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ABSTRACT 
 
This paper presents a novel MC-DTC method for fed induction motor based on space
vector modulation. The advantages of DTC method are combined with the advantages of
the matrix converter based on space vector modulation technique. This proposed novel
method provides a precious input power factor control capability beside the high control
performances. Furthermore, Conventional principles of DTC and MC were described. The
combination of the DTC and MC were given in details. The simulation and experiment
research were carried out to identify the new method effectiveness. The results of
induction motor control at steady state  are shown to improve the low-speed performance
and strong adaptability of this novel control strategy. 
 
KEYWORDS 
 
Matrix converter; DTC; Induction motor; Space vector modulation; Low-speed
performance. 
 



15050  Novel MC-DTC control method for induction motor based on space vector modulation  BTAIJ, 10(24) 2014 

INTRODUCTION 
 

 In two recent decades, due to the need to increase the quality and the efficiency of the power supply and usage, three 
phase matrix converter becomes a modern energy converter. The research of matrix converter has been carried on with many 
theoretical[1],[2],[3].These achievements along with the emergence of bidirectional switch make it possible to apply the 
matrix converter to practical applications. Various methods to control the matrix converter have been proposed [4],[5], being 
the scalar modulation and the indirect space vector modulation widely used. It fulfills all requirements of the conventionally 
used rectifier/dc link/ inverter structures. Some advantages of the matrix converter can be seen as following: the use of a 
compact voltage source, providing sinusoidal voltage with varying amplitude and frequency besides the sinusoidal input 
current and unity input power factor at power supply side. Matrix converter has a simple topology and a compact design due 
to the lack of dc-link capacitor for energy storage. 

 Since the DTC method has been proposed in the middle of 1980’s, DTC method becomes one of the high 
performance control strategies for AC machine to provide a very fast torque and flux control[6][7]. There are no requirements 
for coordinate transformation, no requirements for PWM generation and current regulators. It is widely known to produce a 
quick and fast response in AC drives by selecting the proper voltage space vector according to the switching status of inverter 
which is determined by the error signal of reference flux linkage and torque with their estimated values and the position of 
the estimated stator flux. Some research is being done to adapt DTC to new converters and also to reduce the torque ripple, 
which is one of its main drawbacks. DTC is the direct control of torque and flux of a drive by the selection, through a look-up 
table, of the inverter voltage space vectors. The main advantage of DTC is its structure, no coordinate transformations and no 
PWM generation are needed. However, torque and flux modulus values and the sector of the flux are needed. Not only it is a 
very simple and robust signal processing scheme but also a very quick and precise torque control response is achieved. 

 In this paper, a novel MC-DTC method for fed induction motor based on space vector modulation is proposed. The 
advantages of DTC method are combined with the advantages of the matrix converter based on space vector modulation 
technique.The appropriate switching configurations of the matrix converter for each constant time are presented in an 
opportune switching table[8],[9],[10]. The table is only entered by the imaginary voltage vector, which is generated from the 
DTC method for voltage source inverter, and the position of input voltage vector which can be measured exactly. Simulation 
and experiment at the high-speed and low-speed are carried out to prove the good performances of the novel method. 

 
CONVENTIONAL DIRECT TORQUE CONTROL 

 
Mathematical mode of induction machine 

 The mathematical mode of induction machine is shown in Figure 1. 
 

 
 

Figure 1 : The mathematiacal mode of induction motor 
 

 According to Figure 1 flux-linkage equations of induction machines in the stator stationary reference frame as 
follows. 

 
( )s s s sv R i dtα α αψ = −∫                                 (1) 

 
( )s s s sv R i dtβ β βψ = −∫                                 (2) 

 
Where sαψ and        are theα -axis and β -axis component of sψ

r
 respectively; svα  and svβ  are the α -axis and β -axis 

component of sv
r

respectively; siα and siβ are theα -axis and β -axis component of si
r

.  
 The electromagnetic torque can be expressed using the following equation. 
 

 3 3( ) ( )
2 2e p s s p s s s sT n i n i iα β β αψ ψ ψ= × = −

rr               (3) 

 
Where eT  is electromagnetic torque and  pn  is the number of rotor pole pairs. 
 

sβψ
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Principle of DTC 
 The basic principle in conventional DTC for induction motors is to directly select stator voltage vectors by means of 

a hysteresis stator flux and torque control. As it is shown in Figure 2. 
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Figure 2 : The diagram block of basic DTC 
 

 From Figure 2 can obtain stator flux *
sψ  and torque *

eT  references are compared with the corresponding estimated 
values. Both stator flux and torque errors, ψE and TeE , are processed by means of a hysteresis band comparators. In 
particular, stator flux is controlled by a two-level hysteresis comparator, whereas the torque is controlled by a three-level 
comparator. On the basis of the hysteresis comparators and stator flux sector a proper VSI voltage vector is selected by 
means of the switching table given in Table 1. 

 
TABLE 1 : Basic DTC switching table 

 

 
 

MC SPACE VECTOR MODULATION 
 

Working principle of MC 
 MC is an AC-AC converter, with mxn bidirectional switches, which connects an m-phase voltage source to an n-
phase load. The three-phase, 3x3 switches, MC shown in Figure 3 is the most interesting. It connects a three phase voltage 
source to a three-phase load[11]. 

 

 
 

Figure 3 : The topology of  matrix converter 
 

 In the MC shown in “Fig.3,” siv , { }, ,i A B C=  are the source voltages, sii , { }, ,i A B C= are the source currents. jNv , 

{ }, ,j A B C= are the load voltages, ji , { }, ,j A B C= are the load currents, iv , { }, ,i A B C=  are the MC input voltages and ii ,

{ }, ,i A B C= are the input currents. A switch, ijS , { }, ,i A B C= , { }, ,j a b c=  can connect phase i of the input to phase j of 

the load. With a suitable switching strategy, arbitrary voltages jNv  at arbitrary frequency can be synthesized.  
 Switches are characterized by the following equation. 
 

0
1

ij
ij

ij ij

witch S is open
S

witch S S close
⎧⎪= ⎨
⎪⎩

                      (4) 

 
 A mathematical model of MC can be derived from “Fig.3” as follows: 
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 The criteria utilized to implement the switching patterns for the matrix converter can be explained referring to the 
following example.  

 We can assume the imaginary VSI voltage vector is 1V , and the input voltage lint-to-neutral vector [14],[15]  is 
located in sector 1 as shown in Figure 7. 

 

 
 

Figure 7 : Block diagram of novel DTC-MC based on SVM 
 

 From Table 2, in order to generate a voltage vector in the same direction of 1V , there are 6 possible SCs  (±1, ±2, 
±3). According to the input voltage vector location, there are only 3 SCs having the voltage vectors as same direction to 1V : 
+1, -2 and -3. To synthesize the input current vector to be in phase with the input voltage vector located in sector 1, two SCs 
finally selected are +1 and -3. The switching table based on these criteria is shown in Table 3. 

 
TABLE 3 : MC-DTC switching table using SVM 

 

 
 

 As shown in Figure 7, the output voltage of matrix converter for each SCs is calculated. 
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Where the switching function ijS is 1 when the switch joining input line i  to output line J  is ON and i is 0 otherwise, 

, ,i a b c=  and = , ,J A B C . Matrix T represents the status of each switching configuration in Table 2.  
 The input voltage vector of induction motor in the  stationary reference frame for each sampling period. 
 

1 2

1 11
2 2 2
3 3 30

2 2

a
sd

s x y b
sq

C

V
v

v t T t T V
v

V

⎡ ⎤ ⎡ ⎤− −⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎡ ⎤= = +⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

   (14) 

 
 From Figure 6, the duty ratios of the two non-zero Scs. are calculated as follows. 
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