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Abstract 

A two component model of gravitation potential for spiral galaxies has been proposed which couples a spherically symmetric component 

with a second component that observes planar radial symmetry on the galactic plane and vanishes outside an annular disk beyond the edge 

of galaxy’s effective radius. It is shown that such a model for potential satisfying Poisson Equation would produce rotation velocity curve 

towards the edge of the galaxy which is flat over distance from the galactic centre. This relationship, which is experimentally observed in 

many spiral galaxies, is shown as a consequence of classical understanding of gravity and specific symmetry of the gravitational potential 

without any extrinsic requirement of dark matter. It is also demonstrated that this potential directly yields a relationship between inner 

mass of the galaxy and terminal rotation velocity, which has been empirically observed and known as Baryonic Tully-Fisher relations. 

Furthermore a direct test has been proposed for experimental verification of the proposed theory.  
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Introduction 

The problem of the anomaly observed in spiral galaxy rotation curves is a longstanding one [1-5]. Rotation velocities of stars at the 

edge of most spiral galaxies display indifference to distance from galactic centres, while predictions from Newtonian gravity require 

such velocities to be inversely proportional to distance [6]. Existing literature predominantly focuses on expected density profiles to 

match such empirical rotation curves [7-10]. While many such density profiles assume spherically symmetric distribution of mass 

and gravitational potential [11-14] which is perhaps influenced by earlier physical models of spherical and globular galaxies [15,16] 

there has been significant work in modelling aspherical as well as asymmetric density profiles. Binney and Tremaine provides a 

detailed account of such aspherical (axisymmetric and disk) potentials [17]. 

 

However such expected profiles do not match the derived density distribution based on luminosity profiles of galaxies [18]. Thus 

resulting in a ‘mass gap’ which is conjectured to be explained by the dark matter halo around the galaxy [19], which only interacts 
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gravitationally with other Baryonic matter [20-23]. But such theories have additional onus to experimentally validate existence of 

such non-Baryonic matter but hasn’t yet been corroborated in direct and indirect detection attempts [24-26]. Furthermore, even though 

the rotation curves appears to show a ‘mass gap’ between gravitational mass and luminous Baryonic mass of the galaxies, observations 

across multiple spiral galaxies show that terminal stellar velocities are strongly related to the Baryonic galactic mass through Tully-

Fisher relationship [27-30]. This offers some amount of difficulty for dark matter theories as ideally terminal velocities should couple 

with the total gravitational mass of galaxies including baryonic as well as dark matter [31]. On the other hand, there is also 

considerable literature that suggest a modified understanding of how non-relativistic dynamics works and deviates from Newtonian 

dynamics at large scale and/or slow acceleration regime [32,33]. While such theories are able to explain a number of phenomena 

unexplained or partially explained by dark matter theories there are concerns around well-posedness of the theories, Stability of the 

spherically symmetric models among others [34-43]. Some of these are addressed through non-relativistic and relativistic extensions 

of the original modified newtonian gravity [44-46] even if not all conceptual issues are resolved [47]. But the most significant 

challenge for modified dynamics theories come from the observations around non-spherically-symmetric systems like bullet clusters 

[48-50]. There have also been attempts to leverage non-classical yet low-energy solutions to Einstein Field Equations from General 

Relativity to explain the anomaly [51-54]. One insight from existing literature is that it’s important to consider aspherical or 

asymmetric gravitational potential to model gravitational effects of galaxies [55] as most galaxies and galaxy clusters are far from 

spherically symmetric [56-59], and indeed most of the observational challenges to existing theories come from more aspherical 

structures [60,61]. To do that we’d start from the Poisson equation which is the most general form of  newtonian gravity. Interestingly, 

for an aspherical system Poisson equation is usually thought of as a continuous approximation for a system composed of many small, 

spherical or point masses all following inverse-square law of gravity. However, Poisson equation is also the direct consequence of 

General relativity for a low-energy composite, aspherical system. This distinction is important as the latter interpretation allows us to 

free ourselves from the inversesquare-law and help understand the gravitation potential purely in terms of how much spacetime is 

curved around a massive gravitational system like a galaxy. In fact, within the classical setup of Newtonian gravity and Poisson 

equation 
2 4 G   = , canonical potential 

GM
N

r
 =  is simply one of the solutions. Curiously it only becomes unique solution 

under the condition of spherical symmetry and under different physical symmetries and boundary conditions, Poisson equation can 

lead to very different solutions all of which are consistent with Newtonian gravity [62]. Following this line of thought, we intend to 

explore a specific non-spherically-symmetric solution to Poisson equation that can help explain the flatness of rotation curves without 

requiring exotic particles or changing the laws of nature. Such a solution, in general, won’t render itself to be expressed as a 

combination of many inverse-square-law potentials, but would present itself as an expression of the underlying spacetime metric 

around the galaxy. In the present work we’d illustrate that such potentials can exist, and freed up from the inverse-square-law 

potentials, can explain the rotation curves of many spiral galaxies. We would restrain ourselves from claiming uniqueness of such 

solutions and would only tentatively intend to lay down groundwork that too by particularly focusing on spiral galaxies. Such galaxies 

usually consist of a number of structural components including a spherical bulge and a planar disc with spiral arms [63,64]. 

 

To accommodate the non-spherical structure of the system we would introduce an Effective Radius r0 for the galaxy so that most of 

the galactic baryonic matter resides within it and would simultaneously propose an annular region D outside the effective radius with 

a constant width of h where planar radial symmetry along the galactic disk plane takes over from spherical symmetry. In other words, 

we would be looking for a potential Φ that is  

• Spherically symmetric within the effective radius  
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• Observes planar radial symmetry on an annulus along the galactic disk just outside effective radius  

• It is continuous at the effective radius  

• It has continuous derivative at the effective radius  

In the next section we would use these constraints to derive an alternative gravitation potential and resulting dynamic. 

 

Gravitational Potential 

 

Two component model 

Our approach to build a potential function Φ that satisfies the conditions [1-4] of the preceding section, would entail first constructing 

one spherically symmetric component Φ0 to account for the galactic matter within the Effective Radius and a second component ΦD 

that is only defined on the external annular disk D and is radially symmetric on the plane. Eventually on D where both components 

are defined, the composite potential Φ would be an affine combination of the two components, while everywhere else Φ would simply 

coincide with Φ0. Since both the components would be required to satisfy Poisson equation, so would the composite model.  

 

Since Φ0 is spherically symmetric, Poisson Equation 

 

( )2

0 4  1G   =  

would produce the Newtonian potential, 

( )
( )0

 
 2  

Gm r

r
 =  

where m(r) denotes the total mass inside the sphere of radius r < r0. 

However, we’d see that the disk component of the potential, ΦD would need to assume a different functional form driven by its own 

symmetry. 

 

Disk Potential 

Let us start by setting up a cylindrical reference frame (r, θ, z) where the coordinates stand for radial distance from galaxy centre, 

inclination and normal distance from the disk plane respectively. As discussed we’d assume that ΦD is radially symmetric on the disk 

plane (rather than spherically symmetric) and ∂zΦ vanishes within the width of the disc. In other words, the desired disk potential 

ΦD would need to satisfy the following conditions 

1. ( ),  ,  0  / ,  , ,  
2 2

D

h h
r z r  

 
 =   − 
 

 

2. ( ) ( )0 0 0,  ,  , , ,  ,  
2 2

D

h h
r z r z z   =    −

 
 
 

 

3. ( ) ( )0 0 0,  ,  , , , ,  
2 2

r D r

h h
r z r z z    =

 
 


   −


  

4. 0 , ,D r z   =   
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5. 0 ,
2 2

z D

h h
z 

 
 


  −


=  

Additionally this non-relativistic potential function Φ on the disk would need to satisfy Poisson equation, 

( )2 4  3  D G   =  

But conditions 4 and 5 would reduce the equation to 

( )2 2 1
4                  4D r r DD G

r
   =   +   =  

 

for 
0r r  and ,

2 2

h h
z


 −


 
 

.  

Solving the equation for φ we get 

( ) ( )
0 0

0 1

0

1
 4   5  

r s

D

r r

r
ln G s s dsds

r s
   



 = + +
   

 

where λ0, λ1 are constants.  

 

Now if we use conditions 2 and 3, we can pin down the values for the constants 

 

( )

0
0

0

0
1

0

  6  

Gm

r

Gm

r





=

= −

 

 

 

 

where m0 = m(r0) is the Baryonic mass of the galaxy within the effective radius r0.  

That’d finally give us the unique form for ΦD as, 

( ) ( )
0 0

0

0 0

1
1  4    7

r s

D

r r

Gm r
ln G s s dsds

r r s
 



 = − +
 
 
     

Rotation Curve and Terminal velocity 

 

We can immediately observe that an object positioned at a distance r from the centre on the disk would experience a radial acceleration 

 

( ) ( ) ( )
0

2

0

2

0

4
 8

 

r

D

r

Gmd r G
r s s ds

dt r r r


=  = − +   

Now for this radial acceleration to exactly counterbalance the opposing centrifugal acceleration so that the stellar object remains on 
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a stable orbit, we would need the orbital velocity to satisfy, 

( ) ( )
0

2 0

0

4   9  

r

r

Gm
v G s s ds

r
 = −   

From Equation (9), it is clearly evident that the potential we derived based on the stated symmetries and continuity conditions yield 

orbital velocity of stars on the disk with a dominant constant term. In fact, if the density of the disk is considered to be negligible 

outside the effective radius, we would get a perfectly flat rotation curve, 

 

( )0
0

0

  10
Gm

v
r

=  

However, most interesting feature of Equation (9) is that any matter outside the effective radius would have a dampening effect on 

the ‘flatness’ of the rotation curve. This observation is completely contrary to any predictions from standard Newtonian gravity which 

requires a halo of additional mass around the edges of the galaxies to explain flat rotation curves.  

 

It would be possible to establish a relationship between terminal velocity
0v and the baryonic mass in the galaxy if we assume 0 to 

be the average density of matter on the disk plane covered within the the effective radius. Then total baryonic mass of the galactic 

disk could be expressed as 
2

0 0 0m r h= , which when plugged into the expression for 0v yields, 

( )
4

0
0 2

0

11
v

m
hG

=  

which is eerily close to observed Baryonic Tully-Fisher Relation (BTFR) with the exception of the density 0 and width h which can 

potentially vary across galaxies. To derive the exact form of BTFR, we would need to introduce the general potential combining the 

two components. 

 

Baryonic Tully-Fisher Relation 

 

In general as discussed before even though ΦD would dominate over Φ0 on D, the general solution for a potential that satisfies Poisson 

equation, nevertheless would be, 

( )0 0  12D Dw w =  +   

where 0 0, 0  1.D Dw w and w w + =  

 

In plain terms Dw serves the same role dark to normal matter ratio does in dark matter theories. It captures the relative strength of 

the halo created by  D outside the edge of the galaxy in contrast to the matter distributed within the Effective radius. In this section, 

we’d try to uniquely establish Dw for a galaxy as a function of its baryonic mass distribution. For that we would need to re-calculate 

terminal velocity under the general composite potential. Such a composite potential would produce a radial acceleration of 

http://www.tsijournals.com/


www.tsijournals.com | December-2021 
 
 

6  
 

( ) ( )
2

0 0 0

2 2

0

13  Dw Gm w Gmd r
r

dt r r r
=  = − −  

Here, and from here on, we’d assume mass density outside of Effective Radius to be negligible. Again similar calculations as to those 

of last section would produce a rotation curve, 

( )0 0
0 0 0

0

 14  D

Gm Gm
v w w r

r r
= +  

with a constant and a diminishing term effectively providing an upper 0

0

Gm

r

 
  
 

 and a lower bound 0

0

Dw Gm

r

 
  
 

 for the orbital 

velocity. 

 

Following the same argument as in previous section, terminal velocity in this general set up would be given by 

( )0
0

0

  15Dw Gm
v

r
=  

 

as r → ∞. 

Hence calculations that gave us Equation (11) would yield, 

( )
4

0
0 2 2

0

16
D

v
m

w hG
=  

Finally if we parametrise Dw , such that 

( )2

0

17Dw
h




=  

 

where κ is a universal constant which we would refer as critical density, then we would arrive at the desired Baryonic Tully-Fisher 

relations. 

( )
4

0
0 2

18
v

m
G

=  

Since the logarithmic intercept (A ) in BTFR 

( )4

0 0 19m Av=  

is experimentally verified [65], one can directly calculate κ as, 

( )2

1
20

AG



=  

The parametrisation represented by Equation (17) is significant enough to merit some discussion. It is well known, within Dark Matter 

literature, that smaller and sparser galaxies contain relatively more DM halo compared to normal matter [66-69] .In Equation (17), 

we have a more quantified expression for that, of course, without explicitly requiring any dark matter. But more significantly it 

presents us an opportunity to define a test for the theoretical framework introduced here, by tracking the rotation curve gradient at 
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the effective radius. 

 

Rotation Curve gradient, we would define as  

( )
0

2

0 0
0 2

0

   21  grad r r

dv Gm
R w

dr r
== = −  

Since, 

0

0

1 1Dw w
h




= − = −  and 

2

0 0 0m r h= , we can rewrite Equation (21) as 

( ) 0

0

1   22gradR Gh
h


 



 
= − −  

 
 

Thus it would be possible to test the Equation (22) empirically by calculating  gradR for multiple spiral galaxies and mapping them 

against known mass density of those galaxies as we already know the value of  [70-72]. Also it is to be noted that if 0
h


  , then 

the rotation curve would have a positive slope and would continue to move up even after the effective radius. On the other hand, 

denser galaxies 0
h








 
 

would show a slightly downward slope in their rotation curve at the effective radius [73-75]. 

 

Conclusion 

 

Spiral disk galaxies and their terminal rotation velocity curves offer one of the most prominent instances of a ‘mass gap’ in the 

universe. However, that’s by no means the only such ramifications. Current theoretical landscape addresses such anomalies either 

through Dark Matter (whose variants are as yet undetected) or through modifications of fundamental laws of dynamics. In this work 

we’ve suggested an alternative gravity potential, which is consistent with the general understanding of classical gravity and doesn’t 

require New Physics. Key conceptual leap in considering such a potential is around the fact that we haven’t restricted the solution to 

a continuous combination of smaller point or spherical potentials, but rather as an expression for the spacetime metric in the empty 

space around the galaxy. Admittedly the current work is based on some simplifying assumptions. For example, we have assumed that 

for every point on the ‘shadow’ disk outside the effective radius of the galaxy, potential remains static across narrow width of the 

disk. Also the aspherical component is assumed to be wholly concentrated on D, vanishing everywhere. In reality, it is perhaps more 

likely that the aspherical component would tend to diffuse further from the ‘shadow’ disk. However, such corrections can be made 

to the calculations without impacting the broader outcome.  

 

Another potential concern for the proposed model could be around the physical reality of the model. Particularly since we are 

proposing to include an aspherical component concentrated on and around an annular region just outside the galaxy’s effective radius 

along the 2-dimensional fundamental plane, it might raise question around whether there is any physical meaning to such a structure. 

To understand and clarify such concerns, we need to note that the annular ‘shadow’ disk is relatively empty of Baryonic matter and 

a specific form of potential shouldn’t be interpreted to have any bearing on ‘matter distribution’ there. Most general understanding 
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of classical gravity does allow potential to shape up in the form we have described in this work, even without having to resort to 

additional ‘matter content’. In that sense, the proposed model doesn’t breach any known physical laws of reality. 

 

Also, from the perspective of symmetries of the underlying system, fundamental plane does represent a structural symmetry of the 

spiral galaxy. In fact most of the characteristic factors describing a spiral galaxy (central surface brightness, disk scale length and 

rotation velocity), are definitive properties of the fundamental plane. Hence it’s perhaps not unreasonable to consider gravitation 

potentials partially concentrated on part of the fundamental plane. One might indeed reason that by avoiding reliance on undetected 

particles or new physical laws, the work presented here provides us an opportunity to tie our understanding of galactic dynamics more 

strongly with physical reality. 

 

Admittedly the work here doesn’t fully address the entirety of the known problems concerning ‘mass gap’ anomaly. For example, the 

framework posited here needs to be extended beyond spiral galaxies to other aspherical systems. It needs to be able to reconcile with 

observations from gravitational lensing-particularly those from Bullet cluster. We would also need to develop similar solutions for 

Elliptic and Globular systems, in subsequent work. In general, we would need to expand the work further to explain wider kinematics 

and dynamics of the galaxies beyond that of rotation curve only. Particularly, detailed effects from extrinsic events like mergers need 

to be understood in the context of how the proposed gravitation potential would transform under such process. This would be useful 

to make falsifiable predictions around dynamic systems like Bullet clusters.  

 

Having said that, the present work already reproduces two of the most prominent features of spiral galaxies i.e. Flat rotation curve 

and Baryonic Tully-Fisher Relations. Additionally we are able to bring insight into why smaller and sparser galaxies tend to have 

relatively large ‘mass gap’. As a side observation, we have also been able to characterise that sparse galaxies can produce rotation 

curves that actually continues to grow even after the effective radius. Using that fact, we have shown that it’s possible to formulate a 

clear and falsifiable test which can determine whether the fundamental structure of the theory established here holds ground. 

 

While all of that can potentially constitute a future body of work-both theoretical and experimental, we conclude with gentle 

confidence that the work presented here can hopefully create an alternative stream of thinking in our efforts to understand the 

dynamics of galaxies and other more asymmetric astronomical systems. 
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