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ABSTRACT
Ontology similarity calculation iswidely used in various fields such as
biology science. In this paper, we propose new algorithmsfor ontology
similarity measurement such that the new computational models consider
operational cost in the real implement. Then, we apply it into biology science
and it is highlighted that new calculating version is designed for multi-
dividing setting. The experiment dataon �Go� ontology demonstrate the

new algorithm have higher efficiency in biology science application.
 2013 Trade Science Inc. - INDIA
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INTRODUCTION

Ontology abstracts certain application field of the
realworld into a set of concepts and relationships among
concepts. Integrating the ontology into the technology
of textinformation retrieval not only inherit the advan-
tages ofinformation retrieval but also overcome the limi-
tations thatconcepts information retrieval cannot deal
with therelationships of the concepts. Now, ontology
similarity computation is widelyused in medical science,
biology science(see[1-4] for instance) and socialscience.
As ontology used in information retrieval and biology
science, every vertex can be regard as a concept of
ontology,measure the similarity of vertices using the in-
formation ofontology graph.

Let G be an ontology graph corresponding to on-
tology O, the aim of ontology similarity measure is to
find a similarity function Sim: V×V  

 {0}which

maps each pair of vertices to a real number. A hot trick
to get optimal similarity between vertices on ontology is
by a function which maps ontology graph into a line and
maps every vertex in graph into a real-value. Hence,
the similarity between vertices is measured bythe dif-
ference of their correspondingscores. Some efficient
ontology algorithms can refer[5-10]. Several theoretical
analyses for ontology algorithm can refer[11-18].

In this paper, we present a new ontology algorithm
for ontology similarity measuring which considers op-
erational cost in the computational model. Specifically,
we propose several simultaneous processes for biol-
ogy applicationsfrom optimistic bias and pessimistic bias
view. The organization of rest paper is as follows:we
describe the simultaneous process in next section;then,
we present the new versions of simultaneous process
for ontology algorithms; finally, experimentdata is given
to show that our new algorithms have high accurate in
biology science.
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SETTING AND NOTATIONS

In this section, we present the standard simulta-
neous processtechnology which was proposed by
Tulabandhula, and Rudinin[19].

As we know, computer learning algorithms are em-
ployed to obtain predictions, and these predictions are
usually help to make a policy or plot action, where there
is a cost to implement such policy or action. Simulta-
neous processis a trick to align statistical modeling with
decision making. It provided a wayto propagate the
uncertainty in predictive modeling to the uncertainty in
operational cost (i.e., cost by the practitioner in solving
the problem, and is regarded as regularization term in
an objective function of computer algorithm). The
technologyadmits to explore the range of operational
costs associated with the collection of
appropriatealgorithm models and allow possible opti-
mistic or pessimistic costs, which depend on the equi-
librium coefficient. Any prior knowledge for the opera-
tional cost can help to restrict the hypothesis space of
objective function and thus contribution to the algorithm.

The simultaneous process is a special class of deci-
sion theory. The goal of standard decision theory is to
yield a policy for minimizingthe expected cost. For
propagating the uncertainty in modeling to the uncer-
tainty in costs, simultaneous process determines the
range of predictive models and corresponding policy
decisions or actions. It admits a regularization term in
algorithm model which contains encoding the policy (or
action) with its associated cost and an adjustable equi-
librium coefficient.

Let S= 1{( , )}n
i i iv y 

 be a labeled training set, where

iv V, y
i
. The goal of ontology algorithm is to learn

anoptimal function: V(or : V×V {0})from sample set S.

Generally, *f  is obtained by minimization model:

*f =
1

arg min( ( ( ) ) ( ))
n

i i
f F i

l f v y N f
 

  ,

wherel :  ×  


, N: f  is regularizer, ,   is

called equilibrium coefficient. The term 
1

( ( ) )
n

i i
i

l f v y




is depended on error of function fon sample set S, and
the term ( )N f  rely on the smoothness of function f.

The typical loss functions used in such computational

model are the square loss ( ( ) )i il f v y = 2( ( ) )i if v y ,

exponential loss ( ( ) )i il f v y = ( )i if v ye  , logisticloss

( ( ) )i il f v y = log(1 ( ( ) ))i if v y  , hinge loss

( ( ) )i il f v y =max{1- ( )i if v y ,0}.

Function class F is usually the class of all linear
functionals.

Let 1{ }m
i iv 
  be set of unlabeled vertices in ontology

graph. Theaim of organization is to produce a policy
p�which minimizes a certain operational cost

Cost(p, *f , 1{ }m
i iv 
 ). If the organization knew the 1{ }m

i iv 
 �ss

true labels in advance, it would select a policy to opti-
mize the operational cost reckon on these labelswithout

*f .

However, these labels are unknown. We have no
choose but to calculate the operational costs using the
model�s predictions. The main difference between the

standard sequential process and simultaneous process

is whether *f is selectedusing or ignoring the knowl-

edge of the operational cost.
The detail for sequential process computing can split

following two steps (see[19]).

A 1: Deduce function *f from sample set S using

standard learning algorithm:

*f =
1

arg min( ( ( ) ) ( ))
n

i i
f F i

l f v y N f
 

  .

A 2: Select policy p* to minimize the operational
cost:

p*= *arg min(Cost( , ,{ } ))i i
p P

p f v


 .

The operational cost *Cost( , ,{ } )i ip f v  is the

amount the organization will spend if policy p is se-

lected in response to the values of{ ( )}i if v .

The simultaneous process is obtained by
combiningA 1 and A 2 together. The optimistic bias is
chosen if we would like to prove lower costs, and pes-
simistic bias is selected if we prefer higher costs. The
equilibrium coefficient   is used to control the degree
of optimism or pessimism. That is to say, the optimistic
bias lowers costs if there is uncertainty, but the pessi-
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mistic bias raises them. The processes for simultaneous
process are stated as follows (see[19] for more detail).

B 1: Get a model *f obeying one of the following:

Optimistic Bias:

*f =
1

arg min( ( ( ) ) ( )
n

i i
f F i

l f v y N f
 

 

*Cost( , ,{ } ))i iC p f v  . (1)

Pessimistic Bias:

*f =
1

arg min( ( ( ) ) ( )
n

i i
f F i

l f v y N f
 

 

*Cost( , ,{ } ))i iC p f v  . (2)

B 2: Yield the policy.

p*= *arg min(Cost( , ,{ } ))i i
p P

p f v


 . (3)

Here C is a positive constant. In what follows, we
always assume that C>0 is a constant.

ASSOCIATED WITH ONTOLOGY SETTING

Gao and Gao[5] presented a ontology algorithm
based on pair computation:

*f =
'

,
1

arg min( ( , , ) ( ))
n

i i i
f F i

l f v v y N f
 

 . (4)

Here, f:V×V  
 {0} which calculates the simi-

larity of vertices directly and S= '
1{( , , )}n

i i i iv v y 
. By in-

tegrating (4) into standard simultaneous process (1-3),
we get the first ontology algorithm stated below:

Algorithm 1: Ontology algorithm with operational
cost based on pair calculating.

Step 1: Get a model *f obeying one of the follow-

ing:
Optimistic Bias:

*f =
'

,
1

arg min( ( , , ) ( )
n

i i i
f F i

l f v v y N f
 



*Cost( , ,{ } ))i iC p f v  . (5)

Pessimistic Bias:

*f =
'

,
1

arg min( ( , , ) ( )
n

i i i
f F i

l f v v y N f
 



*Cost( , ,{ } ))i iC p f v  . (6)

Step 2: Yield the policy.

p*= *arg min(Cost( , ,{ } ))i i
p P

p f v


 . (7)

Agarwal and Niyogi [20] presented an ontology
algorithm based on ranking learning method:

*f =

1

,
1 1

1
argmin( ( ,( ),( , ))

2

n n

i i j j
f F i j i

l f v y v y
n



    
 
 



( ))N f . (8)

By integrating (8) into standard simultaneous pro-
cess (1-3), we get the second ontology algorithm stated
below:

Algorithm 2: Ontology algorithm with operational
cost based on pair calculating.

Step 1: Get a model *f obeying one of the following:

Optimistic Bias:

*f =

1

,
1 1

1
argmin( ( ,( ),( , ))

2

n n

i i j j
f F i j i

l f v y v y
n



    
 
 



*( ) Cost( , ,{ } ))i iN f C p f v   . (9)

Pessimistic Bias:

*f =

1

,
1 1

1
argmin( ( ,( ),( , ))

2

n n

i i j j
f F i j i

l f v y v y
n



    
 
 



*( ) Cost( , ,{ } ))i iN f C p f v   . (10)

Step 2: Yield the policy.

p*= *arg min(Cost( , ,{ } ))i i
p P

p f v


 . (11)

Via thesimultaneous process for ontology setting,
we get the function f on V×V or Vusing algorithm (5-7)
or (9-11). For (9-11), the ontology graph ismapped
into a line consisting of real numbers. Thesimilarity be-
tween two concepts can be measured bycomparing the
difference between their correspondingreal numbers.
For each vV(G), ( )f v  is a target value for vertex v
using regular graph.

EXPERIMENT

We use �Go� ontology O
1
 which was constructed
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in[21](Figure 1 shows the basic structure ofO
1
) for our

experiment. P@ N (Precision Ratiosee[22]) is used to
measure the equality of the experiment. We first give
the closestN concepts for every vertex on the ontology
graph by expert, and then we obtain the first N con-
cepts for every vertex on ontology graph by the algo-
rithm and compute the precision ratio.

cording to some (unknown) distribution aD  on the in-

stance space V respectively. Formally, the empirical
model of multi-dividing ontology algorithm can be ex-
pressed as follows:

*f =

1

,
1 1 : :

arg min( ( , )
i a j b

k k

i j
f F a b a i v S j v S

l f v v


     

   

( ))N f . (12)

In terms of (12), we get the new simultaneous pro-
cess algorithm as follows. Due to the structure of �GO�

ontology graph, this version is suitable for �GO� ontol-

ogy application.
Algorithm 3: Ontology algorithm with operational

cost formulti-dividing setting.

Step 1: Get a model *f obeying one of the follow-

ing:
Optimistic Bias:

*f =

1

,
1 1 : :

arg min( ( , )
i a j b

k k

i j
f F a b a i v S j v S

l f v v


     

   

*( ) Cost( , ,{ } ))i iN f C p f v   . (13)

Pessimistic Bias:

*f =

1

,
1 1 : :

arg min( ( , )
i a j b

k k

i j
f F a b a i v S j v S

l f v v


     

   

*( ) Cost( , ,{ } ))i iN f C p f v   . (14)

Step 2: Yield the policy.

p*= *arg min(Cost( , ,{ } ))i i
p P

p f v


 . (15)

In the experiment, let F be a reproducing kernel
Hilbert space (RKHS) of real-valued functions on
Vassociated with a Mercer kernel K: V×V  , andN:
F{0} be the regularizer defined byN(f)=, where  de-
notes the RKHS norm in F.

At the same time, we employontology
technologiesin[5-7]to the �GO� ontology. Calculate the

Figure 1 : �Go� ontology

Notice that there are �Molecular function�, �Bio-

logical process� and �Cellular component� three

branches in GO ontology. Hence, the new version of
simultaneous process is presented for this application.
The first author of this paper raises the multi-dividing
ontology algorithm as below (see[11] for more detail).
There is an instance space V from which vertices are
drawn, and the learner is given a training sample

( 1S , 2S ,�, kS ) 1nV  2nV �consisting of a sequence of

training sample aS =( 1
av ,�,

a

a
nv ) (1ak). The goal is to

learn from these samples a real-valued ontology score

function f:V  that orders the future aS  vertices rank

higher than bS  where a<b. We assume that instances in

each aS  are drawn randomly and independently ac-

TABLE 1 : The experiment results of ontology similarity measure

 
P@3 average 

precision ratio 
P@5 average precisionratio P@10 average precision ratio 

P@20 average 
precision ratio 

Algorithm3 56.44% 65.73% 78.39% 89.72% 

Algorithm in [5] 43.56% 49.38% 56.47% 71.94% 

Algorithm in [6] 42.13% 51.83% 60.19% 72.39% 

Algorithm in [7] 46.38% 53.48% 62.34% 74.59% 
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accuracy by these three algorithms and compare the
result to algorithm 3 using optimistic bias (13), part of
the data refer to Table 1.From the experiment result
display in TABLE 1, we arrived at the conclusion that
our algorithm is more efficiently than algorithms raised
in[5-7], especially when N is lager enough. Therefore,
the new ontologyalgorithm3 for multi-dividing setting
with operational cost has high efficiency.

CONCLUSION

As a data representation model, ontology has been
widely used in biology science, and proved to have a
high efficiency. In this paper, we apply the trick of si-
multaneous process to design the new ontology simi-
larity computing model and use it in Go ontology. The
new algorithm hashigh quality according to the experi-
ment dataabove. More importantly, the algorithm re-
duces the operational cost in implement.
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