
[Type text] [Type text] [Type text]

2014

© Trade Science Inc.

ISSN : 0974 - 7435 Volume 10 Issue 18

BioTechnology

An Indian Journal
FULL PAPER

BTAIJ, 10(18), 2014 [10405-10410]

Parallel implementation of position-based biologicalsoft
tissue deformation

Li Hua-Ming*, Kang Bao-Sheng

College of Information Science and Technology, Northwest University,
Xi’an 710127, (CHINA)

E-mail : huaminglee@hotmail.com

ABSTRACT

With the development of the medical training systems and surgical simulation techniques,
the improvement of deformable soft tissue simulation becomes highly demanded. Real-
time performance of simulation algorithm is the most urgent bottleneck problem that
needs to solve. This paper introduces a solution to implement deformable simulation of
biological soft tissue in real time. This is accomplished through the use ofhierarchical
position based dynamics, implemented usingCUDA parallel framework. The simulation
results are directly sent to vertex buffer objectfor rendering to avoid the costly
communication between CPU and GPU. The experimental results show significate
improvements on performance in comparison to CPU algorithm.

KEYWORDS

Soft tissue; Deformable simulation; Position based dynamics; CUDA; Parallel algorithm.

10406 Parallel implementation of position-based biologicalsoft tissue deformation BTAIJ, 10(18) 2014

INTRODUCTION

 Surgical and medical trainingsimulation is ideally be used to provide a virtual environment of prototyping
procedures as well as for research and development of novel procedures,the simulation of elastic materials characteristicof
biological soft tissueis an important issue for creating visual effects, has attracted much research attention. Deformable body
simulation was explored very early by Terzopoulos[1],since then, a lot of work has been published and related technologies
are growing rapidly. Those researchmethods can be split into two main categories: mesh based methods and meshless
methods.
 One of the most popular mesh based methods to simulating deformable solids is the Finite Element Method (FEM).
O’Brien[2] used FEM to simulate solidfracture with linear tetrahedral elements. Kaufmann[3] proposed to usingdiscontinuous
Galerkin FEM support for arbitrary non-convex polyhedral elements allows for the efficient simulation of deformable object
cutting. For thin deformable bodies, spring-mass technique is very popular with vessel and skinsimulation. Provot[4]was the
first to use spring-mass network for simulating cloth in 1995. This technique is also used to convert any geometry into a soft
body by using angular and linear spring[5]. Non-linear springs[6] can be used to capture cloth behavior more faithfully.
Contrasting, meshless methodis a fast technique to simulate deformable body. In 2006, Müller[7] introduced the position-
based dynamics (PBD),the most typicalmeshless method, which omits the velocity and acceleration layer and immediately
works on the positions, can be sufficient to create the desired deformable effects. This method can be used to simulate a
variety of materials such as soft bodies,skin or even blood fluids by using different constraints. ThenMüller[8] presented a
non-linear multigrid algorithm to speedup position based dynamics. In order to simulate various types of solid in same
theory, amethod[9] has been presented that use oriented particles that store rotation and spin, along with the usual linear
attributes, position and velocity.
 No matter what kind of algorithm, deformation’s computational complexity is always relatively large. How to build
a simulator with the ability of real-time simulation is still an active area of research. A parallel computing approach is
explored to satisfy real time constraints required by real time physics simulation. Since nowadays graphic processor unit
(GPU) has evolved into an extremely powerful and flexible processor, while the compute unified device architecture
(CUDA)[10] is specialized to compute intensive highly parallel computation. The goal of this paper is to designan algorithm
for implementing ageneralposition based dynamics model[8] for deformable simulationon modern GPUs with the purpose of
speeding the simulation up.

POSITION BASED DYNAMICS

 Position-based dynamics became popular in the lastyears because they are fast, robust and controllable. It allows for
imposing non-linear constraints of a geometric nature on a deformable surface, as in the case of volume preservation of the
whole surface or of maintaining distance between two nodes of the mesh during deformation. This permits the modeling of
the virtual structures without the use of internal or external forces, which simplifies the deformable model and produces
unconditionally stable simulations, as a result of the elimination of the overshooting problem.
 The particle system composed of the set of N particles and the set of Mconstraints represents the finest level 0 of the
hierarchy. A geometric constraint can be expressed asܥሺଵ, ,ଶ … , ሻ 0. During the simulation, given the currentspatial
configurationp of the set of particles, we wantto find a correction∆psuch thatܥሺ ሻ∆ ൌ 0. Inorder to be efficiently solved,
the constraint equation isapproximated by

ሺܥ ሻ∆ ൎ ሻሺܥ ሻሺܥ · ∆݇ ൌ 0 (1)

 Where k א ሼ0, … ,1ሽis the stiffness parameter. The solutionof the set of the resulting nonlinear constraints
governingthe dynamic system is computed through an iterativeGauss–Siedel solver. The problem of the system being under-
determined is solved by restricting ∆p to be in the direction of୮C which conserves the linear and angular momenta. This
means that only one scalar λ (a Lagrange multiplier) has to be found suchthat the correction

Δp ൌ λܥሺሻ (2)

 solves Equation (1). This yields the following formula forthe correction vector of a single particle݅

∆ ൌ െݓݏܥሺሻ (3)

 Where

s ൌ Cሺ୮ሻ

∑ ୵ౠౠ ቚ౦ౠCሺ୮ሻቚ
మandw୧ ൌ 1 m୧ൗ (4)

 In this context, stiffness k can be considered as the speed with which the particle positions converge towards a legal
spatial state, that is, a state in which all the constraints are satisfied. By tuning the value of k, It can be controlled how much a

BTAIJ, 10(18) 2014 Li Hua-Ming and Kang Bao-Sheng 10407

constraint is stringent during the evolution of the simulation. For example, a distance constraint between two particles
withk ൌ 0.5 behaves similar to a spring, whereas withk ൌ 1.0 behaves nearly like a stiff solid.

PARALLELALGORITHM

 During the simulation, deformation is computed by comparing the current deformed configuration of point samples
with their reference configuration. Workflow of the entire algorithm can be described asfollows: The 3D model of the object
to be simulated is firstdiscretized as a set of discrete particlepoint. When the object isaffected byforce, the deformation will
be activated andthe system enters into thesimulation stage. After the simulation of each time step, those particle pointsare
updated and directly sent to the GPU for rendering. To take advantage of CUDA, algorithm has been considering as many
simple particle interactions in parallel, over more advanced algorithms that run serially. Implementationof the algorithm of
each time stepcan be described asfollows:

[1] Compute per particle deformation gradient, apply forces and predict position
[2] Compute per particleneighbors, find and save contacts.
[3] Use one (or more) PBD solver steps on the current particle state. Solve all the constraints of this level using non-

linear Gauss-Seidel.
[4] Update the position of each particle
[5] Read data calculated by CUDA from VBO
[6] Render the data in VBO directly on GPU.

 For this paper, we haveconsidered the elastic forcewhile also accelerating the K nearest neighbor (KNN)
calculations and incorporating OpenGL to render the results as they are calculated. The primary goalis to illustrate the
potential acceleration that could be achieved by incorporating CUDA parallelization into the simulation.

CUDA IMPLEMENTATION

 The algorithm we designed is inherently parallel, and easy to implement the speedups by performing operations on
the Cuda. Most steps of the algorithm only involve computingmatrices based on local information, or information from
neighbor particles, very little synchronization is required. Each iteration requires a matrix multiply and a few dot products.
These operations don’t perform particularly well on a GPU, but easily outperform CPU implementations. Rough profiling of
the sequential implementation revealed that these solves take the majority of the computation time, in some cases as much as
90%. Hence any speedup by performing these computations on the GPU will make a significant difference in overall runtime.
Additionally, the matrices do not need to be stored explicitly; the matrix vector multiplication operation can be implemented
as a loop over particles and their neighbors, resulting in predictable memory accesses and little synchronization.
 The simulation on CUDA usesa uniform grid data structure presented by Simon Green[11]. The calculated results are
written to a Vertex Buffer Object (VBO) and are directly rendered on the GPU, no copying is necessary between CPU and
GPU except at the first frame of simulation. To solve the K Nearest Neighbors using the GPU we use a CUDA
implementationpresented by Garcia[12] that provides speedup over sequential implementations.
 In theimplementation, we chose to map each particle to a CUDA thread, using a block size of 64 threads to allow 2
warps per block with plenty of registers for each thread to use. There are several points in the algorithm that require global
synchronization. Figure 1 illustrates the control flow of the whole algorithm. Additionally, atomic addition is required to
avoid race conditions when calculating the forces between all neighboring particles.

Figure 1 : Overview of control flow between OpenGL and CUDA

Initialize the data

Copy point and force date
to GPU

Begin OpenGL
Simulation Loop

Exit

Map Particle Buffer for
Cuda

Cuda Call:
Compute neighbors

Cuda Call:
PBD solver

Map Particle Buffer for
OpenGL

Render

10408 Parallel implementation of position-based biologicalsoft tissue deformation BTAIJ, 10(18) 2014

 A major advantage of using CUDA for this simulation is that results can be rendered efficiently as they are
calculated, since the data is already stored on the GPU. We displayed the results by swapping a data buffer back and forth
between OpenGL and CUDA. CUDA includes functions specifically for this type of interaction. The buffer is initially
created as an OpenGL VBO, but during CUDA kernel calls, it is unmapped from OpenGL while its data is manipulated by
the CUDA code. At the completion of the kernel function, the buffer is mapped back to OpenGL where it is rendered. This
buffer contains the position data for the particles in the simulation as 4-tuple float values, corresponding to the X, Y, Z,
andWhomogenous coordinates. This is represented using a float4 data type in CUDA.
 Incorporating OpenGL into a CUDA program introduces a fair amount of additional overhead and has a significant
impact on the overall structure and organization of the code. Once all the initialization has been taken care of for both CUDA
and OpenGL, the program enters into the main animation loop for OpenGL. While in this loop, it uses several callback
functions to handle input and output. We made the CUDA kernel calls from within the “display”callback function. This way,
the display is updated as soon as new results are calculated. The downside of this organization is that as the kernel execution
time increases for larger simulations, it causes the display function to take longer, which results in a sluggish program
response to user input.
 Currently, the calculation of nearest neighbors among particles is the most expensive operation in the simulation. So
we designed that nearest neighbors are calculated for every 10th frame, and those results are reused until the next time they
are updated. Even so, the KNN calculations tend to have the largest impact on overall execution time. For example, for 512
particles and 32 neighbors, a typical frame with no KNN calculations took around 5ms to update while those frames updating
the neighborhoods tended to take over 100ms. For a larger simulation, with 32768 particles and 32 neighbors, KNN
calculations took over 2 full seconds while frames between neighborhood updates required less than 25ms.
 So we used a CUDA implementation for calculating K nearest neighbors. It basically uses CUDA to parallelize the
brute force approach for calculating KNN, make use of texture memory for non-coalesced memory access during the
calculations, and use an insertion sort to order distances. This implementation of KNN was definitely faster than the brute
force method of comparing all points.

RESULTS

 We have integrated the algorithm into a real time physics simulation system. It is tested our simulator through liver
model occurs deformation influenced by external forces. Selected frames are shown in Figure 2.

Figure 2 : Example simulation of liver model occurs deformation influenced by external forces

 We compared our results to a CPU implementation in order to illustrate the speedup of our parallel algorithm. The
testing is performed on a PC using Window 7 System with Intel Xeon X3320 CPU, 8.0GB system memory and NVIDIA
GeForce GTX560Ti (1.0GB video memory and 384 core). Figure 3 and TABLE 1 show how performance of our method
deals different soft tissue model with the number of particles, and the number of neighbors per particle.

BTAIJ, 10(18) 2014 Li Hua-Ming and Kang Bao-Sheng 10409

TABLE 1 : Runtimes per timestep (ms)

Number of neighbors
Number of particles

512 4096 13824 37982
32 (CPU) 25 36 1374 4910
32 (GPU) 22 27 87 263
64 (GPU) 34 61 209 541

Figure 3 : The performance of testing with the different model (different particle number), and the different number
of neighbors per particle

 The performance for small numbers of particles is comparable between the sequential and parallel implementations,
with only a slight speedup for the parallel version. With a large number of particles, the CUDA implementation is
significantly faster than the sequential implementation. With 37,982 particles and 32 nearest neighbors, the CUDA
implementation was 20 times faster than the sequential version. It also shows that the KNN queries are a significant
bottleneck in the implementation.

CONCLUSIONS

 This paperpresents a parallel CUDA algorithm for the implementation ofdeformable soft tissuesimulation based on
general hierarchical position based dynamics. Then we discuss the wholecontrol flow between the CPU and GPU. Through
soft tissuemodel discretized, particle interactions in parallel, the use of a uniform grid data structure, finally, algorithm has
been achieved both include PBD solver andneighborrefactoring. As expected, the CUDA implementation provided
significant speedup over the sequential implementation of the simulation, especially for large problem sizes. But the KNN
algorithm used in parallel algorithm performed poorly. Investigating this further is a direction of future work. Through
expanding PBD constraints, this algorithm can be quickly applied to other deformable areas, such as the simulation of skin,
hair, and muscle.

REFERENCES

[1] Terzopoulos Demetri, Platt John, Barr Alan, et al; Elastically deformable models. Proceedings of the 14th annual

conference on Computer graphics and interactive techniques, 205-214 (1987).
[2] F.O'Brien James, K.Hodgins Jessica; Graphical modeling and animation of brittle fracture. Proceedings of the 26th

annual conference on Computer graphics and interactive techniques, 137-146 (1999).
[3] Kaufmann Peter, Martin Sebastian, Botsch Mario, et al; Flexible simulation of deformable models using discontinuous

Galerkin FEM. Graph Models, 71(4), 153-167 (2009).
[4] Provot Xavier; Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior. Graphics Interface,

147-154 (1996).
[5] A.Joukhadar, C.Laugier; Fast dynamic simulation of rigid and deformable objects. Intelligent Robots and Systems 95.

'Human Robot Interaction and Cooperative Robots', Proceedings. 1995 IEEE/RSJ International Conference on, 305-310
(1995).

[6] Volino Pascal, Magnenat-Thalmann Nadia, Faure Francois; A simple approach to nonlinear tensile stiffness for accurate
cloth simulation. ACM Transactions on Graphics, 28(4), 1-16 (2009).

10410 Parallel implementation of position-based biologicalsoft tissue deformation BTAIJ, 10(18) 2014

[7] Müller Matthias, Heidelberger Bruno, Hennix Marcus, et al; Position based dynamics. Journal of Visual
Communication and Image Representation, 18(2), 109-118 (2006).

[8] Müller Matthias; Hierarchical Position Based Dynamics. Proceedings of Virtual Reality Interactions and Physical
Simulations, 13-24 (2008).

[9] Müller Matthias, Chentanez Nuttapong; Solid simulation with oriented particles. ACM SIGGRAPH, 1-10 (2011).
[10] Nickolls John, Buck Ian, Garland Michael, et al; Scalable Parallel Programming with CUDA. Queue, 6(2), 40-53

(2008).
[11] Green Simon; Cuda particles. (2008).
[12] V.Garcia, E.Debreuve, M.Barlaud; Fast k nearest neighbor search using GPU. Computer Vision and Pattern

Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on, 1-6, (2008).

