

Sci. Revs. Chem. Commun.: 2(4), 2012, 568-571 ISSN 2277-2669

ORDERING OF MOLECULES ACCORDING TO THE CONNECTIVITY SUDHIR KUMAR MISHRA^{*} and A. N. SINGH^a

University Dept. of Chemistry, Rajendra College Campus Chapra (J.P.U. CHAPRA) (Bihar) INDIA ^aDeptt. of Physics, J. P. University, CHAPRA (Bihar) INDIA

(Received : 14.03.2012; Revised : 29.03.2012; Accepted : 31.03.2012)

ABSTRACT

Two general cases are pointed out for which the ordering of molecules according to the connectivity index $C(\lambda)$ is the same for all values of the exponent λ .

Key words: Connectivity index, Isomer ordering.

INTRODUCTION

The definition of the connectivity index $C(\lambda) = C(\lambda; G) = G(G)$ can be found in the preceding paper¹ where the ordering of alkanes with regarding $C(\lambda)$ is discussed. It was shown¹ that this ordering is very dependent on the numerical value of the exponent λ . In this paper, it will be demonstrated that general classes of molecules (not necessarily alkanes) exist for which the ordering with regard to $C(\lambda)$ is the same for all values of λ .

The first theorem

Consider the molecular graphs G_1 and G_2 as shown in Fig. 1, where R and S denote arbitrary fragments. Clearly, G_1 and G_2 represent a pair of constitutional isomers. It is necessary that R consists of more than a single vertex (otherwise G_1 and G_2 would coincide implying $C(\lambda; G_1) = C(\lambda; G_2)$ for all λ , therefore, it is assumed that the degree δ_x vertex x is greater than unity.

If, $\lambda = 0$ then C(λ , G) is equal to the number of edges of the graph G. Consequently, for $\lambda = 0$ all isomers have equal C(λ) – values. Therefore, only the case $\lambda \neq 0$ will be considered.

Theorem 1: For all non-zero values of λ , and for arbitrary R and S, provided $\delta_x > 1$ (cf Fig. 1), the connectivity index G₁ is greater than the connectivity index of G₂.

Proof. Applying the definition of the connectivity index to the molecular graphs G_1 and G_2 one obtains:

 $C(\lambda, G_1) = (1 \cdot 2)^{\lambda} + (2 \cdot 3)^{\lambda} + (3 \cdot \delta_x)^{\lambda} + (3 \cdot \delta_y)^{\lambda} + C(R) + C(S)$

Available online at www.sadgurupublications.com

^{*}Author for correspondence; E-mail: slpandit.2010@gmail.com

Fig. 1: The structure of the molecular graphs considered in Theorems 1 and 2 and the labeling of their fragments and vertices

 $C(\lambda, G_2) = (1 \cdot 3)^{\lambda} + (3 \cdot 2)^{\lambda} + (2 \cdot \delta_x)^{\lambda} + (3 \cdot \delta_y)^{\lambda} + C(R) + C(S)$

From which

$$C(\lambda, G_1) - C(\lambda, G_2) = 2^{\lambda} + (3 \delta_x)^{\lambda} - 3^{\lambda} - (2 \delta_x)^{\lambda} = (3^{\lambda} - 2^{\lambda}) (\delta_x^{\lambda} - 1) \qquad \dots (1)$$

As $\delta_x > 1$, the expression on the right-hand side of Eq. (1) is positive for all non-zero values of λ . Indeed, if $\lambda > 0$, then 3 $^{\lambda} > 2$ $^{\lambda}$ and δ_x $^{\lambda} > 1$, both factors $(3^{\lambda} - 2^{\lambda})$ and $(\delta_x^{\lambda} - 1)$ are positive, and therefore their product is positive too. If $\lambda < 0$, then both $(3^{\lambda} - 2^{\lambda})$ and $(\delta_x^{\lambda} - 1)$ are negative, and therefore their product is positive again. Theorem 1 follows.

In other words: Theorem 1 claims that by moving any substituent towards the end (to the β -position) of a carbon-atom chain the connectivity index will necessarily decrease.

The second theorem

Consider the molecular graphs H_1 and H_2 of a pair of constitutional isomers, shown in Fig. 1, where R_1 , R_2 , S_1 and S_2 denote arbitrary fragments. This time the groups R_1 , R_2 , S_1 , S_2 may be absent in which case the respective vertices x_1 , x_2 , y_1 , y_2 have degree 1.

Theorem 2: For all non-zero values of λ , and for arbitrary R₁, R₂, S₁, S₂ (cf Fig. 1), the connectivity index of H₁ is greater than the connectivity index of H₂.

Proof: Applying the definition of the connectivity index to the molecular graphs H_1 and H_2 one obtains:

$$C(\lambda, H_{1}) = (\delta_{x1} \cdot 2)^{\lambda} + (2 \cdot 3)^{\lambda} + (3 \cdot 3)^{\lambda} + (3 \cdot 2)^{\lambda} + (2 \cdot 2)^{\lambda} + (2 \cdot \delta_{x2})^{\lambda} + (3 \cdot \delta_{y1})^{\lambda} + (3 \cdot \delta_{y2})^{\lambda} + C(R_{1}) + C(R_{2}) + C(S_{1}) + C(S_{2})$$

$$C(\lambda, H_{2}) = (\delta_{x1} \cdot 2)^{\lambda} + (2 \cdot 3)^{\lambda} + (3 \cdot 2)^{\lambda} + (2 \cdot 3)^{\lambda} + (3 \cdot 2)^{\lambda} + (2 \cdot \delta_{x2})^{\lambda} + (3 \cdot \delta_{y1})^{\lambda} + (3 \cdot \delta_{y2})^{\lambda} + C(R_{1}) + C(R_{2}) + C(S_{1}) + C(S_{2})$$

for which

$$C(\lambda, H_1) - C(\lambda, H_2) = 9^{\lambda} + 4^{\lambda} - 2 \cdot 6^{\lambda} = (3^{\lambda})^2 - 2(3^{\lambda})(2^{\lambda}) + (2^{\lambda})^2 = (3^{\lambda} - 2^{\lambda})^2 \qquad \dots (2)$$

The expression of the right-hand side of (2) is evidently positive for all $X \neq 0$. Theorem 2 follows.

The other words: Theorem 2 claims that by moving any two substituent from a vicinal into a non-vicinal mutual position the connectivity index will necessarily decrease.

An application

In order to illustrate the potentials of Theorems 1 and 2, the isomeric trimethylnonanes will be considered. There exist 19 distinct constitutional isomers of this kind, depicted and numbered in Fig. 2. These are grouped into 8 sets of C-equivalent species, namely:

 $\tau_1 = \{1\}, \tau_2 = \{2,3,4,6,10,13\}, \tau_3 = \{5\}, \tau_4 = \{7, 8, 11\}, \tau_5 = \{9, 12\}, \tau_6 = \{14, 19\}, \tau_7 = \{15, 16, 17\}$ and $\tau_8 = \{18\}.$

Fig. 2: Molecular graphs of the 19 isomeric trimethylnonanes

Let T_i be any element of the τ_i i = 1, 2, ..., 8. Then by application of Theorem 1 one arrives at the following relations: $C(T_2) > C(T_3)$, $C(T_4) > C(T_5)$, $C(T_6) > C(T_1)$, $C(T_7) > C(T_2)$, and $C(T_8) > C(T_4)$. Application of Theorem 2 yields: $C(T_1) > C(T_2)$, $C(T_2) > C(T_4)$, $C(T_3) > C(T_5)$, $C(T_6) > C(T_7)$ and $C(T_7) > C(T_7) > C(T_8)$. In Summary.

The following orderings are established:

$$\begin{split} &C(\lambda, T_6) > C(\lambda, T_1) > C(\lambda, T_2) > C(\lambda, T_3) > C(\lambda, T_5) \\ &C(\lambda, T_6) > C(\lambda, T_7) > C(\lambda, T_8) > C(\lambda, T_4) > C(\lambda, T_5) \\ &C(\lambda, T_7) > C(\lambda, T_2) > C(\lambda, T_4). \end{split}$$

which hold irrespective of the value of the exponent $\lambda \neq 0$.

Sci. Revs. Chem. Commun.: 2(4), 2012

In fact, the only pairs of trimethylnonane isomers that cannot be ordered by means of Theorems 1 and 2 are T_1 , T_7 ; T_1 , T_8 ; T_2 , T_8 ; T_3 . T_4 and T_3 , T_8 . These, however, cannot be ordered at all (in the sense of Theorems 1 and 2), because their order depends on λ . Namely, by direct calculation one Ends the following:

$$\begin{split} &C(\lambda,\,T_1) < C(\lambda,\,T_7) \text{ for } \lambda < 1 \text{ and } C(\lambda,\,T_1) > C(\lambda,\,T_7) \text{ for } \lambda > 1; \\ &C(\lambda,\,T_1) < C(\lambda,\,T_8) \text{ for } \lambda < -0.2838 \text{ and } \lambda > 0 \text{ and } C(\lambda,\,T_1) > C(\lambda,\,T_8) \text{ for } -0.2838 < \lambda < 1; \\ &C(\lambda,\,T_2) < C(\lambda,\,T_8) \text{ for } \lambda < 1 \text{ and } C(\lambda,\,T_2) > C(\lambda,\,T_8) \text{ for } \lambda > 1; \\ &C(\lambda,\,T_3) < C(\lambda,\,T_4) \text{ for } \lambda < 1 \text{ and } C(\lambda,\,T_3) > C(\lambda,\,T_4) \text{ for } \lambda > 1; \\ &C(\lambda,\,T_3) < C(\lambda,\,T_8) \text{ for } X < 2.3686 \text{ and } C(\lambda,\,T_3) > C(\lambda,\,T_8) \text{ for } \lambda > 2.3686. \end{split}$$

Thus, in the case of trimcthylnonanes Theorems 1 and 2 suffice to deduce all λ independent ordering; with respect to the connectivity index C(λ).

REFERENCES

1. I. Gutman, D. Vidovic, A. Nedic, J. Serb. Chem. Soc., 67, 87 (2002).