ',.;(t + At, xq>ei7rn(t+At,a:q)(b'n(t,xq)AtefiHA (t’xq)AtOéH(t, xq)

There is Legendre transformation between Hamiltonian and Lagrangian

Ji=mbe—ti= awi.

then

o (t+ Atz = Z/dﬁ,{(t—i-At,xq)ei(“q}”_mman(t,xq)

= Z/t,:HAt dmo(t, 29)e 2 o (8, 27)

= Zﬁ,zwmdm(t’,xq)eif“’ﬁa,,@(t,xq),

where o is volume form
w=0,dz’ Ndz' A - A dz”

then Then, the transition amplitude can be defined through path integral formula

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)
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Oz,.;(t, IQ) — Z/ Dﬁﬁ(t,, l,q>ez‘fu.)L[(Zﬁm(t’ﬂc")ﬁ,ﬁﬁm(t',:r:q)}O%(to7 lﬂ)‘ (6.34)
- Jte(tot)
This section of proof shows that, the sheaf quantization method is consistent with path integral method even for

quantum field t heory i n ¢ urved s pace-time. A s w e are using the second quantized canonical |gx(t, x9)) and
momentum |mx(t, x9)), the manifold after sheaf quantization and path integral quantization should be second quantized
version symplectic manifold.

Conclusion and Discussion

The existence of extra bundles on square root Lorentz manifold and the self-parallel transportation principle lead us to
the Pati-Salam model in curved space-time and the Einstein-Cartan gravity. The relations between sheaf quantization
method and path inte-gral quantization method is proved. The prove shows that the sheaf quantization method is
consistent with path integral method even the base manifold with curvature.

The discussions about homology theory, homotopy theory, characteristic class in square root Lorentz manifold will be
wonderful. The global solutions of square root Lorentz manifold with topologies S! x S* and S! x S! of base manifold
are interesting. The micro support language of sheaf of square root Lorentz manifold might trigger a meaningful
collision between mathematic theory and physical theory.
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