ISSN: 0974 - 7516

Volume 10 Issue 2

OCAIJ, 10(2), 2014 [59-62]

NaBH₄/NiCl₂·6H₂O: A green synthetic method for fast and convenient reduction of nitroarens in water as green solvent

Nishtman Hassanloie*, Behzad Zeynizadeh, Shahriar Ashuri, Fakhradin Hassanloie Department of Chemistry, Faculty of Sciences, Urmia University, Urmia, (IRAN) E-mail: nhassanloie@ yahoo.com

ABSTRACT

NaBH4 in the presence of catalytic amounts of NiCl₂· $6H_2O$ reduces a range of nitro compounds to their corresponding amines in high to excellent yields. Reduction reactions were carried out in H2O as green solvent within Immediate. 15 minutes. The method is simple, inexpensive, easily scaled-up and applicable for large scale preparation of different substituted arylamines. © 2014 Trade Science Inc. - INDIA

KEYWORDS

NaBH₄; NiCl₂ · 6H₂O, water; Reduction; Nitro compounds.

INTRODUCTION

Arylamines are widely used as antioxidants and intermediates for pharmaceutical, agricultural chemicals, dyes and photographic. Reduction of nitro compounds is one of the important methods for the preparation of aryl amines. Nitro compounds have traditionally been reduced by high-pressure hydrogenation^[1], lithium aluminum hydride^[2] or aluminum amalgam^[3]. Only in the last few years have alternative methods emerged^[4], including the use of titanium(II) reagents^[5,6] and transfer hydrogenation^[7].

Sodium borohydride is a widely used reducing agent in organic chemistry. It is known that solely sodium borohydride does not reduce nitro compounds under ordinary conditions. However, It was reported that by the combination of transition metal halides or salts with NaBH₄ in protic or aqueous solvent systems reduce nitro compounds to their corresponding amines^[8-10]. Reported that, in all the work that has been carried out by using organic solvents^[11].

Many epidemiological studies with chemists and laboratory technicians in analytical chemical and biochemical laboratories showed that solvent exposure can cause adverse health effects^[12,13], so The use of hazardous and toxic solvents in chemical laboratories and the chemical industry is considered a very important problem for the health and safety of workers and environmental pollution also, organic solvents are expensive, not readily available and are not significant in terms of the environment. In the last decade, a large number of publications have demonstrated the value of performing chemical reactions in water or aqueous media^[14]. so we attempted to reduce nitro arenes to aniline corresponding in H₂O that, it is a green solvent, inexpensive and available solvent. In this context, From nickel Salts, NiCl, 6H, O was chosen as the effective catalyst. NaBH, in the presence of NiCl₂·6H₂O reduces varieties of nitroarenes to their corresponding amines in high to excellent yields. Reduction reactions were carried out in H₂O as ecofriendly solvent at 50.60 °C.

Full Paper **EXPERIMENTAL SECTION**

General

All reagents and substrates were purchased from commercial sources with the best quality and were used without further purification. IR and 1H NMR spectra were recorded on

Thermo Nicolet Nexus 670 FT. IR and 300 MHz Bruker Avance spectrometers, respectively.

The products were characterised by a comparison with their 1H NMR or IR spectra. All yields refer to isolated pure products. TLC was applied for the purity determination of substrates, products and reaction monitoring over silicagel 60 F254 aluminum sheet.

A typical procedure for reduction of nitrobenzene to aniline with NaBH4/NiCl2.6H2O system:

In a round-bottomed flask (10 mL) equipped with a magnetic stirrer, a solution of nitrobenzene (0.1231 g, 1 mmoL) in H2O (2 mL) was prepared. To the resulting solution, NiCl2.6H2O (0.1188 g, 0.5 mmoL) was added and the mixture was then stirred for 20 min at the temperature of 60°C. Afterwards, NaBH4 (0.1134 g, 3 mmoL) as a fine powder was added to the reaction mixture and a fine black precipitate was immediately deposited. The mixture continued to be stirred for 2 min and the progress of the reaction was monitored by TLC (eluent; CCl4/Et2O: 5/2). At the end of reaction, mixture stirred for 2 min. The mixture was extracted with CH2Cl2 (10 mL) and dried over anhydrous sodium sulfate. Evaporation of the solvent gave the pure liquid aniline (0.1168 g, 95%, entry 1, TABLE 3).

RESULTS & DISCUSSION

The first, choosed NiCl2 \cdot 6H2O for example, then was used optimal conditions for reduction of nitrobenzene (TABLE 1). As shown in TABLE 1, reduction of nitrobenzene with NaBH4 (2 mmol) and NiCl2 · 6H2O (0.01 mmol) in H2O (2 ml) under reflux conditions didn¹/₄t do. Results showed, reduction of nitrobenzene (1 mmol) with NaBH4 (3 mmol) and NiCl2 · 6H2O at 50-60 C, did very fast, that realized abount hydrogen gas (Schem 1).

Entry	Molar ratio Cat./NaBH ₄	Solvent	Condition	Time (h)	Conversian (%)
1	0.01:2	H_2O	Reflux	1	0
2	0.02:3	H ₂ O	Reflux	46 min	40
3	0.02:4	H ₂ O	Reflux	1	50
4	0.2:2	H_2O	r.t.	2	40
5	0.5:2	H_2O	Reflux	2	50
6	0.5:3	H_2O	r.t.	1.10	100
7	0.5:3	H ₂ O	50-60 °C	2 min	100

We applied the optimal conditions for the reduction of a nitrobenzene to aniline in the presence of NaBH4/NiCl2 · 6H2O, NaBH4/Ni(NO3)2 · 6H2O, NaBH4/Ni(OAc)2 · 4H2O, NaBH4/ Ni(SO4)2 · 6H2O, NaBH4/Ni(SO4) · 7H2O with the molar ratio of 3: 0.5 in H2O (2 mL).

As shown in TABLE 2, The optimization reactions showed that using 3 molar equivalents of

An Indian Journal

Organic CHEMISTRY

NaBH4 and 0.5 molar equivalents of NiCl2.6H2O in H2O(2 ml) at 50-60°C are the best conditions for the complete conversion of nitrobenzene into aniline (TABLE 2).

We applied the optimal conditions for the reduction of a variety of nitro compounds to their corresponding amines. As shown in TABLE 3, the product amines were obtained in high to excellent yields within Imme-

61

Tabel 2. Optimaization experiments for reduction of nitrobenzene with $NaBH_4/Ni^{+2}$ salts ^a									
Entry	Catalyst	Molar Ratio Subs./NaBH ₄ /Cat.	Time (min)	Conversion (%)					
1	NiCl ₂ ·6H ₂ O	1:3:0.5	2	100					
2	Ni(NO ₃) ₂ ·6H ₂ O	1:3:0.5	60	100					
3	Ni(OAc) ₂ ·4H ₂ O	1:3:0.5	2	100					
4	Ni(SO ₄) ₂ ·6H ₂ O	1:3:0.5	60	100					
5	Ni(SO ₄)·7H ₂ O	1:3:0.5	4	100					

^a All reactions were carried out in H_2O (2 ml) under oil bath conditions (50-60 °C).

Table 3. Reduction of nitroarenes with NaBH ₄ /NiCl ₂ ·6H ₂ O system ^a							
Entry	Substrate	Product	Molar Ratio Subs./NaBH ₄ /NiCl ₂ ·6H ₂ O	Time (min)	Yield (%) ^b		
1		⟨	1:3:0.5	2	95		
2	H_2N -NO ₂		1:3:0.5	Immediate	96		
3	О-№	H ₂ N-CH ₂	ОН 1:3:0.5	5	96		
4	CH ₃ CH ₃ NO ₂	CH ₃ CH ₃ NH ₂	1:5:0.5	15	97		
5	NO ₂		1:3:0.5	5	95		
6			он 1:3:0.5	10	95		
7			1:5:0.5	5	93		
8	O ₂ N-NO ₂ -NHNH ₂		MH ₂ 1:5:0.5	7	90		
9			1:5:0.5	180	91		
10	$H_{\mathrm{Br}}^{\mathrm{NO}_2}$	$\bigcup_{Br}^{NH_2} N$	1:5:0.5	10	98		
11	O ₂ N-√-COCH ₃		0HCH ₃ 1:5:0.5	5	$ \begin{cases} 62 \\ + \\ 38 \end{cases} $		
^a All reactions were performed in H ₂ O (2 mL) at 50-60 °C. ^b Yields refer to isolated nure products							

Full Paper

diate-180 minutes. In addition, Our attempts to reduce C=O over nitro group in 3-nitrobenzaldehyde and 4-nitroacetophenone were unsatisfactory and under the different conditions both of the functional groups were reduced (entries 3,11). The complete reduction of nitroarenes with two and three nitro groups was also achieved perfectly by this protocol: using 5 molar equivalents of NaBH4 in the presence of 0.5 molar of NiCl2.6H2O were the requirements for these transformations (entries 7, 8, 9).

ACKNOWLEDGMENT

The authors gratefully appreciate the financial support of this work by the research council of Urmia University.

REFERENCES

- [1] (a) M.Stiles, H.L.Finkbeiner; J.Am.Chem.Soc., 81, 505 (1959). (b) H.L.Finkbeiner, M.Stiles; J. Am. Chem. Soc., 85, 616 (1963).
- [2] (a) H.H.Wasserman, M.J.Hearn, B.Haveaux, M.Thyes; J.Org.Chem., 41, 153 (1976). (b)
 E.W.Colvin, D.Seebach; J.Chem.Soc.Chem. Commun., 689 (1978).
- [3] (a) W.Nuckel, M.Blohm; Liebigs Ann. Chem, 502, 114 (1933). (b) E.J.Corey, N.H.Andersen, R.M.Carlson, J.Paust, E.Vedejs, I.Vlattas, R.F.K.Winter; J. Am. Chem. Soc., 90, 3245 (1963). (c) E.J.Corey, I.Vlattas, N.H.Andersen, K.Harding; J. Am. Chem. Soc., 90, 32 (1968). (d) E.McDonald, R.T.Martin; Tetrahedron Lett., 1317 (1977).

Organic CHEMISTRY

An Indian Journal

- [4] D.Seebach, E.W.Colvin, F.Lehr, T.Weller; Chimia., 33, 1 (1979).
- [5] J.George, S.Chandrasekaran; Syn. Commun., 13, 495 (1983).
- [6] R.S.Varma, G.W.Kabalka; Syn.Commun., 15, 843 (1985).
- [7] S.Ram, R.E.Ehrenkaufer; Tetrahedron Lett., 25, 3415 (1984).
- [8] T.Satoh, S.Suzuki, Y.Miyaji, Z.Imai; Tetrahedron Lett., 10, 4555 (1960).
- [9] B.Ganem, J.O.Osbey; Chem.Rev., 86, 763 (1986).
- [10] B.Zeynizadeh, D.Setamdideh; J.Chin.Chem.Soc., 52, 1179 (2005).
- [11] B.Zeynizadeh, K.Zahmatkesh; J.Chin.Chem.Soc., 50, 267 (2003),
- [12] A.Valavanidis; Research Staff in chemical, biomedical laboratories. Risk assessment of various occupational diseases and occupational cancer. Archives of Greek Medicine 13(6), 488-503 (1996).
- [13] F.D.Dick; Solvent neurotoxicity. Occup. Environ. Med., 63, 221-26 (2006).
- [14] (a) P.A.Grieco; Organic Synthesis in Water; Blackie Academic & Professional; New York, (1998). (b) D.J.Adams, P.J.Dyson, S.J.Tavener; 'Chemistry in Alternativ Reaction Media'; John Wiley & Sons; New York, (2003).