On optical bonding forces between light guides

Mark E. Perelman
Racah Institute of Physics, Hebrew University, Jerusalem, 91904, (ISRAEL)
E-mail: m.e.perelman@gmail.com
PACS: 42.25.Ja, 42.50.-p, 42.81.Gs
Received: 23rd December, 2009; Accepted: 2nd January, 2010

ABSTRACT

If through two parallel light-guides are passing monochromatic waves of identical frequency, the force, repulsive or attractive in dependence on phase difference, takes place between them. This recent experimental result can be described via occurrence of virtual dipoles induced by evanescent wave at processes of light propagation and reflection. So this effect can be considered as an original effect of high frequency polarization and must be taken into account at construction of optical nanostructures. The proposed description can be considered as a special variant of quasi-optics with simplified account of surface phenomena.

Some of recent advances in nanoscale photonics and optomechanics are connected with forces that had been negligible in researches of bigger structures. So, in the articles\cite{1,2} and several others were proposed the existence of optical force known now as the ‘optical bonding force’ (see, also, the general review\cite{3}). The most evidently its existence and features are demonstrated in the recent article\cite{4}. The often references to the Casimir effect for substantiation of its existence seem excessive: the Casimir forces are originated by vacuum fluctuations, but forces considered in the cited researches appear, as will be shown, as the result of substances polarization by light wave field.

Let us consider, as an initial qualitative review of examined effect, a quantum description of light propagation through a solid (transparent) strip. In accordance with the well-known Placzek theory\cite{5} polarization of matter is executed by the dipole-dipole interaction, i.e. by the dipole absorption and further reemission by that or another dipole. In the case of standing light waves such picture must lead to formation of the 1D effective ‘light lattice’ or ‘photon crystal’, on which the interference and similar effects can be considered\cite{6}; therefore two strips with such systems of virtual lattices can be, in general, attracted or repulsed in dependence on their relative positions and phases. Systems of such standing waves would lead to the 2D ‘lattices’ and several optical devices\cite{6}.

But what would take place in the case of flying waves with their fast displaced maxima? There is known the classic Zommerfeld–Brillouin suggestion about the wave front propagation with the vacuum speed \(c\) before the polarization establishment\cite{7}, which however has not reliable experimental confirmations. The kinetic quantum theory of optical dispersion\cite{8} shows absence of temporal lags for establishing of polarization: it corresponds to processes of photons scattering, i.e. is nearly instantaneous. This conclusion can be supported by the gen-
eral theory of particles interaction durations[9][9]. Hence
the instant interactions between light guides become completely analo
gical to the case of standing waves.

But the possibilities of forces manifestation will be mainly depended on near surface dipoles, e.g. on fea
tures of effective transient zones. Therefore we must consider the definite specification of light refraction and
reflection laws caused by their existence on each optical
surface. Their existence is governed by physical im
possibility of the geometrical type sharp alteration of
physical magnitudes at transitions between substances,
\textit{i.e.} by its incompatibility with quantum representations.
The used method had been suggested in[10] and with more
details is described in[11].

Our consideration is sufficiently wide and will show
that the most phenomena of optical propagation can be
considered via high frequency polarization with forma
tion of virtual (evanescent) electromagnetic moments in
medium by light waves. Thus, the interaction between
optical guides can be described via the instant interac
tions of these moments.

However, almost classical description of these phe
nomena, that represents a variant of quasi-optics, is also
possible.

Let’s consider, for simplicity, an electromagnetic
wave that falls from a free space ($z > 0$) onto flat me-
dium surface ($z < 0$). In the method of Bremmer[12] (Appendix 6) each component of fields E, D, B, H and j is
expressed at the border via sum of all components mul
tiplied on the suitable unit step Heaviside functions
in (1):

$V(t, r) = (V_1 + V_2)\Theta(z) + V_2\Theta(-z)$,

in which the incident V_1 reflected V_r and transmitted
V_2 waves are included.

If the gradual transitions from one substance to an-
other must be regarded for them, the discontinuous step
functions would be replaced, instead the considera
tion of quantum picture, by flattened functions[11], e.g. by the expressions of the type:

$\Theta(z | a) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a}{(z - \xi)^2 + a^2} d\xi$

$= \frac{1}{2} \cot^{-1} (1 - z | a)$

with $\alpha \to 0+$ and the term V_s describing near-surface
or evanescent waves in this stratum must be added.

Hence instead of (1) we shall write

$V(t, r) = (V_1 + V_2)\Theta(z | a) + V_2\Theta(-z | b) + V_s\Theta(z | b)$,

with $\zeta(a | z | b) = 1 - \Theta(z | a) + \Theta(-z | b)$ describing the
gradual field penetration in both substances, and the
expression (3) returns to (1) at $a, b \to 0$. At the total reflec
tion the term V_r will be omitted, but it does not
prevented the general consideration.

If the falling wave is of the frequency ω and is incident
under the angle α, both parameters can be ex
pressed via the uncertainty principle $\Delta z \Delta k \sim 1$. For
the down plate can be taken $\Delta k \sim \varepsilon \omega/c \cos \alpha$, where ε is the corresponding dielectric susceptibility,
for the upper plate its dielectric susceptibility must be
taken into account. Thus, approximately,

$\alpha \sim c/\varepsilon_1 \cos \alpha; b \sim \alpha\sqrt{\varepsilon_1/\varepsilon_2}$.

Such simplest estimation seems completely adequate
for the phenomenon of frustrated total internal reflec
tion (FTIR)[13] and can be improved for more realistic
or complicated cases with taking into account different
parameters of medium. So, the evanescent spatial shift
of reflected and transmitted rays may be taken into ac
count: if $V_f = V_1(t; x, y, z)$ then for reflected waves in x-
plane by the series expansion can be taken that

$V_r = V_1(t; x + \Delta_n, y, z) + i\Delta_n \partial_x V_r(t; x, y, z)$

and just these two additions form surface waves phenomenologically
introduced into (3):

$V_s \propto k(\Delta_r \cos \alpha \cdot V_r + \Delta_r \cos \beta \cdot V_1)$,

after substitution of which all fields in (3) will be consid
ered in one point.

For their consideration the general form of fields
equations,

$\nabla V = 4\pi(\rho + \rho_{\text{evan}})$;

$\nabla \times V = \frac{10}{c} W + \frac{4\pi}{c} \left(j + j_{\text{evan}}\right)$,

with additional, evanescent or virtual charges and cur
rents, can be used (in accordance with the Maxwell
equations V in (7) represents D or B; the pair V, W in
(7') represents H, D or E, B).

Let’s describe the TE wave in the (x, z) plane that
is entering into an electrically neutral and optically pas
sive substance at such angle that V_c can be negligees.
Since all fields, except V_s, satisfy the equation $\nabla V = 4\pi \rho$, the operations of divergence of (3) with $V \to D$
leads to the relation:

\begin{align*}
\int V(t, r) dV & = \frac{1}{\pi} \int_0^{2\pi} \int_0^{\infty} \frac{V(t, r) dV}{r} \\
& = \frac{1}{\pi} \int_0^{2\pi} \int_0^{\infty} \frac{\rho(t, r) dV}{r}
\end{align*}
Hence the intermediate layer represents an oscillating double electric layer of strength D_{sc} with induced charges of density $\rho^{(\text{euan})}$.

For the case of TM wave in the incident plane, we apply (3) to the magnetic field, $V \rightarrow B$, that leads to an analogical representation with density of “magnetic charges” inducing in a near-surface zone by transition effects.

The similarity of such expressions demonstrates not only a resemblance of both results, but also the difference of their possibilities at description of higher moments, etc.

The expression (8) can be rewritten as

$$D_{sz} K(a, b) = 4\pi \rho^{(\text{euan})}(z)$$

with

$$K(a, b) = \frac{d}{dz} \ln \zeta(a | z | b)$$

Physically it can be supposed that $1/\kappa$ would be of the order of a generalized “skin layer” thickness and $\zeta(a | z | b)$ can be considered as the response function of this stratum.

The substitutions of (3) into other Maxwell equations (7') describe the evanescent, oppositely directed currents in this layer. Thus, oscillating “dipoles” and “currents” on frequencies of incident fields absorb falling radiation and emit reflected and refracted waves.

Hence at process of monochromatic light passage through light-guides, oscillating electromagnetic moments, in considered case virtual electric dipoles, can be excited; their density depends on field strengths. Such formations must lead to the forces between nearby light-guides.

Let’s estimate these forces between two thin parallel dielectric strips of thickness δ and the distance between them $l \geq \delta$ (they can be considered as parallel double electric layers with alternating charges, but we can use more simple representations). If on both surfaces of strips are, correspondingly, dot charges $\pm q_1$ and $\pm q_2$, the force between strips $F \propto \pm q_1 q_2 (\delta^2/l^4)$ and $\delta \rho$ represent corresponding dipoles. By transition to surface densities and then to strengths of light waves $E_1 = E_{01} \sin((\omega t - kx)$ and $E_2 = E_{02} \sin((\omega t - kx + \phi)$ with their subsequent averaging the estimation of force density can be written:

$$f \sim E_{01} E_{02} S (\delta^2/l^4) \cos \phi,$$

where S is the square of strips interaction. (The forces between such surface with the double electric layer and single dipole are considered in[14], they can be naturally generalized on forces between two surfaces.)

Hence, Eq. (10) shows possibility of both interaction types in dependence on phase difference.

In conclusion must be mentioned that the considered case with the coherent monochromatic waves seems the most elementary one, since in more complicated cases this method requires the averaging over phases, but on the other hand it represents an evident and unusual approach to the general problem. Similar consideration can be useful in other problems of optics and optomechanics. It must be underlined that at more thin guides magnetic dipoles, electric quadrupoles and so on can be excited instead of electric dipoles (cf.[10]).

REFERENCES