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ABSTRACT KEYWORDS
In the brain Magnetic Resonance (MR) images, the nasopharynx part is Image segmentation;
highly irregular. It isdifficult to accurately segment this part. Owing toiits Feature weight;

Immune algorithm;
Support vector machine.

powerful capacity in solving non-linearity problems, One-class Support
Vector Machine (SVM) method has been widely used as a segmentation
tool. However, the conventional one-class SVMsassumethat each feature
of the samples has the same importance degree for the segmentation
result, which isnot necessarily truein real applications. In addition, one-
class SVM parameters also affect the segmentation result. In this study,
ImmuneAlgorithm (1A) wasintroduced in searching for the optimal feature
weightsand the parameters simultaneously. An Immune Feature Weighted
SVM (IFWSVM) method was used to segment the nasopharynx in MR
images. Theoretical analysis and experimental results showed that the
IFWSVM had better performance than the conventional methods.
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INTRODUCTION

Medical image segmentationisapplied notonlyin
clinical diagnosis, but it isa so thegroundwork of im-
age-guided navigation andinterventiond therapy etc.Y.
Theimprovement of ssgmentation accuracy isvery im-
portant in practica applications?. Theencephalictis-
suesincluding the nasopharynx aredifficult to beaccu-
rately segmented dueto their highly irregular bound-
aries. Owingtoitsability of learningthenon-linear dis-
tribution of thereal datawithout using any prior knowl-
edge, one-class Support Vector Machines(SVMs) have

been gppliedintissue segmentation. Theaim of theone-
classclassficationisto decidewhether adataisin tar-
get classor not. Abnormality detectiontasks, such as
meachinefault or medicd diagnoss, dl b ongtotheone-
classdassification problem®. Each featureof asample
Issupposed to haveitsdifferent importance degreeto
the segmentation result’. Conventiona one-class
SV Ms, however, do not take featureweightsinto ac-
count!®. Moreover, the parameters of one-classSVM
directly affect the segmentation resul t'®. Reference”
reported aRecel ver Operating Characteristics-based
weighting feature method for two-classSVM. But for
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theone-classSVM, the specificity can not be obtained.
ImmuneAlgorithm (I1A) hasthe abilities of learning,
memorizing and salf-adaptive adjusting®. Inthisstudy,
an | A-based method isintroduced in searching for the
optimd featurewe ghtsand parameterssmultaneoudly.
Combiningone-cdassSVM with 1A andfeatureweights,
one-classImmune FeastureWeighted SVM (IFVSVM)
isused to segment the nasopharynx in MR images.

ONE-CLASSFEATURE
WEIGHTED SVM

Conventional one-classSVM putsal thefeatures
of asampleasequally important to thefina segmenta
tionresult. Butin practice, dl factorsaffecting onething
usualy havethedifferentimportance. Different factors
should begiven different weightsto reflect thedifferent
importanceof each factor®. Similarly, different festure
should begivenitscorresponding weight, whichisthe
put forward concept of featureweightingin SVM.

Inthe conventional one-classSVM, letD = {x }!_, ,

x e R be adataset of target samples®. In one-class
FWSVM, pistransformed toD'={1,x;,} by the

feature weights/,,. Let X, =(4,x,,) - A certain
projection isintroduced to transform the original
dataset into ahigh dimensional feature space. A deci-
sionfunction f (X) =W e ®(X) - p should befound to

accept the target samples and reject the non-target
samples. The prima constrained optimization problem
should be solved by thefollowing formula:

+V_J]Z:=1€i _p

st.: Wed(X,)2p-§,

P 2
min : 3[w] o

wherew isthe normal vector of the hyperplane
which representsthe decision boundary; p >0isthe
biasof f(X); & >0isthesack variable; theregular-

izationtermv isaparameter which controlsthetrade-
off and indicatesthefraction of samplesthat should be
accepted by the description. Two Lagrangian multipli-

ers o, >0and g, > Oareintroduced. The Lagrangian
formiscongtructed asfollows:

L(W,E,p,a, 'Bi)=%”W"2 +ﬁz::1§i
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For Eq. 2, setting the partial derivativesto zero,
new congtraintsare obtained. Usingthekerndl function

K(X;, X;)=®(X;) e ®d(X;), whichisasymmetric func-
tion and satisfiesthe Mercer condition, Eq. 1 can be
converted to thefollowing dual problem:

. |
min 2 e KX, X))

3
st.: Y @ =land0<a <1 ®

Thedual problemin Eq. 3 presentsinaquadratic
form, and its minimization can be solved by the Qua-
dratic Programming (QP) optimization method. Train-
ing one-class SVM onthetarget dataset isthe process
of solving the QP problem to obtain Support Vectors
(SV's) which support the optimal hyper-plane. Thefol-
lowingisthedecisonfunction:

f(X)=sgn(Y,_, oK (X;, X)—p)
p= 0 (K(X;,X,))

Where X, isanyoneof the SVs. Inthis paper, Radial
BasisFunction (RBF) ischosen asthekernd function:

el XX X||
K(X;,X)=expi- ()

If thefeatureweights A, cantruly reflect thediffer-
ent importanceof each feature, theone-classIFWSVM
is bound to get better segmentation accuracy. Itisa
complicated problem to determinetheweight of each
feature. ImmuneAlgorithmisintroduced ininte ligently
optimizingthefeaturewe ghts.

4

ONE-CLASSIMMUNE FEATURE
WEIGHTED SVM

Biologicd ImmuneSystem (BIS) isahighly evolved
intelligent sysemwhichhaspardld and self-organized
features. Artificid Immune System (AlS) smulatesBIS
to construct mathematical model and strategy by using
mathematical method and computer technology. Im-
muneAlgorithm based onAlSisdeveloped to solve
certain problemsof engineering applicationsi?. InlA,
agoal function of the optimizationisregarded asan
Antigen (Ag); the optimal solutionisregarded asan
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Antibody (Ab). Thematching degree between theAg
andtheAbisdescribed astheaffinity: |Ab— Ag|,which

reflectsthe closeness between the goal and the poten-
tid solution. Resemblanceamong antibodiesisdescribed
as the similarity which also reflects the antibody
diversification™.Biological Immune System (BIS) isa
highly evolved intelligent systemwhich has parallel and
self-organized features. Artificial Immune System (AIS)
simulates Bl Sto construct mathematical model and strat-
egy by using mathematical method and computer tech-
nology. ImmuneAlgorithm based on AlSisdevelopedto
solve certain problems of engineering applications 1291,
In1A, agoal function of the optimization isregarded as
an Antigen (Ag); the optimal solution isregarded as an
Antibody (Ab). The matching degree between the Ag

andtheAbisdescribed asthe affinity: |Ab— Ag|, which

reflects the closeness between the goal and the poten-
tial solution. Resemblance among antibodiesis described
asthesimilarity which also reflectsthe antibody diversi-
fication™. TP=True Positiveindicatesthe number of
pointscorrectly classified; FP=Fa se Postiveindicates
the number of points wrong classified.
MP =TP/(TP + FP) (Match Percentage) isthecrite-
rionto estimate the performance of the classifier. The
goal function (Ag) isto maximizepp . Absarei,,,
o andv, reflectstheimportance degree of each fea-
tureandisthewidth of theRBF controlling theeffective
rangeof thekernel function. Different, andaffect. 1A is
introduced to optimize 4,,, o andv to get the high-
est. Mp

N potential solutionsfrom the solution spaceareran-
domly chosen astheinitia antibody generation. For
thateration, thereareantibody setsaspotentia solutions.

setl= (A4, A%, AL vh ot
setN=AY, AN ,.AY vV, a"),

Theantibody diversification should bemaintained
to avoid thedegeneration and theimmaturity of thed-
gorithm. The similarity among antibodies can be de-
scribed asfollows:

-
Abi—Abj"’ i,j=1,...,N, |¢J (7)

i =
max
1<i, <N

Accordingtothesimilarity, Abswithhigh smilari-
tieswill be suppressed. Assumethat the most ssmilar
antibody setsareand, one of them isremoved and the
other iskept. Inthisstudy, let N = 20, the5 most smilar
antibody sets are removed and the rest 15 antibody
setsare kept.

For the clonesdl ection phase, theaffinity of theanti-
genantibody iscomputed. Accordingto theaffinity, clone
sdlection isexecuted with antibody remova for antibod-
ieswithlow affinity and antibody clonefor antibodies
with high affinity. Inthisway, the convergence speed of
thea gorithmisexpedited. Inthisstudy, each antibody
set is put into the one-class FWSVM system respec-
tively, obtai ning eachfor each antibody set. Comparing
these of the 15 remaining antibody sets, the 5 antibody
setswhich correspond to the 5 lowest recognition accu-
racies are removed; the 5 antibody sets which corre-
spond tothe 5 highest recognition accuraciesarecloned;
and therest 5 antibody setswhich correspondto the 5
medium recognition accuraciesare kept asthey are. Af-
ter this phase, thenumber of antibody setsisstill 15.

For the antibody mutation phase, thenext genera
tion of 15 antibodiesis produced by the antibody mu-
tationformula

Ab; =Ab, —(1-¢ " h)ab, - Ag| W

Inour framework, ||Ab, — Ag| isdefined as (1- MP)

ratio. It meansthat an antibody ismoresuitablefor an
antigen if thisratio becomessmaller. Then 15 mutated
antibody setsare put into the one-classFWSVM re-
spectively to obtaintheir mps. 10 antibody setsof the
15 mutated antibody setswhich correspond to the 10
highest MPs are stored into theimmune memory ma-
trix. These 10 antibody setsare called excellent anti-
bodiesfor thecurrent iteration. A part of theinitia anti-
body generation can be obtained from thismatrix for
thenext iterationin order to enhancethe searching abil-
ity. After severd iterations, the best recognition result
can be obtained if the \p can nolonger beimproved
or the termination condition isreached. Thefeature
we ghtsand the parametersof theone-dlassSVM which
correspond to the highestare the optimal, and.

EXPERIMENT AND DISCUSSION

Inthisstudy, adataset of T2-weighted MR images
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withmatrix sizeand Imm dicethicknessareacquired
usingaCentauri 0.3T MRI system (XinAoMDT Tech-
nology Co., Ltd., China) under approved IRB. The
rangeof MR imageswhich containsthe nasopharynx is
42-116. Theexperimentsareimplementedin MATLAB
onaPCwitha2.16GHz CPU and 2GB of RAM.

Thegenerdization ability of theone-classSVM is
heavily dependent on festureextraction. Inthisstudy, 9
statistical featuresof gray include pixel gray vaue, av-
eragegray va uesand standard deviations of template
andtemplate, averagegray vaue oftempl ate, statistical
moments based on histogram for 2, 3 and 4 order mo-
ments; 48 local texture measuresinclude 12 texture
measures for each of 4 orientations () from gray co-
occurrence matrix oftemplateincluding angular 2 order
moment, inertia, inversedifference moment, entropy,
sum entropy, differenceentropy, correlation, sum aver-
age, differenceaverage, variance, sumvariance, differ-
encevariance. Totaly, 57 features are extracted from
MR images*2.

Thegtructure of nasopharynx isdividedinto 3 parts
(P1: themaxillary sinus, frontad snussphenoidsnusand
nasopharyngeal; P2: the ethmoid sinus; P3: the nasal
passages) for training and generalization respectively

TABLE 1 : The Optimal Parameters of The 2 SVM
Algorithmsfor 3 Parts

P1 P2 P3
V=037 V=043 v*=0.76
IFWSVM o*=1097  ¢*=0259  ¢*=0.108
V=045  v*=029 v =057
ISVM o*=213  o*=305  o*=4.24

feature weights

I:I:l 1D 20 20 40 50 80
57 features
Figurel: Thefeatureweight distribution for P1

duetothedifferent morphologica characterigticsof dif-
ferent parts. Inthetraining phase, dice72including 3
parts of nasopharynx ischosen asthetrainingdiceto
construct 3 one-classIFWSVM classifiers. Theopti-
mal parametersof the 2 one-classSVM dgorithmsfor
3 partsare shown in TABLE 1. The optimal feature
weightsof 3 partsareshownin Figure 1-3.

feature weights
o

o
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57 features

Figure2: Thefeatureweight distribution for P2
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Figure3: Thefeatureweight distribution for P3

Asshownin Figure 1-3, the feature weights are
different. For the exampleof the P2, the smallest fea-
tureweight isand the biggest featureweight is. This
meansthefeatureistheweakest relativetoand the fea
tureisthe strongest relativeto. In thisway, the pro-
posed method can obtain superiorby different feature
welghts.
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Asacomparison, one-classimmune SVM (ISVM)
isalsoimplemented to ssgment nasopharynx inthesame
MR images. Inthe one-classISVM, onlyandare opti-
mized andisnot takeninto account. For thegenerdiza-
tion phase, the structures of nasopharynx in MR im-
agesare segmented by 2 kindsof one-classSVM clas-
sifiers. For theexample of 5 slices, the comparative
performances of these 2 kinds of one-classSVM clas-
sfiersareshownin TABLE 2-6

TABLE 2: Thesegmentation Resultsof dice65

Algorithm TP FP MP Time(s)
p1 IFWSVM 682 42  94.2% 0.500
ISVM 671 53  92.7% 0.484
- IFWSVM 491 6 98.8% 0.395
ISVM 483 14  97.2% 0.265

TABLE 3: Thesegmentation resultsof slice 72

Algorithm TP FP MP Time(s)
P1 IFWSVM 1305 4 99.7% 0.496
ISVM 1294 15 98.9% 0.484
- IFWSVM 736 1 99.9% 0.484
ISVM 728 9 98.8% 0.250
P3 IFWSVM 377 2 99.5% 0.282
ISVM 375 4  98.9% 0.218

TABLE 4: The segmentation Resultsof dice 79

Algorithm TP FP MP Time(s)
P1 IFWSVM 1013 37 96.5% 0.485
ISVM 964 86 91.2% 0.484

TABLE 5: Thesegmentation Resultsof dlice 86

Algorithm TP FP MP Time(s)
p1 IFWSVM 1442 53  96.5% 0.500
ISVM 1367 128 91.5% 0.485
P2 IFWSVM 478 10 98.0% 0.375
ISVM 474 14 97.1% 0.266
P3 IFWSVM 260 12 95.6% 0.328
ISVM 254 18  93.4% 0.234

TABLE 6: Thesegmentation Resultsof slice 103

Algorithm TP FP MP Time(s)
p1 IFWSVM 9% 7 99.3% 0.484
ISVM 955 47  95.3% 0.365

As shown in TABLE 2-6, the of one-class
IFWSVM arehigher than that of one-classISVM due
to the searching for optimal weightsof different fea-

e, Fyurr PAPER

tures. It meansthat optimd featureweghtshaveapos-
tive effect on. Secondly, theof one-classIFWSVM are
smdler thanthat of one-classISVM, which meansthat
the positive samples arerecognized morein thetarget
object by using theone-classIFWSV M. Although the
time complexity of one-classIFWSVM isalittlebit

(a) Slice 65 (b) Segmentation result
Figure4: Thesegmentation result of dice 65

(a) Slice 72 (b) Segmentation result
Figure5: Thesegmentation result of dice 72

(a) Slice 79
Figure6: Thesegmentation result of dice 79

(b) Segmentation result

s LBioTechnology

An Tudian Yourual



426

FULL PAPER o

Nasopharynx segmentation in MR images based on one-class immune feature

BTAIJ, 8(3) 2013

higher, itisstill practica andtolerable. Inaddition, the
improvement of, even modest, isvery important for
surgica planning or image-guided therapy applications.
Thesatisfactory visud resultsof one-classIFWSVM
areshownin Figure4-8.

(a) Slice 86
Figure7: The segmentation result of slice 86

(b) Segmentation result

(a) Slice 103

(b) Segmentation result

Figure8: The segmentation result of slice 103

CONCLUSION

The conventiona one-classSVM assumesthat al
thefeatures of asample havethe sameimportancede-
greefor thefina segmentation result. Theintroduction
of thefeature weight concept can generate higherby
suppressing featuresthat areweskly related to the seg-
mentation result and strengthening featuresthat are
strongly rel ated to the segmentation result. Inthisstudy,
combining one-classSVM with 1A and festureweights,
one-dassIFWSVM issuccessfully implemented to seg-
ment thestructureof nasopharynx inMR images. Theo-
retica analysisand experimental resultsclearly show
that theone-classIFWSV M, with the optimal feature

welights, hassuperior performance.
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