
Full Paper

On the perception of the geometric phase effects in the diabatic repre-
sentation: A new perspective

Ang-Yang Yu*
Chinese Academy of Sciences, Dalian, Liaoning province, (CHINA)

E-mail: xintongyang2011@163.com

KEYWORDS

Conical intersection;
Geometric phase effect;
Schrodinger equation;

Adiabatic representation.

ABSTRACT

Conical intersection could influence nuclear motion through geometric
phase effects. The nuclear Schrodinger equation acquires a vector po-
tential term in the adiabatic representation when the geometric phase
effects are considered. After combining the nuclear Schrodinger equa-
tion in the adiabatic representation with the theoretical treatment in the
diabatic representation, a new equation is derived for the nuclear mo-
tion. The traditional nuclear motion equation has ignored the geometric
phase in the diabatic representation whereas the new equation incorpo-
rates both the geometric phase effects and other nonadiabatic factors in
the diabatic representation.  2015 Trade Science Inc. - INDIA

INTRODUCTION

Von Neumann and Wigner firstly introduced the
concept of conical intersection in their pioneering
work[1]. Conical intersections was subsequently pub-
lished in ref[2]. In the so-called non-adiabatic dy-
namics, the nuclei could move on two Born-
Oppenheimer potential energy surfaces, of which the
local topology is the shape of a double cone. When
the energies of these potential energy surfaces de-
pend linearly on the nuclear coordinates, the
confluence will be regarded as a conical intersec-
tion. The conical topology is responsible for some
important effects induced by conical intersection. In
the excited state, the molecule is usually funneled
into the region of the conical intersection, facilitat-
ing radiationless decay. On the ground state poten-
tial energy surface, a conical intersection can pro-

duce the geometric phase effect, which will be dis-
cussed in this article. Based on the theory of elec-
tronically non-adiabatic processes.[3] Herzberg and
Longuet-Higgins firstly discovered the geometric
phase effect in molecular systems and described its
potential use.[4]. Wherever there is a conical inter-
section point in the configuration space, the real
ground state adiabatic electronic wave function be-
comes double-valued for a closed path that encircles
the conical intersection point. The significant change
in the electronic wave-function has profound impli-
cations for the associated nuclear Schrodinger equa-
tion[5,6]. It is also known that a wave function

  ])2/1(exp[2/1   mim (where m

is an integer) is the origin of the half-integer quanti-
zation in the dynamic Jahn-Teller effect[4]. Mead and
Truhlar pointed out that the dynamical consequences
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of this phenomenon are equivalent to the geometric
phase effect[7]. The electronic wave-function was
often altered to remove the sign change in the theo-
retical treatment. It is multiplied by a phase factor
so that it returns to itself after traversing a closed
loop around the conical intersection. The effect of
this modification is to introduce a vector potential
into the nuclear Schrodinger equation as shown in
Refs.[7-9].

In the realm of molecular reaction dynamics, the
geometric phase effect often refers to the Berry phase
effect or the molecular Aharonov-Bohm effect. The
geometric phase effects on reaction dynamics proved
to be a great amounts of progresses in the last de-
cades[10]. Earlier theoretical work is performed for
the reaction D+H

2
(V=1,j=1)HD(V�=1,j�)+H and

the product rotational state distribution is in good
agreement with the experimental results. The gen-
eral vector potential approach for including geomet-
ric phase effects in three-dimensional quantum scat-
tering calculation was applied to the H+D

2
(v,

j)HD(v�, j�)+D reaction at 126 values of total en-
ergy in the collisional energy range 0.4-2.4eV[11].
These time-independent quantum dynamical results
are not only consistent with recent experimental re-
sults, but also with calculations that used a time de-
pendent quantum dynamical theory by Althorpe[12].
Both the time-dependent and time-independent meth-
ods reach the same conclusion that no overall geo-
metric phase effect could be found in the observed
quantities, however, these studies are in the frame-
work of the adiabatic representation which sepa-
rates the motion of nuclei with the electrons[13].

Manolopoulos and Child used a model Hamil-
tonian to study the sets of possible sign changes when
N real quantum states are transported adiabatically
around the N-fold degeneracy in Ref.[14]. Baer and
his collaborators focused on the topological features
and formulated an extended Born-Oppenheimer
equation for two and three coupled electronic states
in Refs.[15,16]. The location of conical intersections
and the continuous representation of the local to-
pography of seams of conical intersection of three
or more electronic states has been investigated ei-
ther[17-19]. Opalka and Domcke have modeled a PES
for a threefold degeneracy in CH+

4
 system[20]. Addi-

tionally, the rovibrational structure and the GP ef-
fect have been studied by Wörner et al[21]. Sarkar et
al introduced an approach to deduce a generalized
BO equation in Ref.[22] with the inclusion of GP ef-
fect by extension of the LH theorem[23]  to four-fold
Jahn-Teller systems[24,25]. What is more, Das et al
returned to an issue related to the BO treatment to
yield reliable diabatic potentials in Ref.[26]. To the
best of our knowledge, no theoretical treatment of
the geometric phase effect has been reported in the
diabatic representation although there are some ad-
vances listed above. In this paper, the emphasis is
the form of the Schrodinger equation which incor-
porates the geometric phase effects and some other
non-adiabatic factors in the diabatic representation.

THEORY AND RESULTS

In the quantum dynamics theory shown in Refs.[27-

29], there are two ways of incorporating the geomet-
ric phase effects theoretically. The first approach
expands the nuclear wave functions in terms of a
double-valued basis set. The basis set changes sign
around the conical intersection point. The geomet-
ric phase is put into the basis set at the beginning
and the resulting nuclear wave functions are double-
valued functions around the conical intersection
point. The approach has some disadvantages because
it is difficult to implement in many cases.

The second approach is to multiply the real
double-valued electronic wave function by a com-
plex phase factor such that the new electronic wave
is a complex single-valued function around the coni-
cal intersection point. The nuclear wave functions
are then single-valued around the conical intersec-
tion. As a result, the nuclear Schrodinger equation
acquires a vector potential term and takes the fol-
lowing form:

)r(E)r()]r(V))r(Ai(
m2
1

[ 2
 (1)

Where V( r ) is the ground electronic state potential
energy surface (PES) for the molecule of interest

and A( r ) is the relevant vector potential. Both V( r )

and A( r ) are functions of the internuclear distances
and m is the reduced mass of the investigated sys-
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tem. The advantage of this approach is that the nuclear
wave functions can be expanded in terms of a single-
valued basis set. The inconvenience results from the
more complicated form of nuclear Schrodinger equa-
tion than before. However, once numerical methods
could solve this generalized Born-Oppenheimer
equation, the situation can be treated simply by us-

ing the appropriate functional form for A( r ) in equa-
tion(1), that is to say, this approach can be extended
to the more general conical intersection problem.
Kendrick�s time independent quantum dynamical

calculations in Ref.[11] use this type of method. In the
current theoretical work described below, the vec-
tor potential approach is utilized to treat the geo-
metric phase effects in the diabatic representation.

The Schrodinger equation in the diabatic repre-
sentation

Since the electrons move much faster than the
nuclear atom, which is the origin of the Born-
Oppenheimer approximation. The total wave func-
tion of the investigated system can be expanded as:

   



N

i
ii rqrrq

1
0;);(   where )( arr  are

the coordinates of the nuclear in a space fixed frame,

 iqq  are the coordinates of the electrons.  ri

is the nuclear wave function and  0;rqi  is the adia-

batic electronic wave-function for the electron which
satisfy the electron Schrodinger equation:

   0ie0ie r;qr;q 


(2)

Where e  is the eigenvalue of electron Hamilton

which depends on the nuclear coordinates. Here we
define that it is the electronic adiabatic representation

when 0rr  , on the contrary, it is the diabatic

representation when 0rr  .

In the adiabatic representation, the nuclear
Schrodinger equation could be expressed as the fol-
lowing form:

0)(
m2
1

e
2




(3)

In which the well-known Born-Oppenheimer

approximation is contained. As for the diabatic

representation where r  is a variable and 0r  is a

constant, the electronic Hamilton could be expressed
as:

)r;q(e



 =     00e r;qVr;qV)r;q( 


(4)

In which V is the potential energy operator. After

taking  0;rqi  into the molecular Schrodinger

equation calculations, the nuclear motion equation
becomes:

0)r()r;r()r(]
m2
1

[ i0
ji

N

1i
j

2  


(5)

Where
  ji0i0ji0ji ru)r;r(~)r;r( 

and

       0i00i0ji r;qr;qVr;qVr;q)r;r(~


)r;r( 0ji  is the non-adiabatic coupling term which
couples the different electronic states together.

The geometric phase in the diabatic representa-
tion

As has been mentioned, the electronic wave func-
tion changes its sign when transported adiabatically
around a closed path containing the conical inter-
section point. The phenomenon is recognized as the
geometrical phase. Mead and Truhlar multiply the
real double-valued electronic wave function by a
complex phase factor so that the new electronic wave
function is a complex single-valued function around
the conical intersection[7]. The nuclear functions are
then single-valued around the conical intersection.
The resulting nuclear Schrodinger function acquires
a vector potential term and takes the following form[7-

10]:

0)(]))r(i(
m2
1

[ e
2




(6)

or the equivalent form:

)r(E)r()]r(V))r(Ai(
m2
1

[ 2  (7)

In which V( r ) is the ground state potential en-
ergy surface (PES) of the investigated system and
A( r ) is the relevant vector potential term. Both V( r )
and A( r ) are functions of the internuclear distances

r  and m is the reduced mass of the investigated sys-
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tem. It should be noted that the nuclear Schrodinger
equations (6) and (7) only incorporated the geomet-
ric phase effect in the adiabatic representation. The
method described in Section 2.1 is used to deal with
the geometric phase effect in the diabatic represen-
tation. To avoid the repetition of mathematical de-
tails in Refs.[8,9], the derivation processes have been
omitted and the deduced equation is given below:

0)r()r;r()r(]))r(i(
m2
1

[ i0
ji

N

1i
j

2  


(8)

The equation has a new expression, in which

);( 0rrji  has the same physical meaning as the coun-

terpart in the adiabatic representation. The new equa-
tion takes the geometric phase effect into consider-
ation in the diabatic representation. It is the first
Schrodinger equation that incorporates both the geo-
metric phase effects and other non-adiabatic factors.

DISCUSSIONS

The incorporation of geometric phase effects is
independent of the treatment of electronic Hamilto-
nian in the diabatic representation, therefore, cur-
rent theoretical deduction is reasonable and practi-
cal applications are feasible. In this part, we dis-
cuss the possible applications of the new equation.
Let us take the research in molecular spectra as an
example, an accurate theoretical prediction of the
vibrational spectra for a pure nitrogen ring, say, cy-
clic-N

3
 molecule, is obtained up to the energy of the

2A
2
/2B

1
 conical intersection in Ref.[30]. A coupled-

channel approach using the hyperspherical coordi-
nates and the recently published ab initio potential
energy surface of Ref.[31] is employed including the
geometric phase effects. All vibrational energies are
analyzed and assigned in terms of the normal vibra-
tion mode quantum numbers. The magnitude of the
geometric phase effect is determined for each state,
compared with the one neglecting the geometric
phase effects. One of the main results is that it is
equal to 100 cm-1 for the lowest-lying vibrational
state and exceeds 600 cm-1 for higher vibrational
states, which confirms the existence of the geomet-
ric phase effects in the cyclic-N

3
. However, all the

theoretical results are still obtained in the adiabatic

representation and different theoretical results will
appear after incorporating the geometric phase ef-
fects (GPE) in the diabatic representation. The rea-
son is that the traditional nuclear motion equation
has ignored the geometric phase in the diabatic rep-
resentation whereas the new equation incorporates
both the geometric phase effects and other nonadia-
batic factors in the diabatic representation. There-
fore, someone who performs such calculations will
demonstrate a valuable theoretical work and tell us
a new story.

Another possible application direction is the in-
vestigation of geometric phase effects induced pho-
todissociation dynamics. The geometric phase ef-
fects have been observed in the photodissociation
of phenol.[32] The mode specific Phenoxyl radicals
formation is resulted from the geometric phase ef-
fect at the conical intersection between the ground
and first excited state potential energy surfaces. The
geometric phase effects on photodissociation dynam-
ics at a two-dimensional symmetry-allowed coni-
cal intersection (CI) was also investigated re-
cently.[33] If the newly derived equation(8) is put into
use in those work effectively, there will be more
fruitful results.

CONCLUSION

In this work, the geometric phase is considered
in the diabatic representation. A new equation is
derived for the nuclear motion. Since the new equa-
tion incorporates both the geometric phase effects
and other nonadiabatic factors, new algorithms or
procedures could be developed in the near future.
The particularity of the new nuclear motion equa-
tion lies in the nonadiabatic coupling terms and the
geometric phase vector term. Therefore, it could be
generalized to many problems in nonadiabatic chem-
istry containing the conical intersections. The new
equation is also the first equation in the diabatic rep-
resentation, which deals with the geometric phase
effects. Overall, this new equation could bring out
new results in molecular spectra, molecular reac-
tion dynamics as well as photodissociation dynam-
ics.
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