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ABSTRACT

In evaluating the efficiency of heat pump system, the efficiency of the
superheat control process plays an important role. In this study, the
mathematical model of superheat control of electronic expansion valve-
evaporator system is developed, with the control strategy investigated.
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The model is identified by the least squares algorithm based on the
minimized sum of squared residuals. The model consists of heat transfer
relations concerning the fundamental equipment in the system such as
thermal energy storage tank, electronic expansion valve, condenser, and
evaporator. Different fuzzy control strategies, combined with optimal
control algorithm, are investigated in detail to validate the deduced

mathematical model of superheat control process.
© 2013 Trade SciencelInc. - INDIA

INTRODUCTION

Theecologica problemsand energy crisisinthe
world have advanced the use of green technologiesfor
resdentid, commercia, and industrial heating applica:
tions. Heat pump can combinethe solar heat and the
common air source or ground source heat toimprove
the coefficient COP of heat supply!*. Inevaluatingthe
efficiency of heat pump system, theeffi-ciency of the
superhest control process playsanimportant role®. In
this paper, superheat control processisinvestigated by
electronic expansonvave-evaporator (EEVE) system
of asolar heat pump (SHP) testing system. Thebasic
schematic diagramfor heat production systemisgiven
asFigure 1. When system makes heat, oneway isto
send hot air by ordinary air supply units, the other way
istorealizewater heating. If temperature of heat ex-

changer of indoor machineisoverly low, auxiliary heater
will beturned onto improve heat supply so asto meet
consumer requiremen.
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Figurel: Basic schematic diagram of SHP testing system

Ingenerd, asfar asthe control systemisconcerned,
thereareclosed loop control for superheat degree, and
compound control of feed-back & feed-forward. As
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far asthecontrol dgorithmisconcerned, thereare PID
control and fuzzy control. Inthe paper, thetwo types of
EEVE systemsareidentified, and themodel objects
arecontrolled by different fuzzy control strategiescom-
bined with optima control agorithm.

SYSTEM IDENTIFICATION FOR EEVE
SYSTEM

Theactuator of electronic expansonvaveisdrove
by stepper motor. If forward pulse or negative going
pulseisgivento stepper motor, turndownratio of vave
can continuously expand or shrink. So, cryogen feed
canincreaseor decrease. Thecontroller output isre-
sponding to valvelocation change. The EEVE system
output isthe superheat control parameter. The control-
ler inputisthepractical superheat deviation signad and
thededired value. By systemidentificationythetransfer
function can be obtained. System identification for
EEVE systemisinvestigated by theleast squaresago-
rithm based on theminimized sum of squared residuas
(LSR),which isexpatiated on asfollowg®

WE)+ aft —N) + @yt —2) + -+ apt —n) = bt —d) + bt —d —1) + - 1
S bME —d—me 1)+ L) (@]

where 4+ ) can beregarded astheidentification residu-
as. Herethe shorthand notation y(t) isused for theout-
put superhest Sgna y( «7), and (¢ - 1)canthenbeused
to describethe output superheat signd at the previous
sample, i.e., i k - 7)) . Smultaneoudy x(¢)isused for
theinput opening activation sgna for eectronic expan-
sion valve. For the purpose of reducing nonlinear ef-
fectsof processof refrigeration, theresultsof sampling
valuesof x¢) and y) in LSR method were applied
after data smooth processing. Suppose that a set of
input and output Signal shas been measured and written
as

x =[x, X2, -, A M]T '

Y =IAN, A2, A M7
From Egs. (1), it can befound that

KN = —ap0) - —api—n +bx1-d) + -+ bX2— m—d) + 41)
K2 = -ayl) - —apr2-m+bX2—d)+ -+ bx3— m—d) + 42)
WM = —afM=1) = —ad M- n)+ bx{(M=d) + -+ b M+1- m-d)+ M

where y(t) and x(t) areassumed to be zero when
t < 0-Thematrix form of theaboveequationscan be
writtenas

y =®0+¢ )
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where, @ isthematrix of x(/)and y(/) definedas
©=[f F£]

N0) N1-n)
Fo| A A2 - n)
KM—1) y(M'—n) |
X(1-d) X2 - m-d)
£ |®2-9) X3-m-d._
)c(/l/l.—d) x(/|//+1.—m—d)

o7 =[-a,-a,,-a,b,,b)] ,

" =[d1), -, o m)

Tominimizethesum of squared residuds, theoptimum
estimation to the undetermined elementsin g can be
writtenas

0 =[] 0y (€)

It can be seen that the original system can be ex-
cited by theinput signa sequenceto generate the out-
put superheat signal sequence. Based onthesesignals,
thediscrete-timemode can beidentified.

Theva ueof themodel order isdetermined by the
number of measurement points; thevector containsthe
identified parameters, and the number of parametersto
beidentified. If thevaueisvery smal, therdevant pro-
cessvalues can be used asthe ordersof theidentified
system. In general, this approach hasdifferent order
combinations; however, thelowest possibleordersare
desirablefor thesystem.

The paper deal swith two typesof EEV E systems,
typeoneisthat theexpansion valve hasthelinear flow
character and evaporator with smaller lag characteris-
tic, the other typeisthat the expansion valve hasthe
character of integration el ement and evaporator with
largelag characteridtic.

Thediscretetransfer function mode converted from
theidentified resultsisinfact adoubleinput transfer
function matrix. Thefirst oneisthe expected transfer
function model, and the second isthetransfer function
fromerror signd totheoutput signa, whichisdiscarded
intheexample. Sothediscretetransfer function modds
of thefirst type system sys1 and the second type sys-
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tem sys2 can be obtained respectively.

150 8. 374 x 1074
z — 0.9968 ’

1.148x 10°z — 1.147x 10°°
z°1.9997 + 0.999

sys1 =~z

sys2 = z73%0 —

O

FUZZY CONTROL FOREEVE SYSTEM

ThePID controller for e ectronic expansionvalve
normally permitsadjustmentsinthe proportiond, inte-
grd and derivativegains. Severa control methodsare
availablefor contralling the superheet degreeat theoutlet
of theevaporator using an e ectronic expansion valve.
Ekren and Kiigiikal” proposed afuzzy logic control to
regul ate the speed of ascroll compressor and to adjust
the opening of an € ectronic expansion valve™, and the
importance of an effective controller was emphasi zed.
Antonio et al.® devel oped an adaptive PID-controller
to regulate superhesat degree at the outl et of the evapo-
rator, with the automatic robust tunerul e proposed by
Vilanova® employed to calculate the controller gains.

Cons deringthenonlinearity, timelagandtimevaria
tion characterigticsof ar conditioning systems, Fuzzy
Proportiond Integral Derivative (FPID) controller for
temperature control in EEVE systemisusually em-
ployed®*4, Inthis paper, fuzzy Pl (FPI) control strat-
egy*? isapplied to deal withthefirst type system be-
causeof itslinear flow character and smaller lag char-

acterigtic, andinview of potentid integrationeementin
and largelag characteristic, an extraintegrator isnot
necessary inthe controller to removethe steady-state
error to aset point change, so different Fuzzy PD (FPD)
controllersare proposed and s mulated for the second
type system. The controllers combinethefuzzy con-
troller and optimal control agorithmwith PID param-
eterstuned. The FPI controller and FPD controller with
itsmodified model sare employed to decreasethe over-
shoot and stabletime during thetrans ent response pe-
riod.

FPI controller devisefor thefirst typesysem(FTYS)

Fuzzy control dependson thefuzzy algorithm be-
tween the information of process and control input.
Fuzzy controllersfromther inception have demondrated
avast rangeof gpplicability to processeswheretheplant
transfer functionisnot defined but the control action
can bedescribed intermsof linguistic variables, and
are often being used to improvethe performance of a
system wherethe plant transfer functionisknown,
For the FTS system, FPI controller is devised. Two
input variables, error(E) and changein error(ED) and
two output variables Kp and Ki of the Pl controller
with sevenlinguigtic variablesof gauss2mf membership
functionisused, which canbeseeninFigure2. The
input linguistic variables are NL(Negative Large),
NM (Negative medium), NS(Negativesmdl), Z(Zero),
PS(Positivesmdl), PM(Positivemedium), PL(Postive
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Figure2: Member ship function plotsfor both input variablesand output variables
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large). Theoutput linguistic variablesfor Kpand Ki are
Z(Zero),VS(Very small), MS(Medium small),
M(Medium), MB(Medium Big),VB(Very Big),
VL (Verylarge), respectively. Rangesof input variables
are(-1to 1) for Eand ED, respectively, and theranges
of output variablesfor KpisfromOto 1, andfor Ki is
from0to 3. Mamdani modelsaregpplied asstructures
of fuzzy inference. The control rulesarebuilt fromthe
statement: if input 1 and input 2 then output 1and out-
put 2. The aggregation and defuzzification method are
used respectively max-minand centroid method. For
the case of two-input and two-output, the control rules
areshownin TABLE 1-2, whereevery cell showsthe
output membership function of acontrol rulewith two
input membership functions.

TABLE1: Rulefor Kp

E\ED NL NM NS V4 PS PM PL
NL VL VL VB VB MB M M
NM VL VL VB MB MB M MS
NS VB VB VB MB M M MS
V4 VB VB MB M MS VS VS
PS MB MB M MS MS VS VS
PM VB MB M MS VS VS Z
PL M MS VS VS VS Z Z
TABLE 2: Rulefor Ki
E\ED NL NM NS Z PS PM PL
NL Z Z VS VS MS M M
NM 4 Z VS MS MS M M
NS 4 VS MS MS M MB MB
4 VS VS MS M MB VB VB
PS VS MS M MB MB VB VL
PM M M MB MB VB VL VL
PL M M MB VB VB VL VL

FPD controller devise for the second type
system(STYS)

FPD controller cal culatesthe appropriate control
at theinput of the system according to the error and
change of error at theinput. Whiledeveloping such a
system the most important process is encoding the
knowledge base of fuzzy controller. Theknowledgebase
of the FPD controller consists of dataand rule bases.
Membership function distributionsof system input and
output variablesaredefined in database®.

Inthisstudy, anove fuzzy ruletypeof thedesigned

FPD controller isdevel oped based on Sugeno model ™3,
Sothereare 25 weight values. According tointuition
method, list of linguistic rulesisshownin TABLE 3.
Error and change of error membership functionsare
denoted with mf1(negativevery small), mf2(negative
small), mf3(zero), mf4(positivebig) and mf5(positive
very big), respectively. Unitsof valuesaregiven ac-
cordingtopractica rangesof opening activationfor eec-
tronic expang on valve signas corresponding ranges of
superheat Signals.

The control precision dependsontheunitsof val-
uesin TABLE 3. In addition, membership functionsmay
be selected asatriangular, trapezoid or other appro-
priateforms. The numbers of membership functions
change depending onthe problem. Thenumbersof these
lingui stic variables specify the qudity of control, which
can beachieved using fuzzy controller. Asthe numbers
of linguistic variablesincrease, thequality of control in-
creases at the cost of increased computer memory and
computationd time.

TABLE 3: Ruleweight valuesof FPD controller

(de/dt)\(e) mf1 mf2 mf3 mf4  mf5
mfl -180 -153 -162 -10.8 0
mf2 -144  -135 -90 0 9.0
mf3 -2.7 -7.2 0 153 135
mf4 -9.0 0 11.7 144 171
mf5 0 12.6 18.0 171 180

InFPD contraller, fivetriangular-membership func-
tionformsfor and fivetriangular-membership function
formsfor , are determined the same, which are shown
in Figure 3. Borders of both function sequencesvary
between +3.

A generd fuzzy controller congstsof four modules:
afuzzy ruleand database, afuzzy inference engine,
fuzzification and defuzzification modules. Theintercon-
nectionsamong these modul es and the controlled pro-
cessareshownin Figure4. Aforehand introduceinto
previoudly-cal cul ated parameters, Kp and Kd, of PD
controller, smultaneoudy normalizeand ded withand,
then fuzzify thetwo signasto get signasE and Ed, do
fuzzy reasoningwith E and Ed, and solvefuzzification
with the gained fuzzy quantities. Finally get accurate
variableU, then get control sgnd u(t) after normalizing
thefuzzy gainKu.
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Figure3: Membership function plotsfor both function sequences
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Figure4: Theflow chart of fuzzy PD
Parameter tuning based on optimal control isapplied to search for the optimal FPI and optimal

For thefuzzy PID controller parameterstuning, itis F_PD cqntrol ler parametersfor the system. During the
necessary to determine universerangesand perform  Smulation, theprogram codesbelow areused. Themain
tensor hundredsof smulation experimentsuntil acoept-  Program codescanautometically chooseinitial vaueof

ablevaluesisfound. Theoptimal control isunder cer-  theOptimized parameters, which arelisted as,

tain concreteconditions, to achieve special control ob- global KpKiKdtlyl

ject, and to make sel ected target maximal or least. x=fminunc(@optfun_name rand(3,1)),
From the optimal control, the Pl parametersKp plot(tlyl(:,2)) figure,plot(tLy1(:,1))

and Ki, the PD parameters K p and Kd, and the fuzzy Taketheoptimal FPI controller for example, inor-
gain Ku can befound during optimization. Thetarget der tominimizethe ITAE criterion, thefollowing Matlab

function used here Edopts ITAE rule, defined as I-UnCti oncan bewrittento describethe Ob] ectivefunc-
- ion,
e = |, t et ot ®) functiony=optfun_name(x)
whentimeisrdatively big, to assuretarget valuesmall, global KpKi Kutlyl
the steady error must be diminished, so as to make Kp=x(1);
system speedin steady area. Ki=x(2);
Simulink block diagramsof EEVE smulationsys- Ku=x(3);
tems based on optimal FPI controller can be estab- [t1,x1,y1l]=sm(‘ Modelname.mdl ‘,[0,300]);
lishedinFigure5for the FTS system, wherethe ITAE y=yl(end,1);
criterion can beeva uated as shown. % wherethethird, fourth, and fifth linesin the codes

Each parameter intarget transfer functionmay be  will assign variables Kp, Ki and Ku in Matlab
evduaedandinitidized. TheMatlabfunction, fminunc(), workspace, and thelast two lineseval uate objective
function.

The optimal search might better rationalize the
choicesfor Kp, Ki and Ku. The point to be empha
sized hereisthat simulation timeis set as 300s, too
smdl va ueof which might influence parameter tuning

Figure5: Simulink block diagram of thefirst type system re_su“' Inaddition, from the oscillograph, dynamic opti-
based on optimal FPI controller mi zed process and result can be seen.
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It can be seen from the practicethat theprogramis
quiteversatileinfinding the optimal controllers. How-
ever, in some applications, it may not find asolution
due to the poorly posed problem or because agood
initia search point hasnot been found. Thiscanbea
drawback in conventiona optimization algorithms, but
many such problems can be avoided by setting param-
eter in Absblock to saturate oninteger overflow and
performing moretimesof continuous optimization pro-
cess, or by intelligent use based on an understanding of
the system behaviortd.
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Theunit step responsesof theoptima FPI and con-
ventiona Pl areillustrated in Figure 6(a). Superheat
responses of evaporator are demonstrated based on
theoptimal FPI and conventiona PI, respectively. Fig-
ure 6(b) displaysexactly the superheat responsefluc-
tuation corresponding to the given desired va ues of su-
perheat degree, cycling values of 8 °C and 12°C. A
simul ation comparison of theoptima FPI and conven-
tional Pl indicatesthat the optimal FPI has more ad-
vantagesin aspectsof overshoot and stability, and may
performwell for thefirst type system.

- L L L L L |
&III 3000 4000 s BO00 7om i

(b)

Figure6: Theunit step responses(a) and super heat responses(b) of optimal Pl controller and conventional Pl controller

M odified FPD controller

Figure 7 showsthe unit step response of optimal
FPD controller, andit can be seenthat the optima FPD
agorithm hasalarger overshoot with long adjustment
time. Soamodified FPD agorithm, optima fuzzy and
PD dual-mode control (FDM), isapplied. Theoptical
FDM controller might compromise advantages of con-
ventional PD controller and FPD controller by fuzzy
switch. Theunit ep responseof theoptima FDM smu-
lationisdsoillustrated in Figure7.
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Figure7: TheUnit step responsesof different optimal fuzzy
PD controllers

Obtained results show that the proposed optimal
FDM controller isnot only effectivewithfast risetime,
but also it givesexcellent characteristics of overshoot
and adjustment time compared with the optimal FPD
controller. However, from the unit step response of the
optimal FDM smulation, atransent sudden changein
overshoot takesplace, and the peak of thecurveistoo
closeto the valley, which might make sudden rapid
change of responsein practice, whenthegiven desired
vauevarying by alargemargin.

So another fuzzy and dual-mode control with de-
rivativeforward PD (DFPD) modd isproposedin Fig-
ure8. Theadvantagesof DFPD liein derivative opera-
tiononly for output signal rather thaninput signal. So
theoutput vauewon’t change with the input value, there-
forethevarying of the controlled variableismoderate.
Thiskind of DFPD controller isapplicabletofrequently
lifting occasions of the given desired value, which can
avoid system oscillation so asto apparently improve
system dynamic behavior.

The unit step response of theoptima DFPD simu-
lationisdsoillugtrated in Figure 7, which shows mod-
eraterisetime and adjustment time, and without over-
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shoot.

It should be stated that when optimization finished,
the parameter valuesobtained can bedirectly used asa
substitutefor set of Kp, Ki Kdand KuinFigure5,and
Figure 8, respectively. So the optimization processis
performed only inthefirst smulation.

Clock 1
[+] ] D
Abs P Product Integratar? :
e >
<y — ;
const ot
itch

Figure 8 : Simulink block diagram of optical DFPD
simulation

Superheat responses of evaporator are demon-
strated from the three controllers: FPD, FDM, and
DFPD, respectively. Figure 9 displays exactly the su-
perhest responsefluctuation corresponding to thegiven

126 -

desired valuesof superheat degree, cyclingvaluesof 9
°C and 11 °C.

Figure9(a) showsthat the optimal FPD controller
might producebig overshoot and long adjustment time
asdemonstrated initssimulation. However, theover-
shoot might take place when the given desired value
jumpsfrom smadler oneto larger one, whereastheover-
shoot might bedight when thedesired valuejumpsin-
versdy. At thesametime, in stableregion, theresponse
is more accurate. Figure 9(b) shows that the optimal
FDM controller might bring about cons derableinstanta:
neousimpact no matter how the desired value jumps,
andinsableregion, thereissmadl fluctuation. However, it
givesexcellent characteristics of overshoot and adjust-
ment timecompared with theoptimal FPD contraller.

The point to beemphasized from Figure 9(c) isthat
the optimal DFPD controller showsmoderate results
not only for risetime and adjustment time, but also for
gability fluctuation, and almaost with no overshoot, and
ingenera theoptima DFPD control strategy isrecom-
mended for the second type system.
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Figure9: Super heat responseof evapor ator based on optimal fpd contraller (a), optimal fdm controller (b),and optimal dfpd

controller(c), respectively
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CONCLUSIONS

Inthisstudy, themodding and smulaion gpproaches
of refrigerant feed fuzzy control of asolar-assisted hest
pump system areinvestigated. A fuzzy PI control and
threedifferent fuzzy PD control strategiescombinedwith
optimal control agorithm for two typesof EEVE sys-
temsareput forward and discussed indetall. Somecon-
cluding remarkscan bedrawn fromtheresults:

1) If ignoreevaporator system nonlinearity and work
instableexterna environment conditions, theLSR
method can be used for identification for thetwo
typesof EEVE systems. Inview of the same con-
trol idea™, it might be used for multi-evaporator
arr-conditionersaswell.

2) FPI controller may performwell for thefirst type
system, and FPD controller may play animportant
rolein second type system control not only iniden-
tifiable system here, but a so in processeswhere
the plant transfer function isnot defined, because
thecontrol action can bedescribed intermsof lin-
guistic Sugeno variablesjust likewhat isdescribed
here.

3) All thingsconsidered, theoptima DFPD controller
showsmoderateresultsfor the second system, and
isgpplicabletofrequently lifting desired vaue, which
can avoid system oscillation so asto apparently
improve system dynamic behavior.

4) Theoptimal control algorithm based on ITAE cri-
terionisof significancein aspect of solutionsfor
parametric objectivefunctions, not only for PID con-
troller parameter tuning, but dsofor fuzzy system
parameter estimation, as described here.

5) It should bestated that thisarticleisnot meant to
bean effect analysisof thermal characteristics, but
rather atechnical demonstrating on how thefuzzy
PID control strategiescombined with optimal con-
trol algorithm can be used to aheat pump to ana-
lyzethedifferent EEVE system control problems.
Themodeling and 9 mulation gpproaches presented
inthe paper might beof positivesignificanceonthe
intelligent control of SHP system.
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