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ABSTRACT 

Two general cases are pointed out for which the ordering of molecules according to the connectivity index C(λ) is 
the same for all values of the exponent λ. 
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INTRODUCTION 

The definition of the connectivity index C(λ) = C(λ; G) =  G(G) can be found in the preceding paper1 
where the ordering of alkanes with regarding C(λ) is discussed. It was shownl that this ordering is very 
dependent on the numerical value of the exponent λ. In this paper, it will be demonstrated that general 
classes of molecules (not necessarily alkanes) exist for which the ordering with regard to C(λ) is the same for 
all values of  λ. 

The first theorem 

Consider the molecular graphs G1 and G2 as shown in Fig. 1, where R and S denote arbitrary 
fragments. Clearly, G1 and G2 represent a pair of consitutional isomers. It is necessary that R consists of 
more than a single vertex (otherwise G1 and G2 would coincide implying C(λ; G1) = C(λ; G2) for all λ, 
therefore, it is assumed that the degree δx vertex x is greater than unity. 

If, λ = 0 then C(λ, G) is equal to the number of edges of the graph G. Consequently, for λ = 0 all 
isomers have equal C(λ) – values. Therefore, only the case λ  ≠  0 will be considered. 

Theorem 1: For all non-zero values of λ, and for arbitrary R and S, provided δx > 1 (cf Fig. 1), the 
connectivity index G1 is greater than the connectivity index of G2. 

Proof.  Applying the definition of the connectivity index to the molecular graphs Gl and G2 one 
obtains: 

C(λ, G1) = (1 · 2)λ + (2 · 3) λ + (3 · δx)λ + (3 · δy)λ + C(R) + C(S) 
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Fig. 1: The structure of the molecular graphs considered in Theorems 1 and 2                                     

and the labeling of their fragments and vertices 

C(λ, G2) = (1 · 3) λ + (3 · 2) λ + (2 · δx) λ + (3 · δy) λ + C(R) + C(S) 

From which 

C(λ, G1) – C(λ, G2) = 2 λ + (3 δx) λ – 3 λ – (2 δx) λ = (3 λ – 2 λ) (δx 
λ – 1)    …(1) 

As δx > 1, the expression on the right-hand side of Eq. (1) is positive for all non-zero va1ues of λ. 
Indeed, if λ > 0, then 3 λ > 2 λ and δx λ > l, both factors (3 λ – 2 λ) and (δx

 λ – 1) are positive, and therefore 
their product is positive too. If λ < 0, then both (3 λ – 2 λ) and (δx

 λ – 1) are negative, and therefore their 
product is positive again. Theorem 1 follows. 

In other words: Theorem 1 claims that by moving any substituent towards the end (to the β- 
position) of a carbon-atom chain the connectivity index will necessarily decrease. 

The second theorem 

Consider the molecular graphs H1 and H2 of a pair of constitutional isomers, shown in Fig. 1, where 
R1, R2, S1 and S2 denote arbitrary fragments. This time the groups R1, R2, S1, S2 may be absent in which case 
the respective vertices x1, x2, y1, y2 have degree 1.  

Theorem 2: For all non-zero values of λ, and for arbitrary R1, R2, S1, S2 (cf Fig. 1), the connectivity 
index of H1 is greater than the connectivity index of H2. 

Proof: Applying the definition of the connectivity index to the molecular graphs H1 and H2 one 
obtains: 

C(λ, Hl) = (δxl · 2) λ + (2 · 3) λ + (3 · 3) λ + (3 · 2) λ + (2 · 2) λ + (2.δx2) λ  + (3 · δy1) λ + (3 · δy2) λ               
+ C(R1) + C(R2) + C(S1) + C(S2) 

C(λ, H2) = (δxl · 2) λ + (2 · 3) λ + (3 · 2) λ + (2 · 3) λ + (3 · 2) λ + (2.δx2) λ + (3 · δy1) λ + (3 · δy2) λ               
+ C(R1) + C(R2) + C(S1) + C(S2) 

for which  

C(λ, Hl) – C(λ, H2) = 9 λ + 4 λ – 2 · 6 λ = (3 λ)2 – 2(3 λ) (2 λ) + (2 λ)2 = (3 λ – 2 λ)2  …(2)  
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The expression of the right-hand side of (2) is evidently positive for all X ≠ 0. Theorem 2 follows.  

The other words: Theorem 2 claims that by moving any two substituent from a vicinal into a              
non-vicinal mutual position the connectivity index will necessarily decrease. 

An application 

In order to illustrate the potentials of Theorems 1 and 2, the isomeric trimethylnonanes will be 
considered. There exist 19 distinct constitutional isomers of this kind, depicted and numbered in Fig. 2. 
These are grouped into 8 sets of C-equivalent species, namely: 

τ1 = {1}, τ2 = {2,3,4,6,10,13}, τ3 = {5}, τ4 = {7, 8, 11}, τ5 = {9, 12}, τ6 = {14, 19}, τ7 = {15, 16, 17} and             
τ8 = {18}. 

 
Fig. 2: Molecular graphs of the 19 isomeric trimethylnonanes 

Let Ti be any element of the τi i = 1, 2, ..., 8. Then by application of Theorem 1 one arrives at the 
following relations: C(T2) > C(T3), C(T4) > C(T5), C(T6) > C(T1), C(T7) > C(T2), and C(T8) > C(T4). 
Application of Theorem 2 yields: C(T1) > C(T2), C(T2) > C(T4), C(T3) > C(T5), C(T6) > C(T7) and C(T7) > 
C(T8). In Summary.  

The following orderings are established: 

C(λ, T6) > C(λ, T1) > C(λ, T2) > C(λ, T3) > C(λ, T5) 

C(λ, T6) > C(λ, T7) > C(λ, T8) > C(λ, T4) > C(λ, T5) 

C(λ, T7) > C(λ, T2) > C(λ, T4). 

which hold irrespective of the value of the exponent  λ  ≠  0. 
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In fact, the only pairs of trimethylnonane isomers that cannot be ordered by means of Theorems 1 
and 2 are T1, T7; T1, T8; T2, T8; T3. T4 and T3, T8. These, however, cannot be ordered at all (in the sense of 
Theorems 1 and 2), because their order depends on λ. Namely, by direct calculation one Ends the following: 

C(λ, T1) < C(λ, T7) for λ < l and C(λ, T1) > C(λ, T7) for λ > 1; 

C(λ, T1) < C(λ, T8) for λ < –0.2838 and λ > 0 and C(λ, T1) > C(λ, T8) for –0.2838 < λ < 1; 

C(λ, T2) < C(λ, T8) for λ < l and C(λ, T2) > C(λ, T8) for λ > 1; 

C(λ, T3) < C(λ, T4) for λ < l and C(λ, T3) > C(λ, T4) for λ > 1; 

C(λ, T3) < C(λ, T8)  for X < 2.3686 and C(λ, T3)  > C(λ, T8)  for λ > 2.3686. 

Thus, in the case of trimcthylnonanes Theorems 1 and 2 suffice to deduce all λ independent ordering; 
with respect to the connectivity index C(λ). 
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