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Ecologists are often faced with problem of small sample size, missing PLS;

values at some sites, correlated and large number of predictors, and high Landscape ecology;
noise-to-signal relationships. This necessitates excluding important vari- Water quality;

ables from the model when applying standard multiple or multivariate Macro invertebrate;
regression analyses. Partial least square(PLS) regression was developed Savannah river basin.
particularly to deal with these problems. In this paper, we present the 7

results of applying PLS to explore relationships among biotic indicators
of surface water quality and landscape conditions where small sample
size, missing data, and co linearity in variables existed. Available field
sampling and remotely sensed data sets for the Savannah Basin are used.
We were able to develop models and compare results for the whole basin
and for each ecoregion(Blue ridge, piedmont, and coastal plain) in spite
of the data constraints. The amount of variability in surface water biota
explained by each model reflects the scale, spatial location and the com-
position of contributing landscape metrics. The landscape-biota model
developed for the whole basin using PLS explains 43% and 80% of the
variation in water biota and landscape data sets, respectively. Models
developed for each of the three ecoregions indicates dominance of land-
scape variables which reflect the geophysical characteristics of that
ecoregion. 0 2007 Trade Science Inc. - INDIA
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INTRODUCTION

The primary objective of the U.S.Environmental
Protection Agency’s(EPA) landscape ecology re-
search program is investigation of associations
among indicators of water quality and landscapes.
Statistically valid predictive models are an impor-
tant means of expressing these associations. The
analyses presented here represent an attempt to de-
velop a statistical predictive model of biotic indica-
tors of water quality based on associations with a
selected suite of landscape indicators.

Investigation of associations among indicators
of water quality and landscapes involves statistical
analyses of fundamentally different data sets. Data
on surface water conditions are generally obtained
through field sampling programs and may include
several different methods of data production, i.e.,
on-site observation, chemical analysis of collected
samples, and expert identification of biotic organ-
isms. Fach method is unique in its precision and vari-
ability. Field samples are representative of specific
points ot stream reaches. Field/analysis programs are
expensive and labor intensive; consequently, the to-
tal number of sample sites is usually small. The data
base may contain missing values due to the realities
of field sampling: malfunctioning equipment lost or
destroyed samples, invalidation of results due to poor
quality control. Much of the data on watershed char-
acteristics, or landscape data, is derived from remote
sensing platforms, thereby permitting wall-to-wall
coverage, although the data may be of lesser or more
questionable quality than surface water sample data.
The landscape indicators data sets may contain a very
large number of variables, although many of these
are not wholly independent(i.e., they may be collinear).

The characteristics of these data sets and the
differences between point sample collection and re-
mote sensing derivation present a challenge in selec-
tion of statistical methods for data analyses and
model definition. Single- and multiple-regression
analysis has frequently been used to relate water
nutrient concentrations to selected landscape vari-
ables™. Regression analyses, however, are sensi-
tive to missing values and dependence of explana-
tory variables(Landscape variables). Reliable statis-
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tically significant results generally cannot be obtained
unless the total number of samples greatly exceeds
the number of variables. Canonical correlation is well
suited to exploring the relationships among two or
more distinct data sets to describe their association
and connection to the physical environment!®*6l.
However, canonical correlation is sensitive to col-
linearity in predictors and requires multinormal data
sets when testing the significance level of the corre-
lation. The ratio of the number of variables to
sample size is critical in canonical correlation; a ra-
tio of 0.025-0.05 at a minimum is recommended ™\,

Partial least squares(PLS) analysis offers a num-
ber of advantages over the more traditionally used
regression analyses. Through its extensive use in the
tield of chemometrics, PLS has been shown to pro-
duce significant results when the number of samples
is small compared to the number of vatiables!'*"2],
It has been found to be useful both for providing
accurate predictions and for interpreting relationships
between data sets containing a high degree of col-
linearity™*Pl Additionally, the prediction error in
PLS is smaller than in other multivariate methods!®".
Although PLS is a primary statistical tool in chemo
metric studies, it has only occasionally been used in
ecological studies for exploratory analyses in engi-
neered revegetation studies!™®l.

The advantages of PLS, described above, makes
it an attractive candidate statistical tool for devel-
opment of landscape ecology models. In this paper,
we present the results of applying PLS to explora-
tion of the relationships among surface water biota
and landscape conditions. Available real-world data
sets for the savannah basin and its three component
eco-regions are used. These data sets contain all of
the limitations that hinder use of other multivariate
statistics, i.e., small number of sampling sites and
large number of variables.

METHODS AND MATERIALS

The water data used in this analysis were pro-
vided by EPA region IV, science and ecosystem sup-
port division. As a regional environmental monitor-
ing and assessment program(REMAP) project, site
selection and sampling were completed according to
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standard EMAP protocols. This included a random
site selection process, with wade able stream (Gener-
ally first to third strahler order) sites selected without
consideration of watershed size, proximity to other
sampling sites, ecoregion, or ease of access. Sample
collection was completed one time during base flow
conditions(Generally late summer into fall), although
selected sites may be visited a second time for qual-
ity assurance purposes. Site coordinates were checked
with a global positioning system(GPS) unit and
against topographic maps to verify the selected sam-
pling location. During the field visit, observations
were made and recorded on standardized forms for
a number of physical traits related to stream physi-
ology and habitat. Additional physical traits were
measured, including temperature, conductivity, and
dissolved oxygen. Macro invertebrate samples were
collected over a 100-m stream stretch above the
water sampling point and, at some sites, fish samples
were also collected. Macro invertebrate identifica-
tion was completed in a biological laboratory fol-
lowing collection. Stream water samples were col-
lected and filtered for subsequent laboratory analy-
ses. All collected samples were sealed, labeled, and
transported in coolers under chain-of-custody™!.
For each of the selected sites, the watershed sup-
port area was delineated and a suite of landscape
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variables was calculated™!. Water biology and land-
scape variables(n=86 sites) used in the analyses are
described in TABLE 1. TABLE 1 also provides the
abbreviations of variable names used in the figures
and tables in this paper. Due to the great number of
variables and the need for very short abbreviations
for use in labeling figures, at each occurrence of a
variable name throughout this text, the full variable
name will be used with the abbreviation provided in
parentheses.

Site description

The multi-resolution landscape characterization
consortium(MRLC) land cover/land use data(January
17, 2007; http://www.epa.gov/netlesd1/land-sci/
savannah.htm) reveals distinctive spatial patterns
within the savannah river basin. The headwaters of
the savannah river are located in the blue ridge moun-
tains in which evergreen forests predominate. Be-
low this lies a region of mixed and deciduous forest,
agriculture dominated by pasture and hay fields, and
several urban centers. Two large reservoirs are lo-
cated on the main stem river. Below August, Geor-
gia, extensive row crop agriculture is evident, along
with wetland areas. The city of savannah is located
near the outlet of the river to the Atlantic ocean.
The spatial patterns seen in the landcover correspond

TABLE 1: Water biota (Response) variables

Methodology

A weighted composite score detived from a parameter matrix of on-site
observations?!l and modified to fit specific geographical areal®. Parameters
within the matrix are categorized as primary(microscale), secondary(macroscale),
or tertiary(riparian zone). Higher scores indicate better conditions for sustaining

An index of three macroinvertebrate orders known to be sensitive to
environmental impacts: Ephemeroptera(mayflies), Plecoptera(stoneflies), and
Trichoptera(caddisflies), calculated as a percentage of the number of organisms
contained in a 100-organism randomly selected subset of the sample collected for
macroinvertebrate species richnessi?ll. In this data set, values >10% indicate non-
and values <1% indicate severely impacted

A count of the total number of taxa in a sample collected over a 100-m stream
reachPl. Higher numbers indicate a greater diversity of taxa; in this data set,
counts >26 indicated non-impaired conditions and count <11 indicated severely

Indicator of the amount of nutrients biologically available to support algal growth.
A bioassay is performed in the laboratory on aliquots of filtered water collected

Abbreviation Full name
HAB Macromv.ertebrate
habitat
healthy macoinvertebrate populations.
Ephemeroptera-
EPT Plecoptera-
Trichoptera Index
impacted conditions(>10%)
conditions.
RICH Macr@nve;tebtate
Species Richness
impacted conditions.
AGPT Algal Growth

Potential Test

from the site using standard methodologyl??l by Schultz[?l. As a surrogate
measurement of nutrient concentration, higher values indicate higher levels of
nutrients.
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closely to the three eco-regions: blue ridge, piedmont,
and coastal plain. Two data sets were used(see TABLE
1) four variables for water biology and 26 variables
for landscape condition.

Water biology variables

The four water biology variables(TABLE 1) used
in this analysis were algal growth potential
test(AGPT), macro invertebrate habitat(HAB), macro
species richness(RICH), and
ephemeroptera/plecoptera/trichoptera(EPT).

invertebrate

1. Algal growth potential test

The algal growth potential test(AGPT) is a bio-
assay performed in the laboratory in which known
amounts of nutrients(nitrogen and phosphorus) and
a standard test alga are added to aliquots of filtered
water collected from the site!. Its purpose is to pro-
vide an indication of the amount of nutrients bio-
logically available to support algal growth, as op-
posed to analytical methodologies that measure the
total amount of specific nutrients of which only a
portion may be biologically available. The specific
methodology used by EPA region IV was based on
the standard method but included a modification
by to speed the analytical process™. As a surro-
gate measurement of nutrient concentration, higher
values indicate higher levels of nutrients.

2. Macroinvertebrate habitat

Based on the rapid bioassessment protocols

and modified by EPA region IV to fit their specific
ecoregions!™, the macro invertebrate habitat(HAB)
data was derived from visual observations at the sam-
pling site of specific parameters categorized as pri-
mary, secondary, and tertiary parameters. Primary
parameters characterize the stream habitat at a
microscale, these parameters were bottom substrate,
available cover, embedded ness, and flow regime.
Secondary parameters characterize stream habitat at
the macroscale, these parameters were channel al-
teration, bottom scouring/deposition, and sinuosity.
The tertiary parameters of bank stability, bank veg-
etation, and streamside cover characterize the ripar-
ian zone composition and integrity!™. From this pa-
rameter matrix, a single, weighted composition score
was derived, with higher scores indicating better con-
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ditions for sustaining healthy macro invertebrate
populations.

3. Macroinvertebrate species richness

Macroinvertebrate species richness(RICH) is sim-
ply a count of the number of distinct taxa observed
in a sample®!. In this study, samples were collected
from a 100-m stream segment above the water sample
collection site. D-frame and A-frame dipnets were
used to collect organisms from all substrate types
within the stream reach!™). Higher numbers indicate
a greater diversity of taxa. The authors assigned
ranges based on natural breaks in the data set, non-
impacted(greater than 26 taxa), slightly impacted(19-
26 taxa), moderately impacted(11-18 taxa), and se-
verely impacted(less than 11 taxa).

4. Ephemeroptera/Plecoptera/Trichoptera

The ephemeroptera/plecoptera/trichoptera
(EPT) variable is an index of three macroinvertebrate
orders known to be sensitive to environmental im-
pacts: ephemeroptera(mayflies), plecoptera
(stoneflies), and trichoptera(caddisflies). It is calcu-
lated as a percentage of the number of organisms in
these three orders contained in a 100-organism
sample®. The 100-organism samples used wete a
randomly selected subset of the sample collected for
macroinvertebrate species richness, above. As with
macroinvertebrate species richness, the authors as-
signed classifications based on natural breaks in the
data set: non-impacted(greater than 10 percent),
slightly impacted(6-10 percent), moderately im-
pacted(2-5 percent), and severely impacted(less than
2 percent).

Landscape variables

All of the landscape variables used in this analy-
sis was derived from available digital data sets in a
geographic information system(GIS). The spatial
data sets used were obtained from a variety of sources.
The abbreviation, full name and description of each
of the landscape variables are given in TABLE 2.
The primary data sets used to derive the 26 vari-
ables used in this analysis were, multi resolution land
characteristics(MRLC), interagency consortium
landcover/landuse®¥; state soil geographic data
base(STATSGO) soils®®!, RF3 streams! USGS 8-
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TABLE 2: Landscape (Predictor) variables

Full name

Description

Percentage of total Multi Resolution Landscape Characterization (MRLC)

c Percent crop :
landcover in row crops types
p Percent pasture Percentage of total MRLC landcover in pasture/gtrassland types
b Petcent batren Percentage of total MRLC landcover in barren types(Quatties, Strip Mines)
Percentage of total MRLC landcover in urban types(Commercial, High- and
u Percent urban . . )
Low-Density Residential)
f Percent forest Percentage of total MRLC landcover in forest types
q  Percent wetlands Percentage of total MRLC landcover in wetland types
w  Percent water Percentage of total MRLLC landcover in water types
ah Agtriculture on highly erodible Percent of total area in agriculture (row crops+pasture) on highly erodible soils
soils (STATSGO K-factor 0.4)
i | +
az  Agriculture on slopes >3% Eee:::zz;l: of total area in agriculture (row crops+pasture) on slopes greater than 3
ah Agriculture on slopes >3% with ~ Percent of total area in agriculture (row crops+pasture) on slopes greater than 3
highly erodible soils percent with highly erodible soils (STATSGO K-factor 0.4)
am Agriculture on moderately Percent of total area in agfticulture (row crops+pasture) on moderately erodible
erodible soils soils (STATSGO K-factor 0.2 and < 0.4)
A Agriculture on slopes >3% with ~ Percent of total area in agriculture (row crops+pasture) on slopes greater than 3
moderately erodible soils percent with moderately erodible soils (STATSGO K-factor 0.2 and <0.4)
bzh Barren on slopes >3% and Percent of total area in barren cover types on slopes greater than 3 percent with
highly erodible soils highly erodible soils (STATSGO K-factor 0.4)
YA
zm Barren on slope§ =3 .Wlth Barren on slopes >3% with moderately erodible soils
moderately erodible soils
cz  Crops on slopes >3% Percent of total area in row crops on slopes greater than 3 percent
cum Crops on slopes >3% with Percent of total area in row crops on slopes greater than 3 percent with
moderately erodible soils moderately erodible soils(STATSGO K-factor 0.2 and <0.4)
pz  Pasture on slopes >3% Hay pasture on slope greater than 3 percent
e Erodible soils Percent of total area with highly erodible soils (STATSCO K-facor 0.4)
z Slope >3% Percent of total area with slope greater than 3 percent
X Mean slope Mean or average percent slope
s Standard deviation slope Standard deviation of percent slope
m Moderately erodible soils on Percent of total atea with moderately erodible soils (STATSGO K-factor 0.2 and
slopes >3% <0.4) and slope greater than 3 percent
. Stream density as total length of streams from USGS TIGER data divided by
d  Stream Density
watershed area
. Total road length within 30 Total length of types 0 through 4 roads and railroads/sidings within 30 m of
meters of streams streams from USGS TIGER data divided by total stream length
. Total road length in watershed Total length of types 0 through 4 roads from USGS TIGER data divided by

watershed area

Total Power, Pipe, and
Telephone line length in
watershed

Total length of power, pipe, and telephone lines from USGS TIGER data
divided by watershed area

digit HUCs, georgia and south carolina subbasins,
region IV sampling site locational data, 30-m and
100-m digital elevation models(DEM)® and digi-
tal line graph(DLG) roads®l. Slope was detived as
percent rise from the 30-m DEM. Most of the land-
scape variables were calculated using the derived
watershed above the sampling point as the base unit.

The single exception in the variables used here is
total roads located within 30 meters of a stream(r);
for this variable, the base unit was the streams within
the watershed, buffered out 30 meters on both sides.

The seven landcover variables were calculated
from the MRLC cover classes, percent crops(c) is
the amount of landcover within each watershed iden-
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tified in the MRLC data as ‘row crops’, percent
pasture(p) is the amount of landcover within each
watershed identified in the MRLC data as ‘pasture
or grassland’, percent barren(b) is the amount of
landcover within each watershed identified in the
MRLC data as barren due to anthropogenic activi-
ties (e.g., ‘quarries, strip mines’), percent urban(u) is
the total amount of landcover within each water-
shed identified in the MRLC data as ‘commercial’,
‘high-density residential’, and ‘low-density residen-
tial’, percent forest(f) is the total amount of landcover
within each watershed identified in the MRLC data
as ‘evergreen’, ‘deciduous’, and ‘mixed’ forest, per-
cent wetlands(q) is the total amount of landcover
within each watershed identified in the MRLC data
as ‘woody’ and ‘herbaceous’ wetlands, and percent
water(w) is the amount of landcover within each
watershed identified in the MRLC data as ‘water’.

Slopes(z) were considered to be all areas with
greater than 3 percent rise slope, while mean slope(x)
is the arithmetic mean of the 30-m slope pixels within
the watershed and standard deviation of slope(s) is
the first standard deviation of the total number of
slope pixels within the watershed. The STATSGO
K-factor was used to provide an estimation of slope
erodibility; a K-factor greater than or equal to 0.4 was
considered ‘highly erodible’ (e) while a K-factor of
greater than or equal to 0.2 but less than 0.4 was con-
sidered “moderately erodible.” Moderately erodible
soils were used in overlays with landcover and slope
data, but not as a variable by itself.

Stream density(d) was calculated as the total
length of RF3 stream vectors within the watershed
divided by the total area of the watershed. Power
lines, pipelines, and telephone lines(t) was calculated
as the total length of these vectors from USGS TI-
GER files within the watershed divided by the total
area of the watershed. Total roads within the
watershed(r) is the total length of all USGS TIGER
file road classes divided by the total watershed area
and total roads within 30 meters of streams(v) is
that subset of roads located within the buffered
stream boundary, divided by the total stream length.
The total roads within 30 meters of streams(v) also
included railroads and sidings as these could pro-
duce an impact to streams equal to or greater than
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some passenger vehicle road classes. Railroads, how-
ever, were not included in the total roads within the
watershed(r) variable.

The remaining eleven landscape variables were
overlays of two or three of the landcover, slope, and
soil erodibility variables. Five used total agriculture
(MRLC data classified as ‘row crops’ and ‘pasture or
grassland’) in combination with slope[agriculture on
slopes greater than 3 percent, (az)], or soils[agriculture
on highly erodible soils(ah) and agriculture on mod-
erately erodible soils(am)], or both[agriculture on
highly erodible soils on slopes greater than 3
percent(azh) and agriculture on moderately erodible
soils on slopes greater than 3 percent(azm)]. The sub
classifications of agriculture overlayed with slopes
and/or soils yielded another three variables [row
crops on slopes greater than 3 percent(cz), row crops
on slopes greater than 3 percent with moderately
erodible soils(czm), and pastures or grasslands on
slopes greater than 3 percent(pz)]. Landcover classi-
fied as barren due to anthropogenic activities
overlayed with slopes and soils accounted for two
variables[barren on slopes with highly erodible
soils(bzh) and barren on slopes with moderately erod-
ible soils (bzm)]. The last overlay variable used was
slopes with moderately erodible soils(zm). Other
possible overlay variables(e.g,, row crops on slopes
with highly erodible soils) were not used in this analy-
sis primarily because they were non-existent in the
majority of the watersheds. For clarifications, land-
scape variables abbreviations in TABLES 2 and 3
were used in figures.

STATISTICAL METHODOLOGY

The PLS method is based on first computing a
few relevant projections(Latent variables), i.e. lin-
ear combinations of the independent or predictor
variable X and then using these new variables in a
regression equation for predicting the response Y. In
contrast, principal components analysis(PCA) uses
only the predictors(X). In PLS, both X-and Y-matri-
ces are decomposed into scores- and weights-
matrices(X=TPT where T"T=1 is identity), then Y is
estimated as Y=TBV" where B is the regression co-
efficient and V is linear weight. The matrix column
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‘I’ is the latent vectors. Decomposition of the X-
and Y-matrices and forming linear combinations con-
tinues until the number of latent vectors is equal the
number of variables in the X-matrix. PLS begins by:

(1) Centering and scaling each of the response(Y)
and predictor(X) variables, Y’ and X", respec-
tively.

(2) Constructing linear combinations of the predic-
tors as:d(score)=X"w(weight). Scores are ot-
thogonal.

(3) Constructing linear combinations of the re-
sponses as: H=Y"V.

(4) Verifying the linear combination in(2) has maxi-
mum covariance(®d'[l) with the response linear
combination in (3); in addition constraints
wW'w=1 and 0'0=1 should be met.

(5) Predicting for both Y’ and X" by regtression on
O(scores):

x%=sL, ,Y"=3L)
where (I'_(=(0'9)'0'X") and (I (=(0'0)" d'Y")

are the X- and Y-loadings, respectively.

(6) The above steps are for constructing the first PLS

factor.
(7) Residuals for each X and Y are produced as:

X, =X°-X%nd v, =Y’ -Y°

The second factor is constructed by applying
steps 1 through 5 to the residual(7); additional fac-
tors are constructed by repeating this process for each
residual until the X matrix becomes null.

In interpretation, the scores as well as
weights(steps 2 and 3) are computed and plotted in
simple scatter plots(Figures 1 and 2). Weights are
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§-1 : e ot *® ¢
g -2 c o, .
-3 . .
-4
-8 -6 -4 -2 0 2 4 6

Landscape scores

Figure 1: Landscape- and biota-scores for the first
PLS factor(correlation is 0.64).
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the contribution of each the predictors in X to the
PLS factor. Landscape metrics clustered near the
origin indicate these provide little significant contri-
bution to the predictive model. Clusters of variables
with approximately equal weights indicate these vari-
ables may be collinear. The scores are the regression
coefficients of the variables in X and Y regressed
upon the vatious variables in & and represent how
the different manifest variables are related to the
scores (Figure 2). The scores are sometimes thought
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Figure 2: Weight for landscape variables for the
three significant PLS factors. See TABLE 2 for
variable description. Those variables that cluster
near the origin(i.e., have low weights on both fac-
tors) do not contribute much to the predictive ca-
pability of the model. Those variables that cluster
near each other indicate equal weight on a factor
and possibly collinearity.
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of as latent unobservable variables. Detailed discus-

sions of PLS and other methods can be found
n[29:16,12,15,30]

Validation

Validation of a prediction is always important
for assessing the properties of the equation devel-
oped. Just testing the model on data already used for
building the model is not enough and can lead to
highly overoptimistic results!'l. Cross validation, as
used here, was accomplished by dividing the data
into five groups, of which one group was left out(test
data). The model was fitted on the remaining four
groups(training data). The fitted models(n factor
model, step 8) were tested via cross validation using
the test data sets and the predicted values were com-
pared with that observed to calculate residuals. The
sum of squares of these residuals for all models(null-
and n- factor models) was calculated giving
PRESS (Predictive residual sum of square), which
can be used to define the optimum model and, hence,
assess the predictive power of the model. A model
with number of factors that minimizes PRESS is the
optimum one to be chosen. However, several mod-
els may have PRESS values that are close and do
not differ greatly from the absolute minimum, there-
fore, it is important to test whether these differences
are significant. A statistical test(Hotelling’s T%) was
suggestedP! to test the significant differences be-
tween root means PRESS of models was used here.
The final model was chosen based on the lowest sig-
nificant PRESS value (TABLE 3).

Variable influence on projection(VIP)

VIP is also known as variable importance for
projection(World, 1995). VIP is calculated as:
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VIP =4V *nx

2
of () .°%*r .

_ nj yi
V'Z nf
i=1

W, =
USS(Xw, )

X is the predictor(here it is landscape variables)
weight per each model factor. For example, if the
model has three significant factors, then there are
three weights for each of the landscape variables.
Each weight is normalized(W ) by dividing by the
uncorrected sum of squares of predictor weights per
factor, r is the percent variability in the response
variables(here, biota data) that is explained by each
factor, nf is the number of significant factors in the
model, and nx is the number of predictor variables.
The values of the regression coefficients and the rela-
tive importance(VIP) of each predictor can be used
to evaluate the contribution of each variable in the
PLS model(Figure 3). Regression coefficient values
indicate the contribution of each predictor(lines in
Figure 3) for an individual response. The VIP value,
as indicated in the above equations, is based on both
response and predictor measures. Therefore, if the
VIP for a predictor is small in value, it implies that
variable has a relatively small contribution to the
prediction and may be deleted from the PLS model.
Variable with VIP values of less than 0.8 should be
considered small contributors™. An improved model
can be built by including variables with high VIP
values and excluding others with low VIP. For the
whole basin, we refined the preliminary model by
removing 18 predictors which increased the amount

TABLE 3: Root minimum of predictive residual(PRESS) and its statistics, and percent variation accounted
for by the three PLS significant factors. Factors for preliminary PLS model for the surface water biota(4)
and landscape(26) variables. Only eight factors were shown below. Bold number denotes the first absolute

minimum root means PRESS and its statistics.

# Factors 0 1 3 4 5 6 7 8
Root Mean PRESS 1.071 0.997 0.984 0968 0998 1.047 1132 1149 1179
T? 17.064  12.556 7.709 0.000 5748 1200 3580  5.099  3.647
P>T2 0.001 0.006 0.092 1.000 0172 0.003 0493 0245  0.468
Variation in Landscape (%) - 25.180 19.978  9.727 Total 54.88 - - -
Variation in Biota (%0) - 21.754 6.676 5.374 33.80 - - -
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Figure 3: Regression coefficients of each landscape
variables on each of response(biota) and the VIP
values for each landscape variables in the prelimi-
nary model. See TABLE 2 for variable description.
Shaded VIP bars indicate the landscape metrics used
in the refined(pruned) model. The regression coef-
ficients were close to zero and their VIP<0.8 for
several landscape variables with respect to biota vari-
ables, indicating little or insignificant associations.

of variability explained by the responses by 9%
(TABLE 4) in the refined model.

The quality of the model developed here was
determined by examining the residuals for both the
biota and the landscape variables. An examination
of any possible outliers using residuals and lever-
ages was carried out to finalize the fitted PLS model.
The above analyses were done on all data, and by
eco-region to demonstrate the utility of PLS in dif-
ferent geographical settings.

Predictive capabilities usage

Water quality data(Response variables) are pre-
dominantly collected by manual methods at selected
points. Often, permitting restrictions, cost of sam-
pling, equipment malfunction or other reasons may
prohibit collection of a complete set of samples.
Landscape variables(Predictors), on the other hand,
can generally be obtained for all sites. Use of satel-
lite imagery provides nearly complete spatial cover-
age of the data used in computation of landscape
variables. A low numbers of sites, collinearity in the
landscape variables, missing values in water quality
parameters, and low signal to noise ratios in rela-
tionships between landscape variables and biologi-
cal data, can all be overcome in describing relation-
ships, quantifying variability, modeling and prediction
using PLS. We used SASP? for all statistical analyses.
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RESULTS

The results for all PLS models are summarized
in TABLE 4. Two models are presented for the whole
basin: a preliminary model in which all of the re-
sponse and predictor variables are used and a refined
model using a selected subset of variables. TABLE
4 also presents results of models for each of the three
eco-regions.

Whole basin

In the preliminary model, three factors are sig-
nificant explaining 34% of the variability in the biota
and 55% of the variability in the landscape data sets.
Figure 1 is a plot of the landscape and biota scores
for the first factor, indicating the strength of the re-
lationship between the response and predictor vari-
ables in this factor(r=0.64). Landscape metrics
weights among the three significant factors(Figure
2) shows that erodible soil, slope standard deviation,
mean slope, agriculture on slopes, and pasture are
heavily weighted in all three factors, while forest is
heavily weighted only in factor 1, wetlands in factor
2,and crops in factor 3. Agriculture-related variables,
including overlays with slopes and soils are approxi-
mately equal weights within the PLS factor indicat-
ing collinearity.

TABLE 4 shows the predictor variables grouped
by VIP value. Figure 3 depicts the regression coeffi-
cients for each response/predictor variable combi-
nation with the predictor variables listed in order of
increasing VIP value. Llandscape variables with re-
gression coefficients close to zero and VIP<0.8 in-
dicates little or insignificant associations between
these landscape metrics and water biota in this study.
Based on these low values for both regression coef-
ticient and VIP, the following landscape variables
are excluded from further analyses, including the PLS
models for the individual ecoregions: barren on
slopes with either highly or moderately erodible soils,
water, stream density, transmission lines, and roads
near streams. Several of the agriculture/slope/soils-
related landscape variables have similar VIP values
and factor weights(Figure 2), indicating approxi-
mately equal contribution to the model. Only those
variables with high values for both VIP and regres-
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TABLE 4: Number of sites(n), response and predictor variables, the relative importance(VIP) of each
predictor, root mean predictive residual sum of squares(PRESS) for models without(null) and with predic-
tors and percent variability explained by responses and predictors.

Response Predictor PRESS* % Variability
n . VIP .
Variables Variables Null Model Responses Predictors
Whole Basin >1.0 £ 2.92.0.C2
All data 1.0-0.8 82 AZPSC
€,2M,czm,azm,c,pz,
AGPT,EPT,HAB,RICH ah,azhu,d.am. ¢ 1.071  0.968 34 55
86
<0.8 q,b,w,bzm,v,t,bzh
>1.0
Refined EPT,HAB 1.0-0.8 5,2 1067  0.837 43 80
e,fam,c,czm,p,u
<0.8
Ecoregion: - - - - - - -
>1.0 .
Blue Ridge 20 EPT, HAB 1.0- 0.8 > 1.033  0.832 59 94
zm,z,pz,f
<0.8
>1.0 s,f
Piedmont 59 AGPT,EPT, HAB 1.0- 0.8 z,e,azh,ah,am 1.055  0.937 42 65
<0.8 u,q
>1.0 e,am
Coastal Plain 7 AGPT, EPT, HAB 1.0- 0.8 1,8,X,2% 1.200  1.132 65 86
<0.8 u

* number of significant factors were three except for the coastal plain, with two factors. PRESS=root mean predictive residual sum of square for

the null and predictors model.
sion coefficient are selected to create a final refined
model for the whole basin with the strongest pos-
sible predictive capability; the nine predictor values
selected are shown with shaded VIP bars in Figure 3.
The refined model(TABLE 4) has three signifi-
cant factors with predictive ability that is more than
twice that of the preliminary model. The three fac-
tors explain 43% and 80% of the variation in the
biota(response) and landscape variables (predictors),
respectively. The importance of the nine landscape
variables is high(VIP=0.8). The agriculture-related
variables contribute equally and minimally to the
model, with VIPs close to 0.84. All of agriculture-
related variables have a negative effect on EPT and
HAB. The most significant contributors(VIP=1) are
slope standard deviation, slope, forest, and erodible
soils. Slope standard deviation was the most impor-
tant variable(VIP=1.5) and, along with forest, has a
positive effect on EPT and HAB. Urban is also an
important contributor, but ranks in between the
above two groups; i.e., urban contributes more than
agriculture, but less than slope standard deviation,
forest, and erodible soils. Like agriculture and erod-
ible soils, urban negatively impacts biotic condition.

Ecoregions
1. Blue ridge

Two water biota and six landscape
variables(TABLE 4) for twenty sites are included in
the model. There are three significant factors that
account for 59% and 94% of the variability for the
biota and landscape variables, respectively. The
strength of the relationship between the two linear
components for the first factor is moderate(r=0.65).
Slope standard deviation and roads are the most im-
portant variables(VIP>1), followed by slopes with
erodible soils(VIP=1; TABLE 4). Forest, slope and
pastures on slopes were ranked in the middle with
VIPs greater than 0.8 but less than 1. Slope standard
deviation, and to a lesser extent, forest, are positively
correlated with EPT and HAB, while the remaining
landscape variables are negatively correlated with the
biota variables(Figure 4A). Normality of the re-
sponse is met(p>0.13) and no outliers are found in
the landscape metric data.

2. Piedmont
The PLS model for the Piedmont contains three

water biota and nine landscape variables for 59
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Figure 4. Regression coefficients of each landscape
variables on each biota and the VIP values for each
landscape variables in the PLS model for(A) blue
ridge, (B) piedmont and(C) coastal plain ecoregions.
The dashed horizontal line indicates the 0.8 VIP
value. See TABLE 2 for variable description.

sites(TABLE 4), producing three significant factors
explaining 42% of the variability in the biota and
65% of the variability in the landscape variables
(TABLE 4). The strength of the relationship between
the two linear compositions for the first factor is
strong(r=0.75). Slope features, and forest are the
most important variables(VIP>1; TABLE 4). Slope
features, forest, and wetlands(marginally) are posi-
tively correlated with EPT, whereas agriculture/
slope/soils variables, and urban are negatively cot-
related with EPT(Figure 4B).

Wetlands, slope standard deviation, and forest
are positively correlated with HAB while urban and
all agriculture-related variables are negatively
correlated(Figure 4B). AGPT is heavily weighted and
positively correlated with urban and agriculture, and
negatively correlated with forest(Figure 4B). Nor-
mality of the response variables is met(p>0.05) and
no serious outliers in the landscape variables are
found.
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3. Coastal plain

In spite of the scarcity of sampling sites(n=7) in
the Coastal Plain, a valid PLS model is constructed.
Three water biota variables and seven landscape
variables(TABLE 4) are included in the model. There
are two significant factors that account for 66% and
86% of the variability for the biota and landscape
variables, respectively. The strength of the relation-
ship between the two linear compositions for the first
factor is strong(r=0.85). HAB and AGPT are posi-
tively correlated with erodible soils and agriculture
on moderately erodible soils, and negatively corre-
lated with the remaining predictor variables. EPT is
negatively correlated with agriculture on moderately
erodible soils, erodible soils, and urban and positively
correlated with the remaining variables(Figure 4C).

DISCUSSION

One objective of the study is largely statistical;
that is, to test the functioning of PLS when chal-
lenged with data sets containing all of the limita-
tions discussed earlier. For this objective, the results
of the PLS analyses are encouraging. Statistically sig-
nificant results are obtained for the whole basin and
for each of the three ecoregions, despite a very small
sample size. A number of variables are found to have
little or no contribution to the predictive capability
of the model and, therefore, can reasonably be ex-
cluded from refined analyses. Variables which are
known to have a high degree of collinearity (specifi-
cally, the various overlays of agriculture/slopes/
soils) are correctly identified in the analyses with simi-
lar weights, VIP values, and regression coefficients.
This clustering permits further reduction of the num-
ber of variables in refined analyses. From an initial
pool of 26 landscape variables, final models are pro-
duced with six to nine variables, all significant con-
tributors to the predictive model.

The second objective is ecological; i.e., do the
PLS results identify meaningful associations between
biotic and landscape indicators? With the exception
of the coastal plain, this objective is largely success-
ful. Macro invertebrate indicators are positively cor-
related with natural landcover types(Forest in the
blue ridge and piedmont, wetlands in the piedmont)
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and negatively correlated with indicators of anthro-
pogenic activities(Agriculture, urban development,
roads). As an indicator of nutrient enrichment, AGPT
could be expected to be positively correlated with
agriculture and erodible soils. Positive correlations
are obtained in the models for the whole basin and
for the Piedmont. In the coastal plain model, how-
ever, AGPT is positively correlated with agriculture
on moderately erodible soils and with erodible soils,
but is negatively correlated with agriculture on slopes.
Also, EPT is negatively correlated with erodible soils
and agriculture on moderately erodible soils as could
be expected, but EPT is positively correlated with
agriculture on slopes and with roads, which is con-
trary to what would be expected. Although the posi-
tive correlation is lower in magnitude than that of
the negative, this unexpected relationship is possible
due the collinearity between predictors. Soils in this
ecoregion are generally of low erodibility and the
terrain is much flatter than the other two eco-regions,
so possibly the detrimental effects of agricultural
runoff are greatly lessened.

The model results also indicate slope is a signifi-
cant predictor variable in the whole basin and in each
of the eco-regions. In the blue ridge, slope variables
receive the highest weightings and VIP values. This
region is the upland headwaters of the savannah river
basin and is characterized by hilly to mountainous
terrain. Slope variables are also heavily weighted in
the Piedmont and standard deviation of slope pro-
duces the highest VIP in any of the eco-region-spe-
cific models. The piedmont is a transitional zone
between the mountains of the blue ridge and the flat
terrain of the coastal plain and encompasses terrain
varying from hilly to neatrly flat. Slope is significant
in the coastal plain model, but not as much as in the
other eco-regions. Unlike the blue ridge and pied-
mont, standard deviation of slope in the coastal plain
is negatively correlated with HAB. This may be a
function of the methodology used to score HAB
which gives higher weights to areas with a variety of
pool and riffle habitats. The coastal plain may lack
this variety due to the lack of slope in this eco-region.

An unexpected result is seen in the preliminary
model for the whole basin. Forest is weighted heavily
only on factor 1, wetlands only on factor 2, and row

Maliba S.Nash and Deborab J.Chaloud 37

—=== Current Research Paper

crops only on factor 3(Figure 2). Forests are the domi-
nant landcover type in the blue ridge and row crops
are dominant in the coastal plain. Wetlands are a
small percentage of the total landcover in the pied-
mont, but may play a critical role in water quality®’.
It appears the linear combinations in the whole ba-
sin model factors may correspond to the characteris-
tics which distinguish individual ecoregions. This
result merits further investigation.

Species richness in 3621-km?* grid squares in the
kevo nature reserve, Finland, were predicted using
227 vascular plant taxa and 27 environmental vari-
ables!"). The resultant PLS model contained two fac-
tors which explained 40.3% of the variance in the
single response variable. PLS was also used to relate
riparian plant growth and survival to duration and
frequency of flooding in a controlled experimental
study™. The availability of remote sensing data for
an area can be used to monitor vegetation indicator
continuously over time and space with cost effec-
tive and ease of implementation more than that with
field measurements. Schmidtlein®! used transformed
reflectance in 64 wavelength bands to predict aver-
aged Ellenberg indicator values(soil pH, soil fertility
and water supply) from 46 field sites using PLS re-
gression. In each field site, all vascular plant species
were also identified and their cover was estimated.
predicted ellenberg indicators for the study area were
mapped showing the continuous environmental gra-
dient that can be used to assess the floristic compo-
sition.

These studies used plant indicators as the re-
sponse variable and a variety of predictor variables.
Our approach using PLS regression differs from these
studies in a number of ways: we use multiple re-
sponse variables, our response variables are indica-
tors of nutrients and macro invertebrates, and our
response data originated from ambient field sampling
rather than from controlled experimental studies.
These differences are encouraging in that it implies
PLS may have utility in a broad range of ecological
studies.

CONCLUSIONS

In both the preliminary and refined models for
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the whole basin, associations among water biota and
landscape variables largely conform to known eco-
logical processes. Agriculture and urban variables,
with their potential for nutrient runoff from fertil-
izer usage, are positively associated with AGPT mea-
surements while forest is negatively associated with
AGPT. Agriculture, urban, moderately eroded soils
on slopes, and roads are negatively associated with
HAB while wetlands, which filter and remove pol-
lutants as well as slow runoff, are positively associ-
ated with HAB.

In each case the dominant landscape variable cor-
responds to a critical aspect of the ecoregion; forest
in the evergreen forest-dominated blue ridge, wet-
land in the transitional piedmont, and row crops in
the agriculture-dominated coastal plain. For both the
blue ridge and the coastal plain, the ecoregion-spe-
cific model yields improved results over the basin-
wide model, despite the reduction in sample size.
Only the piedmont model fails to improve on the
basin-wide model results, with 42% of the variabil-
ity in the water biota data set and 65% of the vari-
ability in the landscape variables explained by three
significant factors on a sample size of 59. The pied-
mont is a transitional zone with pasture dominant in
the upper region transitioning to row crop dominated
agriculture in the lower region. Spatial variation
across the ecoregion may at least partially explain
the model results. In contrast, three significant fac-
tors in the blue ridge together explain 59% of the
variability in the water biota data set and 94% of
the variability in the landscape variables data set,
based on a sample size of 20. Even with a very lim-
ited sample size of 7, the PLS model for the coastal
plain yields two significant factors, together explain-
ing 66% of the variability in the water biota data
and 86% of the variability in the landscapes data.

Although further testing in different
biogeophysical setting is needed, the results indicate
PLS may prove to be a valuable statistical analysis
tool for ecological studies. The data sets used in these
analyses contain limitations typical of ecological stud-
ies: a small number of sampling sites, a large num-
ber of variables, missing values, low signal to noise
ratio, differences in spatial extent, and different col-
lection methodologies between the field-collection
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surface water samples and the remote sensing-de-
rived landscape variables. The PLS methodology is
less sensitive to these limitations than other statisti-
cal methods. The correlations among water biota
variables and landscape variables provide much more
information when they are all considered in multi-
variate regression than in univariate-multiple regres-
sions. Univariate-multiple regression analyses with
these data sets will not reveal a distinctive pattern
of association due to a weak correlation. Summariz-
ing information in the predictor variables by reduc-
tion into a few variables, i.e. latent variables, condi-
tioned on maximum covariance with the linear com-
position of the predictor variables, makes PLS more
suitable in a multivariate context than other, more
commonly used, multivariate methods.
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