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Introduction 

The first part of this study reports the calculation of five expressions of relativistic Hamiltonians of particles moving in the field 

of potential forces depending on the notation of the Newton’s second law. The results obtained were used to calculate terms of 

ground states of hydrogen-like atoms. 

When studying the expression for the range of the proper (local) time  of a moving particle invariant under Lorentz 
transformations, the first part of this study [1] reports five types of relativistic Hamiltonians. Results are given in Table 1. 

TABLE 1. The expression of the Hamiltonian of the particle motion depending on the notation of the Newton’s second law 

and characteristics of its path. 
Notation of the Newton’s second law Expression of the Hamiltonian 

Fdr ≠ 0 (I) Fdr = 0 (II) 
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Discussion 

Second summands in equations (1-5) are expressions of the kinetic energy of a particle in the field of potential forces at the value 

of its potential energys U. 

On expanding in a power series , these summands give the series in which only the first members of the equation coincide 

(m0v
2
/2). The difference in values of the kinetic energy, calculated for example by equations (1) and (5), at =0.1 equals 0.3 %, 

while at =0.5 it reaches 7.5 %.  
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The applicability of the considered formulas to calculate the Hamiltonian can be assessed in the context of calculating the 

terms of hydrogen-like atoms. Clearly, due to the fact that electrons in the atom have no trajectory, it is impossible to accurately 

determine Fdr ≠ 0 or Fdr=0 in their state. It can be only assumed that for electrons with a high orbital quantum number (l), the 

second condition Fdr=0 (II) is more satisfied than the first one Fdr ≠ 0 (I). It can also be affirmed that the terms of hydrogen-like 

atom will be within the range of Hamiltonian values, corresponding to conditions (I) and (II) regardless of the quantum numbers 

of the electron. To verify this provision, one can use the results of the study [2], where it was proved that regardless of the kind of 

the electron kinetic energy, the atomic term takes on a minimum when the distance from any electron to the nucleus r i is related 

to its principal quantum number ni and nucleus charge Z, by the equation 
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Unless otherwise noted, hereinafter atomic units will be used. Values of fundamental constants ħ=1, e = 1, me=1, 

c=

is a fine structure constant), energy is expressed in Rydberg.  

Shall the quantum conditions of the state of an electron in an atom be satisfied, one has the equation 
2 2 2

r nP r ,  (7) 

It follows that 
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Wherefrom we find 
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The term of a hydrogen-like electron Т is calculated as a sum of kinetic energies of an electron (Ee) under its motion relative 

to the nucleus, the potential energy of their charges (U) and the kinetic energy of the relative motion of the atom (E). Preliminary 

calculations showed that the kinetic energy E can be taken into account classically: 
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M – atomic mass in terms of the electronic mass. 

Below are the formulas to calculate terms using all fives expressions of the Hamiltonian (1-5) of the electron He in hydrogen 

atoms (M=938.272 MeV), deuterium (M=1875.613 MeV) and tritium (M=2808.921 MeV [3]).  
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When calculating the limiting values of the terms of Н, D and Т, it should be assumed that Z=1 and n=1, since this corresponds to 

http://www.tsijournals.com/


www.tsijournals.com | January-2025 

3 

the deepest state of 1S electron. 

The calculation results in comparison with the experimental data [4] are shown in Table 2. 

The listed data shows the discrepancy between the estimated and experimental values of terms, thus it can be seen that the term 

with the use of the Hamiltonian H1 gives the best agreements with the experiment. The estimated faulty proportion in order of 

appearance corresponds to the amount of the Lamb shift in the atom, however it exceeds its value. 

TABLE 2. Estimated and experimental values of low-lying terms of hydrogen-like atoms (are expressed in Rydberg). 

Atom Hydrogen (Н) Deuterium (D) Tritium (Т) 

Term Value Texp–T,10
-6

Value Texp–T,10
-6

Value Texp–T,10
-6

– Texp 0.9994665084 - 0.9997384561 - 0.99982894 - 

– T0 0.9995089279 42.4195 0.9997808790 42.4230 0.99987136 42.4216 

– T1 0.9994689919 2.4835 0.9997409430 2.4869 0.99983143 2.4856 

– T2 0.9994956161 29.1077 0.9997675673 29.1112 0.99985805 29.1098 

– T3 0.9994556794 -10.8290 0.9997276305 -10.8256 0.99981811 -10.8269

– T3' 0.9994823041 15.7957 0.9997542552 15.7992 0.99984474 15.7978 

Based on the above-mentioned considerations on the uncertainty of the electron motion in an atom, we can assume that the 

observed state of an electron is a superposition of states corresponding to the adherence to specifications (I) and terms (II). Thus, 

the observed Hamiltonian of the electron in the atom. 

 (I) 1 (II)th e eH H H    , (16) 

where  is the contribution of the state (I), while (1- is the contribution of state (II) to the electron motion? It is obvious that it 

is impossible to use this state under the classical (1) and inverse relativistic (3) expressions of the Newton’s second law, as in 

these cases Hamiltonians I and II are degenerated. 

H0(I)=H0(II), H2(I)=H2(II)=H12 (Table 1). 

A pair of states (I) and (II) cannot serve this purpose when using the Newton’s second law (2) in the forms, suggested by Lorentz 

because of the difference between H1(I) and H1(II) with experimental values of the same op-erator (Table 2). 

Only a pair of Hamiltonians H3 and H3' can provide the full correspond-ence of H
th

, calculated by the formula (16) to

experimental values. Assuming  
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one can get values  for 1S electrons in considered atoms. 

H1S 

D1S 

T1S

By similar considerations, one can seek the Lamb shift in atoms. Under that logic, one can assume that for Р-electrons the 

contribution of the state (II) to the motion is higher than that for S-electrons. Consequently, the in equation SР will be fulfilled 

at one value for the principal quantum number n. The conclusion matches up with the observed facts. Shall all other conditions 

(quantum numbers) be equal, the kinetic energy of S-electrons will be slightly higher than that of Р-electrons. In particular, it will 

result in splitting of the terms of hydrogen-like atoms with electron 2S and 2Р at the same value of j–total angular momentum of 

the electron in the atom. Formulas to calculate the atomic terms in the indicated states are (14) and (15), where Z=1, n=2: 
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The observed value of the term of the state of an atom with the principal quantum number n=2 is found according to equations 

(16) and (17) using the formula:

 3 31exT T T     .        (20) 

However, a comparison of the precision experimental values of the terms of hydrogen and deuterium atoms [5] in the state 

with n=2, l=1, j=½ and in the state with n=2, l=0, j=½ revealed the following (l is an orbital quantum number). All these 

values turned out to be outside the range of the energy values [Т3, Т3'], determined by formulas (18) and (19). Nevertheless, 

the experimental values of terms of hydrogen and deuterium atoms in the state with n=2, l=1, j=3/2 turned out to be almost 

surely in the middle of the range [Т3, Т3']. 

The comparison of estimated results and experimental data [5] are shown in Table 3. Values H2P and D2P, determined by 

the formula (20) for hydrogen and deuterium atoms in the state with n=2, l=1, j=3/2, almost coincided up to the sixth 

significant figure: 

H2P 

D2P

In the same place, Table 3 shows the values of the terms, calculated using the equation (12) (Lorentz formula), in which it is 

assumed: Z=1 and n=2. The value of the Rydberg constant R∞·с=3,2898419602508·10
15

 Hz.

Noteworthy is the rather low error in calculating the atomic terms in the state with n=2, l=1, j=3/2 using the Lorentz formula 

(12). However, the indicated error for the hydrogen atom (12531 kHz) exceeds the error of the experimental determination 

(5,5 kHz) [5] by several orders of magnitude. The indicated error of the deuterium atom (12469 kHz) also exceeds the error 

of the experimental determination (5,5 kHz). 

Therefore, the final answer to the question concerning the applicability of the Hamiltonians in the form (2) or (4) and (5) to 

solve the problem of atomic terms is possible only after solving the problem of calculating the Lamb shift for states with 

j=½. 

TABLE 3. Estimated and experimental values of terms of hydrogen-like atoms in states with n=2, l=1, j=3/2. 

Atom Hydrogen (Н) Deuterium (D) 

Term Value Texp–T Value Texp–T 

– Texp, kHz 82201553274.3 - 822239201737.3 - 

– Texp, Ryd 0.2498647481 - 0.2499327359 - 

– T1, Ryd 0.2498647519 -3.8089·10
-9

0.9997409430 -3.7902·10
-9

– T3, Ryd 0.2498639199 8.2824·10
-7

 0.9997276305 8.2826·10
-7

 

– T3', Ryd 0.249865584 -8.3585·10
-7

0.9997542552 -8.3583·10
-7

References 

1. Yuriy Zevatskiy. Newton's Second Law and Relativistic Hamiltonian II: Atomic Terms (May 18, 2021).

2. Zevatskii YE. Technical Physics, 2006, Vol. 51, No. 3, pp. 378-382.

3. Nuclear Wallet Cards database version of 7/10/2019

4. NIST. Atomic Spectra Database. NIST Standard Reference Database 78. Version 5.8.

5. NIST. Energy Levels of Hydrogen and Deuterium. NIST Standard Reference Database 142. Last Update to Data

Content: July 2005.

(MRPFT)

http://www.tsijournals.com/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4452513
https://www.nist.gov/pml/atomic-spectra-database
https://www.nist.gov/pml/energy-levels-hydrogen-and-deuterium



