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Introduction

The general three-body problem concerns the motion of three arbitrary spherically symmetric bodies. Each body is modeled as
a point mass and their motion is influenced solely by the gravitational forces they exert on one another and also their motion has no
specific path. There is no closed form analytical solution to the general three-body problem.

The restricted three-body problem is an approximation of general three-body problem in which one body is assumed to have an
infinitesimal mass as compared to the other two bodies each of much larger. The two massive bodies called primaries revolve around
their common center of mass in circular orbits in a rotating coordinate system in which the infinitesimal mass can be at rest at five
equilibrium points also called equilibrium solutions. Three of them labeled L, L,, L, and are called collinear points and they are
lying on the line joining the primaries, while the other two labeled L, and L, called triangular points form equilateral triangles with
the primaries. The triangular points are stable for the mass ratio 17 < 0.03852... [1] and the analysis has revealed that the collinear
points are unstable in both linear and nonlinear sense.

The equilibrium solutions are very useful for the space mission design. For example the Solar and Heliospheric Observatory
(SOHO) and Wilkinson Microwave Anisotropy Probe (WMAP) launched by NASA are in operation at the collinear points L, and
L, of the Sun-Earth system.

The classical restricted three-body problem considers the bodies to be strictly spherical, but in nature they are either oblate or
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triaxial. It must be noted that the asphericity of the primaries is of great importance [2,3].

Some important contributions, related to the equilibrium points in the restricted three-body problem with one or both primaries
are oblate or triaxial can be found as studied by Sharma and Subba Rao [4]; Oberti and Vienne [5]; Abouelmagd et al.[7]; Singh
and Umar [8].

The relativistic restricted three- body problem as we consider it arose from the work of Brumberg [9,10]. Later on, Bhatnagar
and Hallan [11], Douskos and Perdios [12] and Ahmed et al. [13] studied the stability of triangular points of the same model problem
and obtained three different results regarding the region of stability.

Ragos et al. [14] studied the existence, position, and stability of collinear points of the same model problem. Recently, the study
of equilibrium points in the relativistic restricted three- body problem with perturbing forces such as radiation, oblateness and small
perturbations in the Coriolis and centrifugal forces has been conducted by several authors (Abd El- Bar and Abd El- Salam [15]; Abd
El-Salam and Abd El- Bar [16]; Singh and Bello [17,18]; Katour et al. [19]; Bello and Singh [20].

From authors’ knowledge, no work has been done on the stability of collinear points with perturbing forces in the relativistic
R3BP.

Hence, it raised a curiosity in our minds to study the effect of oblateness of the smaller primary on the locations and stability of
collinear equilibrium points in the relativistic R3BP.

This paper is organized as follows: In Sect. 2, the equations governing the motion are presented; Sect. 3 describes the positions
of collinear points, while their linear stability is analyzed in Sect. 4. A numerical application of these results and discussion are given
in Sect.5 and 6, respectively. Finally, Sect. 7 conveys the main findings of this paper.

Equations of motion

The pertinent equations of motion of an infinitesimal mass in the relativistic R3BP in a barycentric synodic coordinate system
and dimensionless variables, when the effect of oblateness of the smaller primary is introduced with the help of the parameter can
be written as Brumberg [9] and Bhatnagar and Hallan [11].
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where 0<u< 5 is the ratio of the mass of the smaller primary to the total mass of the primaries, 2, and #2 are distances of the
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infinitesimal mass from the bigger and smaller primary, respectively; C is the perturbed mean motion of the primaries; c is the

(4E? —4P?)

. . SR’
distance between the primaries.

velocity of light. , _ <<1. [21], where AE and AP are the equatorial and polar radii of the smaller primary, and R is the

It should be noted here that the second and higher powers of A, and 5 have been ignored in writing above equations.
Location of collinear points
Equilibrium points are those points at which no resultant force acts on the third infinitesimal body. Therefore, if it is placed at

any of these points with zero velocity, it will stay there. In fact, all derivatives of the coordinates with respect to the time are zero at
these points. Therefore, the equilibrium points are solutions of equations:

W.=0and W, =0 5)

where, W, and W, may be written as
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In order to find the collinear points, we put in equation (5). Their abscissae are the roots of the equation
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with p, =|e—1+ 4l Py =|E~1+ 4]

To locate the collinear points on the & — axis, we divide the orbital plane into three parts: & < &,.&, <& <&, and &, < & with
respect to the primaries where &, =1- 4 and 52 =1l-pu

(a)
(b)
(c)
FIG.1. Reference parameter for collinear Lagrangian points.
Case 1: Position of L, (& > &, ) (see FIG. 1 (a))

Let £—& =1;E-& =1+ 4, = E=1+ 1, +&; since the distance between the primaries is unity, i.e. &, —& =1=> & =—
and &, =1— 4 then

E=1+A— i p =1+ A4; p, = A withp, >0(i =1,2) (7
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Now substituting equation (7) in (6), we obtain

(64, +2) A" + (364, -6 —184,1+12) 1 +(—26,u+4cd2 +64,c,” +18-87A,u+814, +154,4° +2,u2)ﬂ19
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+(=12uc,” +814,1° —=24—184,¢,” p1—1354,pu+36 4,¢,” + 6457 =94, 187 + 634, +24c, 2)/117

+(32u+244,c,” —94,1° +36 4,17 —12uc, + 274, +12¢, 1417 —184,¢,  u+ 64" —18— 39A2,u)/?1

(-

( 2 , ; ®)
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+(30,u 64,c, 154,087 —1204,08° +96 A, 41+ 648° =12 uc,” — 24487 )11
+(—1124,087 = 184,07 11+ 104+ 214, 18° 4 pac,” +96 A 1+248° ) 4
+(524,1 ~ 46 Ay 17 + 184,18 — 184,07+ 448 ) A + (6. Ay ” +124, 1= 6 Ay, i+ 6.4, ) 2y +8 Ay pt” = 0
In the presence of oblateness effect only, we have

7 6 5 4
(3A2 +2)A1 +(9A2 +6—3A2,u—2,u)/11 +(9A2 —6142,u—4ﬂ+6)/11 +(3A2 —3142,u—2,u)/11
(8a)
3 2

~ApA + (=3 Ay = 2u) A7 =6 Ak =34, =0
Case 2: Position of §2 - g = /Lz; (see FIG.1 (b))
Let &, &= A3 E~&=1-A = ¢ =14~ p =1-Ap, =2, with p, >0(i=12) ©)
Substituting equation (9) in (6), we obtain:
(64, +2) 2, + (=364, + 61 +184,11~12) 1, +(4c,” =261+ 6 4,c,” 8T Ayps +18+814, + 2477 +154,4° ) 1,0
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In the presence of oblateness effect only, we have,
Case 3: Position of L, (& < &) (see FIG.1 (c))
Let the distance of the point |_ ; from the bigger primary be 1— A,
b D G == Ay —E =2y and £= 2y~ i—T; py =1= A5 p, =2~ 7, wit
p, >0(=12) (11)

Substituting equation (11) in (6), we obtain,
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(64, +2) A" +(-964, — 184,10 —32—64) A, +(6A2cd2 +6814, +218+944+273A, 1 +154,1°

e, +24° )ﬂ; +(—213A2,u2 —324% —6A,c,” u—3A4,1° —84A4,c,” —818—644u—4uc,” —2823 4,

+-56c,” —1833 4,1+ 2#3)/138 +(52,ucdz +2528u+ 22447 +344¢,” =264 +1796+13294, 47 +516 4,¢,
+(75934, + T8A,c,” 1+ T161 4,1 +39 Ay 1” ) 2 +(~139294, —438 4,/ 11— 1212¢, = 2126 +14647°
~292uc,” —8904> —1824 A,c,” —17997 4,11 —6260 — 4764 Ay 1s” =219 A,11° ) ° +(524 - 46641 +17868 4,
+1386 A,c,’ 11+ 932p1¢,” + 687 A, 117 +2680c,” +10148 1 +219247 +107714, 1> +30374 4,11+ 4086 Ay, ) A,°
+(9344° ~10814 4+ 2224 -16212.4, - 3808c,” — 2694 A,c,’ 11— 344047 —1305 A, 1a° — 34916 4,11~ 1868 puc” (12)
~15826.4,11° —60124,¢,> ) A;* + (3408 1710416 4, —3424 +1515 A, 41" +14940 A, 14” + 5808 Ayc,” — 12184
+32824,uc,” +2436 ¢, +3392¢,” +T3741+ 272124, 1) A;” +(—14060 4, 11 — 4656 4, — 2040¢,” 11— 2044 41°
+2208-10204,1° ~3552 4,¢,” —1728¢,” —8554 4,11 +102041° = 2442 A,c,” 1 — 2948 11) A, + (688117
+10144,¢, 1 — 5047 — 576+ 45324, 11+ 1248 A,c,” + 2578 A, 11” +342.4,48° +13444, +384c,” + 4881
1008;@,2)}3 + (—192A2cd2 =276 A,1° +48u—1124° —1924, —36 4,418 — 224 uc,” —180 4, uc,’
~7284,u+1124° ) = 0

In the presence of oblateness effect only, we have,

(34, +2) ] +(=334, —3 4,11~ 241—22) 28 + (1534, +30 4,11+ 20 +102) 2 +(-3874, 123 4,1
—8241-256) A} + (264 Aypa + 576 4, + 1801 +368) 2 +(-309 4,11 — 5044, — 288 —2304) 22 + (186 4, 1 (12a)
+2404, +16810+96) A, — 454,10~ 561~ 484, = 0

It is noticed that in each case there exists only one physically reasonable root.

Stability of collinear points

We examine the stability of an equilibrium configuration; that is, its ability to restrain the body motion in its vicinity. To do so we
displace the infinitesimal body a little from an equilibrium point with a small velocity. If its motion is rapid departure from vicinity
of the point, we call such a position of equilibrium an unstable one. If the body oscillates about the point, it is said to be a stable
position.

In order to study the stability of the collinear points, following Singh and Bello [17] the characteristic equation is given by (13):

where,
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at the collinear equilibrium points (£,,7,) under consideration.
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In order to study the stability of the collinear points we have to study the motion in the proximity of these points, hence in this

case (14a)-(21a) can be written as:
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0
L= 21b
W, 0 (21b)
Now we will show the discriminant A of (13) is positive at the collinear points L, (i = 1,2,3)

To show A is positive it is sufficient to show that

- _4(p1q2 — P»9, )(psqe _p(,qS) >0 (25)
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M can also be written as

M ==, (LW )(1+ 7,

n

. 0
From (17b) and (18b) it is clear that (1 +Wy )> Oand (1+W,,)>0
. . 0 0 . . .
Now we will study the signs of W, and W’ at the collinear points L, (l = 1,2,3)

Firstly, we will do this at Z,, since the coordinates of this point is (1 +A,- ,u,O) ,then O, = /Ll and p, = 4, where 0 < A <<1,
hence we can write Wg and A,l as a function of ﬂ,, say r(a), and f(A), respectively. In this case from (14b), ;( A)=h(0") =—o
and from (15b), 1 (4) = f(0%) =+oo, hence W0 <0 and W, 9 - pcontrary to the classical case where W° oand WIWe <0 However
Wg Wﬂ < 0 and consequently @, =0, Hence the dlscrlmlnant of the equation (13) is positive, and the characteristic roots can be
writtenas @, , =to, @;, = +i7 where 0" and 7T are real.

Thus @, , are real and Ll , are pure imaginary, hence the motion around the collinear point L, , is unbounded and the solution
is unstable.

Similarly, it can be shown that the points L,, L, are also unstable.
Numerical Results

The necessary data used have been borrowed from Sharma and SubbaRao [4] and Ragos et al. [14]. We have used some members
of the solar system (mentioned in TABLE 1) to examine the existence and position of the collinear equilibrium points. Equations
(8), (10), (12) and (8a), (10a), (12a) have been solved for the various pairs of the solar system. In TABLE 2 we present the positions
of collinear points of the Sun-Planet pairs of TABLE 1. We also include the corresponding positions respectively in the classical
problem, classical problem with oblateness, relativistic problem and relativistic problem with oblateness for comparison purposes
(first entry, second entry, third entry and forth entry respectively for each system).

TABLE 1. Parameters of the systems.

S. No System c, R A,
1 Sun-Earth 10064.84 0.000003003500 0.0000000007 x 1(-8
2 Sun-Mars 1242424 0.000000322700 0.0000000001 x 108
3 Sun-Jupiter 22947.35 0.000953692200 0.0000192887 x 1(-8
4 Sun-Saturn 31050.90 0.000285726000 0.0000018690 % 108
5 Sun-Uranus 44056.13 0.000043548000 0.0000000070 x 10-8
6 Sun-Neptune 55148.85 0.000051668900 0.0000000010 x 10-8

TABLE 2. Positions of the collinear equilibrium points.

S/No of the

L L L

system ! 2 3
1.01003413809074 0.99002657245074 -1.00000125145833
1.01003413809000 0.99002657245100 -1.00000125145833
1.01003413806000 0.99002657248500 -1.00000125145831
1 1.01003413806000 0.99002657248500 -1.00000125145831
1.00476303037278 0.99525140276082 -1.00000013445833
1.00476303037300 0.99525140276100 -1.00000013445833
1.00476335306300 0.99525140276100 -1.00000013445833
2 1.00476335306300 0.99525140276100 -1.00000013445833
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1.06882613997466 0.93236993769216 -1.00039737170283
1.06882613998000 0.93236993769000 -1.00039737170270
1.06882613992000 0.93236993764000 -1.00039737170120
1.06882613992000 0.93236993764000 -1.00039737170120
1.04606932684648 0.95474919731454 -1.00011905249873
1.04606932685000 0.95474919731000 -1.00011905249870
1.04606932683000 0.95474921600000 -1.00011905249850
1.04606932683000 0.95474921600000 -1.00011905249850
1.02454737494085 0.97576220621890 -1.00001814499999
1.02454668140000 0.97576220622000 -1.00001814499999
1.02454668140000 0.97576220665000 -1.00001814499998
1.02454668140000 0.97576220665000 -1.00001814499998
1.02599374139930 0.97434749094956 -1.00002152870832
1.02599374140000 0.97434749095000 -1.00002152870833
1.02599374140000 0.97434749156000 -1.00002152870831
1.02599374140000 0.97434749156000 -1.00002152870831

Discussion

Equations (1) - (4) describe the motion of a third body under the influence of the oblateness of the smaller primary and relativistic
terms. Equations (8), (10) and (12) give respective positions of the collinear equilibrium points L, L,, L, in the presence of
relativistic and oblateness factors while equations (8a), (10a) and (12a) give their positions in the presence of oblateness factor only.
It can be seen in section 4 that the relativistic and oblateness factors are unable to alter the instability behavior of the collinear points.
It can be observed when comparing first and second entries of each Sun-Planet pair that the positions of L, and L, are affected by
oblateness in the classical problem, while when comparing first and third entries it can be said that the presence of the relativistic
terms affects them. It is also noticed that the oblateness effect on the position of the collinear point L, of the classical problem in
most of the cases is negligible when comparing first and second entries except for the Sun- Jupiter system where it has a little effect,
while also when comparing first and third entries it can be said that the relativistic terms have negligible effect on the position of [,
except for the Sun- Jupiter and Sun- Saturn systems.

It is also noticed that the oblateness and relativistic factors have separately the same effect on the position of J, of the Sun-
Uranus system and have same separate effect on the position of L3 of the Sun-Neptune system as shown from second and third
entries of those systems.

However, in all cases it is found that the third and fourth entries of the relativistic problem only and relativistic problem with
oblateness respectively are same up to fourteen decimal places. This indicates that in the presence of relativistic terms, the effect of
oblateness does not show physically on the positions of collinear points in our Solar system. It is also observed that all the parameters
involved have no effect on the position of L3 of the Sun -Mars system.

Conclusion

By considering the smaller primary as an oblate spheroid, we have studied the positions of the collinear points and their linear
stability in the relativistic R3BP. It is found that despite the inclusion of relativistic and oblateness coefficients, the instability
behavior of the collinear points remains unaltered. A numerical survey of some members of the Sun-Planet pairs of our solar system
reveals that the positions of L3 and L3 are significantly affected by the oblateness in the absence of relativistic factor and by also
relativistic factor in the absence of oblateness ; while the position of L3 is negligibly affected by oblateness and relativistic factors
in most of the cases and more specifically all the parameters involved have no effect on the position of L, of the Sun-Mars system.
It is observed that the oblateness and relativistic factors have same separate effect on the position of L; of the Sun-Uranus system
they have also same effect on the position of L; of the Sun-Uranus system. It is also noticed that in the presence of relativistic terms,
the effect of oblateness does not show physically in our solar system as comparing third and fourth entries of TABLE 2.

For the future work, the effect of mass ratios on the locations and stability of collinear points are suggested.



www.tsijournals.com | February 2017

10.
11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

REFERENCES

Szebehely V. Theory of orbits. The restricted problem of three bodies. Academic Press. New York; 1967.

Renzetti, G. Exact geodesic precession of the orbit of two-body gyroscope in geodesic motion about a third mass. Earth-
Moon and Planets. 2012;109(1-4):55-9.

Iorio L. An assessment of the systematic uncertainty in present and future tests of the Lense-Thirring effect with satellite
laser ranging. Space Sci Rev. 2009;135:271-81.

Sharma RK, Subba-Rao PV. Collinear equilibria and their characteristics exponents in the restricted three-body problem
when the primaries are oblate spheroids. Celestial Mechanics.1975;12:189-201.

Oberti P, Vienne A. An upgraded theory for Helene, Telesto, and Calypso. Astronomy and Astrophysics. 2003;397:353-59.

Abouelmagd EI. Existence and stability of triangular points in the restricted three-body problem with numerical applications.
Astrophys Space Sci. 2012;342,45-53.

Abouelmagd EI. Asiri HM, Sharaf MA. The effect of oblateness in the perturbed restricted three-body problem. Meccanica,
2013;48:2479-2490.

Singh J, Umar A. On the stability of triangular equilibrium points in the elliptic R3BP under radiating and oblate primaries.
Astrophys Space Sci. 2013;341:349-58.

Brumberg VA. Relativistic celestial mechanics. Nauka Moscow; 1972. 384p.
Brumberg VA. Essential relativistic celestial mechanics. Adam Hilger;1991. 271p.

Bhatnagar KB, Hallan PP. Existence and stability of in the relativistic restricted three-body problem. Celest Mech Dyn
Astron. 1998;69:271-81.

Douskos CN, Perdios EA. On the stability of equilibrium points in the relativistic restricted three-body problem. Celest.
Mech Dyn Astron. 2002;82:317-21.

Ahmed MK, Abd El- Salam FA. Abd El- Bar SE. On the stability of triangular Lagrangian equilibrium in the relativistic
restricted three-body problem. Am J Appl Sci. 2006;3:1993-998.

Ragos O, Perdios EA, Kalantonis VS, et al. On the equilibrium points of the relativistic restricted three- body problem.
Nonlinear Anal. 2001;47:3413-418.

Abd El-Bar SE, Abd El-Salam FA. Analytical and semi-analytical treatment of the collinear points in the photo gravitational
relativistic RTBP. Math. probl. Eng. 2013.

Abd El-Salam FA, Abd El-Bar SE. On the triangular equilibrium points in the photo gravitational relativistic three-body
problem. Astrophys Space Sci. 2014;349:125-35.

Singh J, Bello N. Motion around in the perturbed relativistic R3BP. Astrophys Space Sci. 2014a;351:491-97.

Singh J, Bello N. Effect of radiation pressure on the stability of in the relativistic R3BP. Astrophys Space Sci. 2014b;
351483-90.

Katour DA, Abd El-Salam FA, Shaker MO. Relativistic restricted three-body problem with oblateness and photo gravitational
corrections to triangular equilibrium points. Astrophys Space Sci. 2014;351(1):143-49.

Bello N, SinghJ. On the stability of triangular points in the relativictic R3BP with oblate primaries and bigger radiating.
Adv Space Res. 2016;57:576-87.

McCuskey SW. Introduction to celestial mechanics. Addison-Wesley;1963.



	Title

