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ABSTRACT 

In this paper we study the Oscillatory and Non Oscillatory Properties of Difference Equations of 
Riccati type. The Riccati’s difference equation is defined by –  

Nnnunrnunp ∈=++ ,0)1()()()(( ΔΔ  

Key words: Difference equation, Sequence, Oscillation and Non Oscillation, Double summation, Riccati’s 
equation. 

INTRODUCTION 

In the recent years there has been a lot of interest in the study of oscillatory and non 
oscillatory properties of difference equations. 

We are concern with the oscillatory and Non Oscillatory properties of Riccati’s 
difference equation of the form –  

 Nnnunrnunp ∈=++ ,0)1()()()(( ΔΔ  …(1) 

where the functions p and r are defined on N, and 0)( >np  for all .Nn∈  The 
difference equation (1) is equivalent to Nnnunqnunpnunp ∈=−−++ ),()()1()1()1()(   
with ).1()1()()( −−−+= nrnpnpnq  If u(n) is a solution of (1) with 0)1()( >+nunu  for all  

),(aNn∈ then the Riccati type transformation we let ).(/)()()( nununpnv Δ= Since 
,0)(/)1()()()( >+=+ nununpnpnv this leads to Riccati type difference equation. 
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Definition: 1 (Difference equation): An equation which expresses a value of a 
sequence as a function of the other terms in the sequence is called a difference equation.  

Definition: 2 (Order of a Difference Equation): The difference between the largest 
and smallest arguments appearing in the difference equation is called its order. 

Example, k
kkk eyyy −
−+ =+− 11 3 , (2nd order Difference Equation) 

Definition: 3 (Oscillation and Non Oscillation): The sequence y is said to be 
oscillatory around )( Raa ∈  if there exists an increasing sequence of integers { }∞=1kkn  such 
that (ynk – a) (ynk+1 – a) ≤ 0 for all k ∈ N. If it is not Oscillatory then the difference equation 
is non oscillatory.  

RESULTS AND DISCUSSION 

Theorem 1: The difference equation (1) is non oscillatory if and only if there exists 
a function )(nw defined on N with )(),()( aNknpnw ∈−>  for some ,Na∈  satisfying. 
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or equivalently  
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Proof: Since the necessary part is obvious, we need to prove only the sufficient part. 
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 0)1()())()(( ≤++ nznrnznp ΔΔ  …(6)           
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Therefore, by definition the difference equation (1) is Non oscillatory if and only if 
there exists a function 0)1()())()((and0)(satisfying)( ≤++> kvnrnvnpnvnv ΔΔ  for all 
sufficiently large .Nn∈  

Theorem 2  

 ∑
=

−

→∞
∞<

n

ln
lpn

0

2
3

)(suplim  …(7) 

and the difference equation (1) is non oscillatory. Then, the following are equivalent.  
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(iii) For any non oscillatory solution )(nu of (1) with ),(,0)1()( aNnnunu ∈>+  the 
function )(),(/)()()( aNnnununpnv ∈= Δ  satisfies. 
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Proof: Clearly (i) implies (ii). To show that (ii) implies (iii) suppose to the contrary 
that there is a non oscillatory solution )(nu of (1) such that )()(/)()()( npnununpnv −>= Δ  
for all )(aNn∈  and  
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From (3), we have  
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and therefore for all )(aNn∈  
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From (9), (11) and (13), we obtain  ∑
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Let )(),()(/)()( 2 aNnnpnvnvnp ∈+= . Then, 0)( ≥np  and ,0)( =np  if and only, 

if 0)( =nv . Let ),(/)()( 2 npnvnA =  if 0)( ≠nv  and ,0)( =kA  if .0)( =nv Then, we have 
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Thus , in the equation (7) and 0)( ≥nA it follows that – 
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Therefore, on dividing both sides of (13) by ,2
1

n and in the resulting equation using 
(9) and (16) leads to – 
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 From (18) there is an M > 0 such that – 
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Therefore, it follows that – 
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and hence from (14) – (16), we have – 
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which contradicts (7). 

Finally, we shall show that (iii) implies (i). Let )(nv  be as in (iii) and let 
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Thus, from (7) it follows that 0)(1lim =⎟
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The result (i) now follows by letting ∞→n  in (13). 

Theorem 3 
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Then, the difference equation (1) is oscillatory. 

Proof: Suppose to contrary that (1) is non oscillatory and let )(nu be any non 
oscillatory solution. Let )(/)()()( nununpnv Δ= for )(aNn∈ . Since condition (7) follows 
from (19), Theorem 2 and (20) imply that (11) holds. But, from (13) we have –  
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which is impossible from )1()1( +<+− lplv  and (19). 

Theorem 4: If there exist two sequences }{and}{ ll mn  of integers with 1+≥ ll nm  
such that – 

∞→∞→ lnl as  

and   ∑
−

=

+≥
1

)()()(
lm

ln
ll mpnpr

τ

τ  …(22)  

then (1) is oscillatory. 

Proof: Suppose that (1) is non oscillatory. Then, there exists a non oscillatory   
solution u(n) such that 0)1()( >+nunu for all )(aNn∈ for some .Na∈  /)()()( nunpnv Δ=  

).(nu Then, )(nv satisfies (3) Let )()( npnv −> for all k )1( +∈ aNn  and then this 
contradiction will prove the theorem. 
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From (3) 
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 Therefore, (22) holds for 1+= an . For any )2( +∈ aNn  from (3) we have – 
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However, since ),()()()
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immediately. 

CONCLUSION 

By using theorems (1) and (2) the given Riccati difference equation (1) is Non 
oscillatory and by theorems (3) and (4) the given equation (1) is Oscillatory. 
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