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Introduction 

After the second world war, pesticides have allowed the development of agriculture and contributed to the increasing and 

regulation of the agricultural production. The use of plant protection products has also limited or eradicated the number of 

very deadly parasitic diseases [1]. However, today, pesticides are believed to pose a risk for human health and the 

environment. They are indeed frequently implicated in the degradation of the quality of fresh groundwater and coastal waters, 

in the reduction of terrestrial biodiversity, found in agricultural areas and in natural contaminated environments or in cases of 

Abstract  

The main aim of this work is to study the opposite effects of Quercetin against neurotoxicity induced by an environmental 

pollutant in albino rats; after administration of Acetamiprid at (3.14 mg/kg/day) of body weight orally during 90 days we have 

found that Acetamiprid has caused a neurotoxic effect (a decrease in relative brain weight, a decrease in lipids (0.54 ± 0.01), an 

increase of carbohydrates (1.43 ± 0.05) and total proteins (6.97 ± 0.02) of the brain), Acetamiprid has also an overall pro-oxidant 

effect, this is revealed by the significant reduction in the level of reduced Glutathione (5.01 ± 0.31), and activity of Glutathione 

peroxidase (0.042 ± 0.002) and catalase (1.26 ± 0.04) in the brain and on the other hand, we recorded an increase in enzyme 

activity of glutathione s‐transferase (0.018 ± 0.002), the rate of MDA (0.08 ± 0.009) and Adversely affect the behavior and 

lifestyle. Our results have showed that supplementation of the Quercetin at (10 mg/kg of body weight/day) by oral way in rats 

treated with Acetamiprid, improved some biochemical parameters, and declined other adverse effects of Acetamiprid, and that 

the Quercetin appears to be a simple and effective antioxidant to reduce the imbalance between the formation of free radicals and 

antioxidant systems of the body and consequently reduced the intensity of oxidative stress induced by Acetamiprid. 
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excess mortality of bees and decline in hives production. In addition, many epidemiological studies have suggested a 

correlation between the professional use of pesticides and the appearance of some pathologies in the concerned populations 

[2]. Carcinogenic effects, neurotoxic or endocrine disruption-type of pesticides have been highlighted in animals. The risk to 

humans is therefore issue both at the professional level or during consummation [3]. 

 

The brain is particularly vulnerable to oxidative damage because of its richness in peroxidable fatty acid, its high-energy 

demands, and its relatively low antioxidant power [1]. This irreversible molecular damage is the leading cause of 

neurodegenerative diseases [4]. 

 

In this context, the present study opted for the study of the pro-oxidant effects and neurobehavioral changes that can be 

induced following individually chronic exposure to an organochlorine incorporated ‘Acetamiprid’ which is a pesticide with 

the formula (C₁₀H₁₁ClN4) [5,6]. According to the toxicological information on the boxes of this last, they are hazardous and 

there is no specific antidote, that is why we applied a treatment of this toxicity by Quercetin as a pure polyphenol and 

synthetic organic substance [7]. 

 

Materials and Methods 

Animals 

The study was conducted on rats (Wister) albino males, from the Pasteur Institute of Algiers, weighing about 240 g to 260 g. 

Animals are divided into a control group and three treated lots. They have free access to water and food. The temperature of 

the pet store is maintained at 23°C, with a moderate humidity and a 12/12 photoperiod. 

 

Choice of doses 

Substances that will be used in this study are (Acetamiprid and Quercetin), the doses were selected by referring to results of 

recent work [5,7-10]; doses have been adjusted to meet the daily exposure rate. Rats were randomly divided into four groups 

of six (6) males each. The first group was served as the control who received only 0.5 ml of distillated water; the two other 

groups were treated PerOs with freshly prepared Quercetin solution with a single dose of 10 mg/Kg body weight for 90 days 

[9-11]. The third groups were treated with Acetamiprid at 3.14 mg/kg body weight per day for 90 days. The final groups were 

treated with Combination (Acetamiprid at 3.14 mg/kg/day and Quercetin 10 mg/Kg/day) for 90 days, each group received the 

treatment PerOs every day for 90 days between 9:00 am and 10:00 am. 

 

Sacrifice of animals and brain removal 

After 03 months of treatment, the animals were sacrificed by decapitation, the brain is removed and divided into five parts, 

one part used for the measurement of metabolites and stress parameters in the cytosol, and other parts kept in -80 for further 

studies. 

 

Tissue preparation 

Brain (1 g) was homogenized in 2 ml of buffer solution of phosphate buffered Saline 1:2 (w/v: 1g tissue with 2 ml PBS, pH 

7.4). Homogenates were centrifuged at 10000xg for 15 min at 4°C and the resultant supernatant was used for the 

determination of glutathione, malondialdehyde, and glutathione peroxidase, glutathione-S-transferase and catalase activity. 
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Weight measurement 

The weight measurement is performed on rats, day to day on a regular basis during the adaptation period and three months of 

treatment, using a sensitive balance (Aston®). 

 

Determination of carbohydrates 

The determination of total soluble carbohydrates was done in brain tissue of rats according to the Dubois method [12]. The 

calculation of the actual concentrations is done by the equation derived from the standard curve prepared from a stock 

solution of glucose. 

 

Protein estimation  

The total protein contents of various samples were determined according to the method of Bradford [13] using a bovine 

serum albumin as a standard.  

 

Determination of lipids 

Brain lipids are assayed according to the method of Goldsworthy [14], the spectrophotometric reading is performed at 530 

nm wavelength. The calculation of the actual concentrations is performed from the calibration curve made from a stock 

solution prepared using sunflower oil. 

 

Determination of reduced glutathione (GSH)  

Brain glutathione level (GSH) was measured utilizing the method described by [15]. 0.2 ml of a sulfosalicylic acid (SSA) at 

0.25%, centrifuged for 5 min A1000 t/min, add 1 ml of Tris HCl buffer + EDTA (0.02M), pH 9.6, mix and add 0.025 ml the 

5,5`-dithiobis 2-nitrobenzoic acid (DTNB) 0.01M was dissolved in absolute methanol, measure the absorbance (A) at 412 

nm. 

 

Determination of glutathione-S-transferase (GST) 

Glutathione-S-transferase (GST) catalyzes the conjugation reaction with glutathione in the first step of mercapturic acid 

synthesis. The activity of GST was measured according to the method of Habig [2]. The P-nitro benzyl chloride was used as 

substrate. The absorbance was measured at 340 nm at 30 s intervals for 3 min. 

 

Determination of glutathione peroxidase (GPX)  

Glutathione peroxidase (GPx) activity was measured by the procedure of Flohe and Gunzler [16]. The obtained supernatant 

after centrifuging of 5% liver homogenate at 1500×g during 10 min followed by 10000×g for 30 min at 4°C was used for 

GPx assay. 1 ml of reaction mixture was prepared which contained 0.3 ml of phosphate buffer (0.1 M, pH 7.4), 0.2 ml of 

GSH (2 mM), 0.1 ml of sodium azide (10 mM), 0.1 ml of H2O2 (1 mM) and 0.3 ml of liver supernatant. The reaction was 

terminated by addition of 0.5 ml 5% TCA after 15 min of incubation at 37°C. Tubes were centrifuged at 1500×g for 5 min 

and the supernatant was collected. 0.2 ml of phosphate buffer (0.1 M, pH7.4) and 0.7 ml of DTNB (0.4 mg/ml) were added to 

0.1 ml of reaction supernatant. After mixing, absorbance was recorded at 420 nm.  
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Determination of catalase activity (CAT)  

The catalase (CAT) activity was determined according to the method of Aebi [17]. The H2O2 decomposition rate was 

followed by monitoring absorption at 240 nm. One unit of CAT activity is defined as the amount of enzymes required to 

decompose 1 µmol of hydrogen peroxide in 1 min. the enzyme activity was expressed as µmol H2O2 consumed /min/mg 

protein. 

 

Determination of malondialdehyde (MDA) 

The lipid peroxidation level in brain homogenate was measured as malondialdehyde (MDA) which is the product of lipid 

peroxidation and reacts with Thiobarbituric acid (TBA) as a reactive substance (TBARS) to produce a red complex with an 

absorbance peak at 532 nm [18]. Thus, 125 µl of supernatant were homogenized by sonication with 50 µl of PBS, 125 µl of 

TCA–BHT (trichloroacetic acid-butylhydroxytoluene) in order to precipitate proteins, and then centrifuged (1000×g, 10 min, 

and 4°C). After wards, 200 µl of supernatant were mixed with 40 µl of HCl (0.6 M) and 160 ml of TBA dissolved in Tris, 

and then the mixture was heated at 80°C for 10 min. The absorbance of the resultant supernatant was obtained at 530 nm.  

 

Data processing 

The experiments data were analyzed using statistical software MINITAB (MINITAB 17.0 for windows 7, 8 and 10. 

MINITAB Ins. USA), and all statistical comparisons were made by means of t-test and values of P<0.05 were considered 

significant. Results are expressed as means ± SEM, and to better visualize the results the selected graph is the histogram 

using the Microsoft Excel 2016. 

 

Results and Discussion 

The question of the impact of neonicotinoids on health is necessary in view of the widespread contamination of the 

environment, water and impregnation of food. Although the state of science does not provide overall synthesis that these 

health impacts and studies continue on the subject, several publications are appearing risk of chronic effects of these products 

on human health. 

 

Action of Quercetin, Acetamiprid and combination (Quercetin/Acetamiprid) on settings growths in rats for 90 days 

The parameters of growth (total weight, weight gain, relative weight and tissue metabolites) in the brains of treated rats and 

control rats after 90 days of treatment are shown on the TABLES 1 and 2 (FIG. 1-4). 

 

TABLE 1. Body weight change (g) and relative weight (%) of the brain in control rats and rats treated with the 

Quercetin, the Acetamiprid and the combination (Q/Ac) after 90 days of treatment. 

Variable group 

Parameters control Quercetin Acetamiprid Combination 

weight (g) 246 ± 13.374 265 ± 17.098 224 ± 5.050*** 254 ± 15.984 

weight Gain (g) 42 ± 5.012 59 ± 7.016 21 ± 8.011*** 53 ± 7.13 

Relative weight 

of brain (%) 

0.628 ± 0.012 0.63 ± 0.014 0.681 ± 0.019*** 0.625 ± 0.013 

Results are expressed as mean ± SE (n=6) t-test was used for multiple comparisons. 
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Action on relative weight of brain 

 

 

FIG. 1. Variation in the relative weight of control and treated rats brains by Quercetin, Acetamiprid and combining 

(Quercetin/Acetamiprid) after 90 days of treatment. Each value is expressed as mean ± standard deviation, we use 

Student test. 

Action on cytosolic metabolites 

 

TABLE 2. Change of some biochemical parameters (Proteins, carbohydrates and fats) in the brain in control rats and 

rats treated with Quercetin, the Acetamiprid and combining Quercetin/Acetamiprid after 90 days of treatment. 

 

Variable group 

Parameters Control Quercetin Acetamiprid Combination 

Proteins (mg) 0.348 ± 0.0092 0.3489 ± 0.006 0.3502 ± 0.008 0.349 ± 0.008 

Carbohydrates 

(µg) 

36.627 ± 0.664 35.191 ± 0.606 55.927 ± 0.659*** 36.265 ± 0.8214 

lipids (µg) 448.936 ± 

0.153 

449.484 ± 0.169 444.911 ± 0.134** 447.649 ± 0.096 

Results are expressed as mean ± SE (n=6) t-test was used for multiple comparisons. ****P<0.0001, 

***P<0.001, **P<0.01, *P<0.05 statistical significant as compared to control 
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Action on the level of cytosolic carbohydrates 

 

 

 

FIG. 2. Changes in carbohydrate levels of the brain of control rats and rats treated with Quercetin, the Acetamiprid 

and combining (Quercetin/Acetamiprid) after 90 days of treatment. Each value is expressed as mean ± standard 

deviation, we use Student test. Batch compare treated with Quercetin (b) Acetamiprid (c) and the combination (d) 

compared to control group (a), р<0.05: significant (*), р<0.01: very significant (**), р<0.001: highly significant (***), 

р<0.0001: very highly significant (****), P>0.05: not significant (ns). 

 

Action on the tissue proteins level 

 

FIG. 3. Change in the protein levels in the brain of control rats and rats treated with Quercetin, the Acetamiprid and 

combining (Quercetin/Acetamiprid) after 90 days of treatment. Each value is expressed as mean ± standard deviation, 

we use Student test. Batch compare treated with Quercetin (b) Acetamiprid (c) and the combination (d) compared to 

control group (a). р<0.05: significant (*). 
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Action on the level of total lipids 

 

FIG. 4. Change of lipids levels in the brain of control rats and rats treated with Quercetin, the Acetamiprid and 

combining (Quercetin/Acetamiprid) after 90 days of treatment. Each value is expressed as mean ± standard deviation, 

we use Student test. Batch Compare treated with Quercetin (b) Acetamiprid (c) and the combination (d) compared to 

control group (a). р<0.05: significant (*), р<0.01: very significant (**), P>0.05: not significant (ns). 

 

Our study is conducted by an experiment in albino rats to see the effect of a dose of (10 mg/kg/day) of Quercetin [8,9,19,20] 

on a dose of (3.14 mg/kg/j) Acetamiprid [5,6,9]. 

 

The results or experiment suggest that the administration of Acetamiprid as stressor by what an insecticide reduces body 

growth compared to controls (FIG. 1-4). 

 

Disturbance of metabolism, which corresponds to the stress response, is observed very frequently and translates the systemic 

effects of the release of pro-inflammatory cytokines and myoactives as modifications endocrine characteristics [1]. 

 

During the period of brain growth, the human brain depends on glucose as rat brain uses both glucose and ketone compounds 

to cover its energy and biosynthetic requirements [21]. 

 

Logically, Acetamiprid malnutrition caused by their psychic effects regarding the reduction of appetite [1], the latter 

produces a cellular stress disorder by the contribution in decreasing of physiological antioxidant system cofactors (vitamins, 

trace elements...) after the gavage dose of 3.14 mg/kg/day of Acetamiprid the total weight of the rats is reduced because low 

food intake this causes a malnutrition. 
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In contrast, the brain dominance used a strategy to keep and increase the half-life of nervous cells by several mechanisms 

unlike other guard cells, brain metabolism is overactive in case of stress, specifically, Acetamiprid has activated indirectly the 

β-oxidation in the brain, so the brain cytosolic lipid rate is decreased, the cell energy needs are recovering, this latest action 

confirmed by the rate of increase in cytosolic carbohydrates [4,21,22]. 

 

Because the nervous cells use fat as a primary source of energy on the one hand, and on the other hand, many stress disorder 

catalysis of enzymes and mechanism are enable to decrease or neutralize the damage [23-25], it is also translated into an 

increase of protein levels. The increase in relative weight (0.05%) is the result of total decrease in body weight and the 

increase of brain weight. after gavage of combination (Quercetin 10 mg/kg/day and Acetamiprid of 3.14 mg/kg/day), the 

antioxidant effect of the polyphenol is clearly present by the neutralization of the harmful effects of Acetamiprid due mainly 

by the increasing of appetite and setting cofactors and essential nutrients to the antioxidant system. 

 

Our results are consistent with historical data [20,26,27] which showed that administration of Quercetin in rats treated with 

Acetamiprid which leads to the reduction of toxic effects. 

 

All of these results shows that Quercetin appears to protect the brain against harmful or toxic effects of Acetamiprid. This 

weight gain gradually decreases from one week to the next throughout the period of taking Acetamiprid orally. The results 

clearly showed that Acetamiprid caused a marked decrease in food intake that is the cause of an anorectic effect. These 

results are consistent with the work of [26,27] who observed a reduction in food consumption in male rats in a sub-chronic 

accessed. 

 

The results showed an impregnation of Acetamiprid in the brain, so the ability of crossing the blood brain barrier and act on 

the brain directly. These results justify the action of Acetamiprid on the cerebral antioxidant system in Wistar rats. 

 

Action of Quercetin, of Acetamiprid and combination Quercetin/Acetamiprid on cytosolic parameters of oxidative 

stress in the brain after 90 days 

Oxidative stress parameters (GSH, GPx, GST, CAT and MDA) in the brains of treated rats and control rats after 90 days of 

treatment are shown in the TABLE 3. 

 

Evaluation of GSH level 

GSH is a tripeptide play as the first defense against stress and thus considered as an essential compound that maintain cellular 

integrity due to its reducing property and its active participation in cellular metabolism [24,28]. 

 

Some of the important roles of glutathione are reduction or inactivation of ROS in the formation of glutathione disulfide 

(GSSG) and the conjugation of reduced glutathione (GSH) for the elimination of xenobiotics [29]. The results of our study 

are shown in FIG. 5. 

 

The study of oxidative stress parameters in tissues shows a very highly significant decrease of reduced glutathione (GSH) in 

the brain of the control group compared to the other groups. 
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TABLE 3. Change in oxidative stress parameters GSH, MDA, GPx, GST and catalase in the brain in control rats and 

rats treated with the Quercetin, the Acetamiprid and the combination (Q/Ac) after 90 days of treatment.  

Variable group 

Parameters control Quercetin Acetamiprid combination 

GSH (nmol/mg 

proteins) 

140.55 ± 

1.676 

145.56 ± 1.366*a 91.37 ±  

1.160****a,b
 

132.86 ± 1.58**a, b***c 

GPx (µmol/mg 

proteins) 

0.243 ± 0.014 0.248 ± 0.017 0.188 ± 

0.012**a***b 

0.229 ± 0.006*a**b***c 

GST (nmol/min/ 

mg prot) 

0.872 ± 

0.0038 

0.854 ± 0.0016*a 0.995 ±  

0.0007****a,b 

0.883 ± 0.0006*a**b***           

*c 

CAT (nmol/min/ 

mg prot) 

17.453 ± 

0.130 

18.719 ± 0.086*a 11.641 ± 

0.089****a,b 

16.893 ± 0.071**a,b*** 

*c 

MDA (nmol/mg 

prot) 

0.181 ± 0.010 0.173 ± 0.019 0.370 ±  

0.016****a,b 

0.205 ± 0.023*a, b****c 

Results are expressed as mean ± SE (n=6) t-test was used for multiple comparisons. ****P<0.0001, 

***P<0.001, **P<0.01, *P<0.05 statistical significant as compared to control. 

 

Furthermore, the GSH level is decreased due to the high level of superoxide and free radicals GSH is converted to GSSG 

(oxidized glutathione) [15,30]. Treatment with Quercetin has restores significantly the GSH level compared to treated rats 

this is in accordance with the work of [20,26,27] on different pesticides. The Acetamiprid causes a decrease of GSH in the 

brain tissue leading to oxidative stress, while Quercetin increases this concentration [8,19]. These results are consistent with 

the work [2,20,31], they suggest that the reactive metabolites of a xenobiotic cause an increase in the levels of intracellular 

Ca
+2

. 

 

FIG. 5. Change of GSH levels in the brain of control rats and rats treated with Quercetin, the Acetamiprid and 

combining (Quercetin/Acetamiprid) after 90 days of treatment. Each value is expressed as mean ± standard deviation, 

we use Student test. Batch compare treated with Quercetin (b) Acetamiprid (c) and the combination (d) compared to 

control group (a). р<0.05: significant (*), р<0.01: very significant (**), р<0.001: highly significant (***), р<0.0001: 

very highly significant (****), P> 0.05: not significant (ns). 
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that is accompanied with a decrease in GSH levels, it is mentioned that the alteration of calcium homeostasis generates 

mitochondrial oxidative stress which causes the formation of ROS, these last are depleting the cytosolic GSH [32,33]. results 

of a study on the kidneys treated with diesel, showed a significant increase of GSH, which is induced by the high levels of 

ROS generated by diesel constituents including PAHs [2,19,34], these results are confirmed the enzyme inhibition power 

Acetamiprid in the brain at doses of 0.34 mg/kg/d. 

 

According to Kumar et al. found a decrease in glutathione levels in rats treated with B(a)P, which may be due to the 

extensive use of glutathione by enzymes, and a reduction in the activity of glutathione synthesis enzymes such as the enzyme 

glucose-6-phosphate, and glutathione peroxidase, and the neutralization of the hydroxyl radicals and singlet oxygen. 

 

Although mitochondria produces continuous ROS during oxidative phosphorylation, leaking from superoxide in the electron 

transport chain is scanned by mitochondrial and cytoplasmic superoxide dismutase (SOD) and peroxidases GSH by reducing 

the rate of GSH [3,26,27]. The smoked cigarette continent many electrophiles and ROS also depletes GSH levels in the 

alveolar epithelial cytosolic cells in vitro and in vivo in the lung [24]. 

 

Evaluation of the enzymatic activity of GPx  

The antioxidant enzymes are considered the first bodyline defense against free radicals, where they prevent the oxidation of 

biological macromolecules [16]. 

 

According to the TABLE 3 and FIG. 6 the treatment of rats by Acetamiprid caused a highly significant (P>0.001) decrease of 

the enzymatic activity of glutathione peroxidase (GPx) activity in the brain compared to controls. However, there has been a 

highly significant increase of glutathione peroxidase (GPx) in rats treated with the combination compared to the treated with 

Acetamiprid [30,35]. 

 

GPx is an antioxidant key enzyme which regulates the level of ROS (GPx is capable of not only reducing the hydrogen 

peroxide in water, but also the oxidation of unsaturated fatty acids hydroperoxides) and thus protects the cells against damage 

generated by the toxic dose of Acetamiprid. Moreover, according to our results there is a decrease in brain GPx activity in 

rats treated with Acetamiprid. This decrease is mainly due to an overproduction of hydrogen peroxide and depletion of 

Quercetin and GSH in detoxification of Acetamiprid [27]. Resulting in a decrease of GPx activity [1]. 
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FIG. 6. cytosolic GPx activity in the brain of control rats and rats treated with Quercetin, the Acetamiprid and 

combination (Quercetin/Acetamiprid) after 90 days of treatment. Each value is expressed as mean ± standard 

deviation, we use Student test. Batch Compare treated with Quercetin (b) Acetamiprid (c) and the combination (d) 

compared to control group (a). р<0.05: significant (*), р<0.01: very significant (**), р<0.001: highly significant (***), 

P>0.05: not significant (ns). 

 

Evaluation of the enzymatic activity of GST 

The GST are essentially cytosolic family of multifunctional enzymes, involved in various operations of transport and 

intracellular biosynthesis [24,30,35]. However, the most studied function of GST as regards the prevention of environmental 

xenobiotic, their dwelling activity of catalyzing conjugation reactions between a peptide, GSH and reactive molecules 

containing electrophilic sites capable of reacting dangerously with macromolecules such as nucleic acids. Catalyzing the 

conjugation of glutathione with certain substrates represents a step in the formation of compounds that are less toxic and 

more water soluble than the starting molecules which promotes their elimination from the body [24,29,36]. GST is also 

involved in the reduction of ROS damages in different cells. 

 

Our study allowed us to measure the activity of this enzyme in the brain cells after a stress-induced by Acetamiprid. FIG. 7 

showed the variation of the enzymatic activity of cytosolic GST following an Acetamiprid administration. 
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FIG. 7. Change of the GST activity in the brain of control rats and rats treated with Quercetin, the Acetamiprid and 

combination (Quercetin/Acetamiprid) after 90 days of treatment. Each value is expressed as mean ± standard 

deviation, we use Student test. Batch Compare treated with Quercetin (b) Acetamiprid (c) and the combination (d) 

compared to control group (a). р<0.05: significant (*), р<0.01: very significant (**), р<0.001: highly significant (***), 

р<0.0001: very highly significant (****), P>0.05: not significant (ns).  

 

A very highly significant (p<0.000) of enzyme activity was observed in the group treated by Acetamiprid to (3.14 

mg/kg/day). 

The results of our study are consistent with previous studies that have shown that exposure to family of xenobiotics can 

induce GST activity [20,27]. The combination of their reactive metabolites with GSH in the GST may inactivate the 

compound and prevent the formation of adducts with DNA and mutagenicity. Therefore, the increase in the expression of 

GST is generally observed when the cells are under stress [30]. 

 

Evaluation of the enzymatic activity of catalase 

The activity of catalase is specifically subservient to the conversion of the hydrogen peroxide into oxygen and water [37]. It 

is mainly located in the peroxisome. It thus prevents oxidative damages within the peroxisome, and prevents its propagation 

in the rest of the cell [18]. 

 

In this study, we intend to assess the opposite effect of Quercetin on the toxicity of Acetamiprid on enzymatic activity of 

catalase. 

 

FIG. 8 shows the variation of the enzymatic activity of cytosolic catalase between the control group, and other groups. 
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FIG. 8. Change of cytosolic catalase activity in the brain of control rats and rats treated with Quercetin, the 

Acetamiprid and combination (Quercetin/Acetamiprid) after 90 days of treatment. Each value is expressed as mean ± 

standard deviation, we use Student test. Batch compare treated with Quercetin (b) Acetamiprid (c) and the 

combination (d) compared to control group (a). р<0.05: significant (*), р<0.01: very significant (**), р<0.001: highly 

significant (***), р<0.0001: very highly significant (****), P>0.05: not significant (ns). 

 

The results of this study showed a very highly significant decrease in cytosolic catalase of the brain in rats treated with 

Acetamiprid. This result suggests that Acetamiprid indirectly induces an increase in H2O2, so it is a case of causing oxidative 

stress. However, treatment with the (pesticide/Quercetin) presented an improvement on treatment with the pesticide only by 

the radical OH° is a possible candidate. Indeed, the decrease in CAT and GPx activity causes an increase in H2O2 that can 

produce OH° radical [38,39]. This is explained by a depletion of this enzyme following repeated exposure of Acetamiprid 

which generates of ROS during its metabolism including derivatives Quinones, an increase of SOD, a parameter that is not 

considered here, leads to an increase of H2O2 production, it also causes reduction of catalase [9,37]. These results disagree 

with several authors have tested the effect of some types of pesticides leading to the increase in catalase activity in animals, 

because of the existence of these pesticides in the body and subsequently boosting antioxidant defense [26,27,32].
 

 

All of these results showed that the dose of (10 mg/Kg/day) of Quercetin seems to protect the brain by increasing the 

antioxidants enzymatic activities in this experiment. 

 

Evaluation of MDA levels  

Because of the difficulty of measuring free radicals (reactive intense, extremely short half-life, low concentration); indirect 

markers are determined [23]. thiobarbituric acid is a powerful alkylating agent capable of reacting with biological 

macromolecules [40]. MDA levels is proportional to the extent of lipid peroxidation [41], it is considered as one of the 

fundamental mechanisms of cell damage caused by free radicals. Indeed, the lipid peroxidation resulting in the denaturation 

of polyunsaturated fatty acids component membranes. Thus, when a stress caused by the introduction of a contaminant such 
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as pesticides, when the antioxidant systems become ineffective, cell damage can be estimated by the MDA levels. Therefore, 

it is a good biomarker for the measurement of oxidative stress. 

 

During our work, we recorded a very highly significant increase in MDA levels in the brain of treated rats compared with 

controls FIG. 9. This result is consistent with other studies [20,23,27,28,32,36]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 9. Change of cytosolic MDA levels in the brain of control rats and rats treated with Quercetin, the Acetamiprid 

and combination (Quercetin/Acetamiprid) after 90 days of treatment. Each value is expressed as mean ± standard 

deviation, we use Student test. Batch Compare treated with Quercetin (b) Acetamiprid (c) and the combination (d) 

compared to control group (a). р<0.05: significant (*), р<0.01: very significant (**), р<0.001: highly significant (***), 

р<0.0001: very highly significant (****), P> 0.05: not significant (ns). 

 

An increase in lipid peroxides indicate serious damage to the cell membrane, inhibition of several enzymes, cell function and 

cell death [1,41-43]. 

 

In the end after Quercetin feeding at a dose of 10 mg/kg/day in rats treated with Acetamiprid for a period of 90 days, a 

recovery state on the different stress parameters was observed, knowing that Quercetin is one of several active herbal extract 

play an important role in the prevention of various diseases related to oxidative stress [11,43] and regulates the activity of a 

variety of enzymes and cellular receptors, the work of [9,38] showed that the quercetin extract induced changes on the 

composition of lipids of cells, antioxidant status and enzymes attached to the membrane, which is a direct or indirect 

consequence of oxidative stress. 

 

Conclusion 

The study clearly demonstrated the subchronic exposure to Acetamiprid used in this study was able to induce neurotoxicity 

by abnormalities and a state of oxidative stress in total brain areas in adult male rats. Furthermore, the feeding of Quercetin to 

treated rats showed improvements affected all parameters. 
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