
INTRODUCTION

Analysis of both light and radial velocity (hereafter
V

R
) curves of binary systems helps us to determine the

masses and radii of individual stars. There are different
methods to determine the orbit of a spectroscopic bi-
nary from its V

R 
curve. Lehmann-Filhés[13] introduced a

geometrical method to determine the orbital elements
from the geometrical properties of the V

R 
curve, espe-

cially its maxima and minima. The method of Lehmann-
Filhés[13] has been found to be very useful and little, if
any, longer than other methods, providing a planimeter
is used. This method also gives, for improving the final
solution of the orbit, the differential corrections to the
preliminary elements using the form of the equations of
condition obtained by the method of least squares.
Russell[18] suggested an analytical method to develop the
observed V

R
 into a trigonometric series (Fourier series)

and the elements are found by comparing this series with
the corresponding analytical expression (Fourier series)
for the velocity. In this method the time consumed is
considerably longer than the method of Lehmann-

Filhés[13] and when the eccentricity is much greater than
0.4, it becomes laborious. King[12] proposes a graphical
method which enables one to use the whole course of
the velocity curve in finding the preliminary elements,
and is applicable to orbits of any eccentricity. This method
depends on the velocities at equal intervals of time, as
read from a freehand curve drawn to represent the ob-
servations. Schlesinger[20] presented the method of least
squares which differentially corrects the preliminary or-
bital elements by the help of the equations of condition.
The method of Schlesinger is suitable for all orbits ex-
cept those with very small eccentricities. It has greater
accuracy and also enables one to vary all of the unknown
parameters simultaneously instead of one or two of them
at a time. Russell[19] developed a quick method analo-
gous to the graphical method of King[12] that is equally
applicable to orbits of all eccentricities. It has the advan-
tage that a single diagram takes the place of the numer-
ous protractors which must be constructed for each sepa-
rate value of the eccentricity. The graphical processes in
Kings method, which demands the exact drawing of
lines and measurement of angles, will consume more
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time than the quick method of Russell[19]. Sterne[26] de-
scribed two forms of least square solutions both of which
allow the differential corrections to a set of preliminary
elements obtained by any direct method like the meth-
ods of Russell[18,19]. The first form is a modification of
Schlesingers method[20], in which the date of periastron
passage is replaced by the date at which the mean longi-
tude is zero. The first form is suitable for all orbits ex-
cept those with very small eccentricities. The second form
is particularly suitable for orbits having very small eccen-
tricities. Singh[21] introduced an approach similar to the
method of Russell[18] for expanding the V

R
 as a trigono-

metric series. This method gives a standard set of veloc-
ity curves for a set of eccentricity and longitude of
periastron values that can be used for the determination
of preliminary elements preparatory to a least square cor-
rection. Karami & Teimoorinia[9] introduced a new non-
linear least squares velocity curve analysis technique for
spectroscopic binary stars. Their method was applicable
to orbits of all eccentricities and inclination angles and
the time consumed was considerably less than the method
of Lehmann-Filhés[13]. They showed the validity of their
new method to a wide range of different types of bi-
nary. See Karami & Mohebi[7,8,11] and Karami et al.[10].

However, a large number of practical methods have
been proposed. But it is not useful to discuss their rela-
tive advantages: the method which gives the best results
in one case may well be unsuitable in another. For in-
stance, for near circular orbits when the eccentricity is
small, the V

R
 curve approaches in form the simple sine

curve and graphical methods cease to be of value. It is
then that analytical methods become useful. See Curtis[4],
Plummer[17] and Sterne[26]. Lucy and Sweeney[14] suggested
that because of observational errors, most of the spec-
troscopic binaries with eccentricities close to zero should
really be assigned circular orbits. Their argument is based
on purely statistical considerations, regardless of orbital
period, and has been subsequently challenged by other
authors. For instance, Skuljan et al.[22] emphasize that
modern observations do support the idea of Lucy and
Sweeney[14], at least for the shortest-period binaries (e.g.
with period less than about 10 days for late-type dwarfs).
However, the situation at longer periods is not clear and
the single-lined spectroscopic binary star æ TrA is one
such example. They point out that the orbit of æ TrA
was proved to be a definite ellipse, although with an
extremely small eccentricity of 0.01442. There is always
the possibility that a third low mass, unseen component
could have perturbed the orbit of æ TrA to non-circu-
larity. Concerning the evolution of low mass members
of close binary systems see Han et al.[6] and Yakut and
Eggleton[27].

Artificial Neural Networks have become a popular

tool in almost every field of science. In recent years, ANNs
have been widely used in astronomy for applications such
as star/galaxy discrimination, morphological classification
of galaxies, and spectral classification of stars (see
Bazarghan et al.[2] and references therein). Following
Bazarghan et al.[2], we employ Probabilistic Neural Net-
works (PNNs). This network has been investigated in
ample details by Bazarghan et al.[2].

Probabilistic Neural Network (PNN) is a new tool
to derive the orbital parameters of the spectroscopic bi-
nary stars. In this method the time consumed is consider-
ably less than the method of Lehmann-Filhés and even
less than the non-linear regression method proposed by
Karami & Teimoorinia[9]. In the present paper we use a
Probabilistic Neural Network (PNN) to find the opti-
mum match to the four parameters of the V

R
 curves of

the five double-lined spectroscopic binary systems: 66 And,
HR 6979, HR 9059, Par 1802 and QX Car (HD 86118).
Our aim is to show the validity of our new method to a
wide range of different types of binary.

The star 66 And is a double-lined spectroscopic bi-
nary and consists of primary and secondary compo-
nents and the minimum masses from orbit are about
0.45M


, or three times smaller than expected for the

spectral type. The spectral type is F4 dwarf and F5 dwarf
for the primary and the secondary star, respectively, and
the orbital period is P =10.989861 days[5]. HR 6979 is a
double-lined spectroscopic binary and consists of pri-
mary and secondary components and unlike 66 And,
the minimum masses for the components of HR 6979
are large, 1.8 and 1.7M


, suggesting that the compo-

nents might eclipse. Both components of HR 6979 are
Am stars that are still on the main sequence and the or-
bital period is P =14.364577 days[5]. HR 9059 is a double-
lined spectroscopic binary and consists of primary and
secondary components and like HR 6979, the minimum
masses of HR 9059 are rather large, in this case nearly
1.6M


, and so eclipses are a possibility. The compo-

nents of HR 9059 have spectral classes of F5 and the
orbital period is P =12.156168 days[5]. Par 1802 is a pre-
main-sequence (PMS), low-mass, double-lined, spectro-
scopic, eclipsing binary in the Orion star-forming re-
gion. Par 1802 is composed of two equal-mass (0.39 
0.03, 0.40  0.03 M


) stars in a circular, P=4.673845 day

orbit and the spectral type is M2[3]. QX Car (HD 86118)
is a double-lined eclipsing binary system and consists of
primary and secondary components. The two compo-
nents appear to be of nearly equal spectral type and lu-
minosity, the primary having slightly stronger lines than
the secondary and the spectral type is B2V and the or-
bital period is P =4.4779741 days[1].

This paper is organized as follows. In Sect. 2, we in-
troduce a Probabilistic Neural Network (PNN) to esti-
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mate the four parameters of the V
R
 curve. In Sect. 3, the

numerical results are reported, while the conclusions are
given in Sect. 4.

V
R
 CURVE PARAMETERS ESTIMATION BY

THE PROBABILISTIC NEURAL NETWORKS
(PNN)

Following Smart[23], the V
R
 of a star in a binary sys-

tem is defined as follows

V
R
 =  + K[cos( + ) + ecos ] (1)

where  is the V
R
 of the center of mass of system with

respect to the sun. Also K is the amplitude of the V
R of

the star with respect to the center of mass of the binary.
Furthermore ,  and e are the angular polar coordinate
(true anomaly), the longitude of periastron and the ec-
centricity, respectively.

Here we apply the PNN method to estimate the four
orbital parameters, , K, e and of the V

R
 curve in Eq.

(1). In this work, for the identification of the observa-
tional V

R
 curves, the input vector is the fitted V

R
 curve of

a star. The PNN is first trained to classify V
R 
curves cor-

responding to all the possible combinations of , K, e
and . For this one can synthetically generate V

R
 curves

given by Eq. (1) for each combination of the parameters:
 -100    100 in steps of 1;
 1  K  300 in steps of 1;
 0  e  1 in steps of 0.001;
 0    360 in steps of 5;

This gives a very big set of k pattern groups, where k
denotes the number of different V

R
 classes, one class for

each combination of , K, e and . Since this very big
number of different V

R
 classes leads to some computa-

tional limitations, hence one can first start with the big
step sizes. Note that from Petrie[16], one can guess , K
and e from a V

R
 curve. This enable one to limit the range

of parameters around their initial guesses. When the pre-
liminary orbit was derived after several stages, then one
can use the above small step sizes to obtain the final orbit.
The PNN has four layers including input, pattern, sum-
mation, and output layers, respectively (see Figure 5 in
Bazarghan et al.[2]). When an input vector is presented, the
pattern layer computes distances from the input vector to
the training input vectors and produces a vector whose
elements indicate how close the input is to a training in-
put. The summation layer sums these contributions for
each class of inputs to produce as its net output a vector
of probabilities. Finally, a competitive transfer function
on the output layer picks the maximum of these prob-
abilities, and produces a 1 for that class and a 0 for the
other classes[24,25]. Thus, the PNN classifies the input vec-
tor into a specific k class labeled by the four parameters ,

K, e and because that class has the maximum probabil-
ity of being correct.

NUMERICAL RESULTS

Here, we use the PNN to derive the orbital elements
for the five different double-lined spectroscopic systems
66 And, HR 6979, HR 9059, Par 1802 and QX Car (HD
86118). Using measured V

R
 data of the two components

of these systems obtained by Fekel et al.[5] for 66 And,
HR 6979 and HR 9059, Cargile et al.[3] for Par 1802 and
Andersen et al.[1] for QX Car(HD 86118), the fitted ve-
locity curves are plotted in terms of the phase in Figures
1 to 5.

The orbital parameters obtaining from the PNN for
66 And, HR 6979, HR 9059, Par 1802 and QX Car (HD
86118) are tabulated in TABLES 1, 3, 5, 7 and 9, respec-
tively. Tables show that the results are in good accordance
with the those obtained by Fekel et al.[5] for 66 And, HR
6979 and HR 9059, Cargile et al.[3] for Par 1802 and
Andersen et al.[1] for QX Car(HD 86118).

Note that the errors of the orbital parameters in
TABLES 1, 3, 5, 7 and 9 are the same selected steps for
generating V

R
 curves, i.e.  = 1, K = 1, e = 0.001

and  = 5. These are close to the observational errors
reported in the literature. Regarding the estimated er-
rors, following Specht[25], the error of the decision
boundaries depends on the accuracy with which the un-
derlying Probability Density Functions (PDFs) are esti-
mated. Parzen[15] proved that the expected error gets
smaller as the estimate is based on a large data set. This
definition of consistency is particularly important since
it means that the true distribution will be approached in
a smooth manner. Specht[25] showed that a very large
value of the smoothing parameter would cause the esti-
mated errors to be Gaussian regardless of the true un-
derlying distribution and the misclassification rate is stable
and does not change dramatically with small changes in
the smoothing parameter.

The combined spectroscopic elements including m
p

sin3 i, m
s
 sin3 i, (m

p
 + m

s
) sin3 i, (a

p
 + a

s
) sin i and 

 
are

calculated by substituting the estimated parameters K, e
and  into Eqs. (3), (15) and (16) in Karami and
Teimoorinia[9]. The results obtained for the five systems
are tabulated in TABLES 2, 4, 6, 8 and 10 show that our
results are in good agreement with the those obtained
Fekel et al.[5] for 66 And, HR 6979 and HR 9059, Cargile
et al.[3] for Par 1802 and Andersen et al.[1] for QX Car(HD
86118), respectively. Here the errors of the combined spec-
troscopic elements in TABLES 2, 4, 6, 8 and 10 are ob-
tained by the help of orbital parameters errors. See again
Eqs. (3), (15) and (16) in Karami and Teimoorinia[9].
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Figure 1 : Radial velocities of the primary and secondary
components of 66 And plotted against the phase. The obser-
vational data have been measured by Fekel et al.[5].

Figure 2 : Radial velocities of the primary and secondary
components of HR 6979 plotted against the phase. The obser-
vational data have been measured by Fekel et al.[5].

Figure 3 : Radial velocities of the primary and secondary
components of HR 9059 plotted against the phase. The obser-
vational data have been measured by Fekel et al.[5].

Figure 4 : Radial velocities of the primary and secondary
components of Par 1802 plotted against the phase. The obser-
vational data have been measured by Cargile et al.[3].

Figure 5 : Radial velocities of the primary and secondary
components of QX Car (HD 86118) plotted against the phase.
The observational data have been measured by Andersen et
al.[1].

TABLE 1 : Orbital parameters of 66 And

 This Paper Fekel et al.[5] 

(km / s) �4 ± 1 �3.705 ± 0.019 

Kp (km / s)
 

47 ± 1 46.719 ± 0.034 

Ks (km /s)
 

48± 1 48.083 ± 0.038 

e 0.193 ± 0.001 0.19236 ± 0.00057 

() 255 ± 5 250.55 ± 0.18 

TABLE 2 : Combined spectroscopic elements of 66 And

Parameter This Paper Fekel et al.[5] 

mp sin3 i / M
 

0.4659 ± 0.0296 0.4661 ± 0.0008 

ms sin3 i / M
 

0.4562 ± 0.0292 0.4529 ± 0.0007 

(mp + ms) sin3 i / M
 

0.9222 ± 0.0588 �  

ap sin i / 106 km
 

6.9692 ± 0.1497 6.9283 ± 0.0051 

as sin i / 106 km
 

7.1174 ± 0.1497 7.1306 ± 0.0056 

(ap + as) sin i / 106 km
 

14.0866 ± 0.2994 �  

ms / mp
 

0.9792 ± 0.0416 �  
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TABLE 3 : Orbital parameters of HR 6979

 This Paper Fekel et al.[5] 

(km / s) �12 ± 1 �12.252 ± 0.026 

Kp (km / s) 68 ± 1 68.006 ± 0.043 

Ks (km / s) 72 ± 1 71.790 ± 0.060 

E 0.304 ± 0.001 0.30517 ± 0.00049 

() 285 ± 5 289.14 ± 0.11 

TABLE 4 : Combined spectroscopic elements of HR 6979

Parameter This Paper Fekel et al.[5] 

mp sin3 i / M
 

1.8159 ± 0.0789 1.8075 ± 0.0031 

ms sin3 i / M
 

1.7150 ± 0.0759 1.7122 ± 0.0025 

(ms + ms) sin3 i / M
 

3.5310 ± 0.1549 �  

ap sin i / 106 km
 

12.7961 ± 0.1925 12.792 ± 0.008 

as sin I / 106 km
 

13.5489 ± 0.1927 13.504 ± 0.012 

(ap + as) sin i / 106 km
 

26.3450 ± 0.3852 �  

ms / mp 0.9444 ± 0.0276 �  

TABLE 5 : Orbital parameters of HR 9059

 This Paper Fekel et al.[5] 

(km / s) 12 ± 1 11.744 ± 0.014 

Kp (km / s) 71 ± 1 71.117 ± 0.027 

Ks (km / s) 72 ± 1 71.905 ± 0.026 

e 0.312 ± 0.001 0.31167 ± 0.00026 

() 30 ± 5 34.453 ± 0.052 

TABLE 6 : Combined spectroscopic elements of HR 9059

Parameter This Paper Fekel et al.[5] 

mp sin3 i / M 1.5903 ± 0.0682 1.5930 ± 0.0013 

ms sin3 i / M 1.5682± 0.0676 1.5755 ± 0.0013 

(mp + ms) sin3 i / M 3.1585 ± 0.1358 �  

ap sin I / 106 km 11.2759 ± 0.1627 11.296 ± 0.004 

as sin I / 106 km 11.4347 ± 0.1628 11.421 ± 0.004 

(ap + as) sin i / 106 km 22.7106 ± 0.3255 �  

ms / mp 0.9861 ± 0.0283 �  

TABLE 7 : Orbital parameters of Par 1802

 This Paper Cargile et al.[3] 

(km / s) 22 ± 1 21.9 ± 0.6 

Kp (km / s) 60 ± 1 60.0 ± 1.1 

Ks (km / s) 58 ± 1 58.1 ± 1.1 

e 0.020 ± 0.001 0.02 ± 0.02 

() 50 ± 5 54.3 ± 39.0 

TABLE 8 : Combined spectroscopic elements of Par 1802

Parameter This Paper Cargile et al.[3] 

mp sin3 i / M 0.3908± 0.0200 0.40 ± 0.03 

ms sin3 i / M 0.4043± 0.0205 0.40 ± 0.03 

(mp + ms) sin3 i / M 0.7951± 0.0405 �  

ap sin i (AU) 0.0258± 0.0005 �  

as sin i (AU) 0.0249± 0.0005 �  

(ap + as) sin i (AU) 0.0507 ± 0.0010 0.0507 ± 0.0004 

ms / mp 0.9667 ± 0.0328 0.97 ± 0.03 

TABLE 9 : Orbital parameters of QX Car(HD 86118)

 This Paper Andersen et al.[1] 

(km / s) 17 ± 1 17.0 ± 2.0 

Kp (km / s) 167 ± 1 167.0 ± 1.1 

Ks (km / s) 183 ± 1 182.5 ± 1.0 

e 0.277 ± 0.001 0.278 (fixed) 

() 125 ± 5 123.6 (fixed) 

TABLE 10 : Combined spectroscopic elements of QX Car(HD
86118)

Parameter This Paper Andersen et al.[1] 

mp sin3 i / M 9.2268 ± 0.1642 9.19 ± 0.12 

ms sin3 i / M 8.4201 ± 0.1542 8.41 ± 0.12 

(mp + ms) sin3 i / M 17.6468 ± 0.3184 �  

ap sin I / R 14.1967 ± 0.0893 �  

as sin i / R 15.5569 ± 0.0897 �  

(ap + as) sin i / R 29.7536 ± 0.1789 29.70 ± 0.13 

ms / mp 0.9126 ± 0.0110 0.915 ± 0.008 

CONCLUSIONS

A Probabilistic Neural Network to derive the orbital
elements of spectroscopic binary stars was applied. PNNs
are used in both regression (including parameter estima-
tion) and classification problems. However, one can
discretize a continuous regression problem to such a de-
gree that it can be represented as a classification prob-
lems[24,25], as we did in this work.

Using the measured V
R
 data of 66 And, HR 6979,

HR 9059, Par 1802 and QX Car (HD 86118) obtained
by Fekel et al.[5], Cargile et al.[3] and Andersen et al.[1],
respectively, we find the orbital elements of these systems
by the PNN. Our numerical results show that the results
obtained for the orbital and spectroscopic parameters
agree well with those obtained by others using traditional
methods.

This method is applicable to orbits of all eccentrici-
ties and inclination angles. In this method the time con-
sumed is considerably less than the method of Lehmann-
Filhés. It is also more accurate as the orbital elements are
deduced from all points of the velocity curve instead of
four in the method of Lehmann-Filhés. The present
method enables one to vary all of the unknown param-
eters , K, e and  simultaneously instead of one or two
of them at a time. It is possible to make adjustments in
the elements before the final result is obtained. There are
some cases, for which the geometrical methods are inap-
plicable, and in these cases the present one may be found
useful. One such case would occur when observations
are incomplete because certain phases could have not been
observed. Another case in which this method is useful is
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that of a star attended by two dark companions with
commensurable periods. In this case the resultant velocity
curve may have several unequal maxima and the geo-
metrical methods fail altogether.
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