Multiple linear regression analysis for air pollutant concentrations in Coimbatore city

Selvakumar Madhavan*1, T. Meenambal2
1Vel Tech High Tech DRDS Engg College, Chennai, Tamil Nadu, (INDIA)
2Government College of Technology, Coimbatore, Tamil Nadu, (INDIA)
E-mail: mselvaphd@yahoo.co.in
Received: 4th July, 2009; Accepted: 14th July, 2009

ABSTRACT

Air pollution has been aggravated by increasing traffic, rapid economic development and industrialisation, and higher levels of energy consumption. The increase in population, unplanned urban and industrial development has led to the problem of air pollution. The measurements of wind speed and direction, temperature, humidity, rainfall and solar radiation are important parameters used in the study of air quality monitoring results and to further understand the chemical reactions that occur in the atmosphere. Meteorological monitoring is used to predict air pollution events such as inversions, high pollutant concentration days and to simulate and predict air quality using computer models. The objective of this paper is to design an air quality management system. Air quality data was collected from 25 stations in and around Coimbatore city. Regression analysis has been done to establish the effect of the meteorological parameters with the concentration of air pollutants. © 2009 Trade Science Inc. - INDIA

INTRODUCTION

Vehicular emissions are of particular concern since these are ground level sources and thus have the maximum impact on the general population. Also, vehicles contribute significantly to the total air pollution load in many urban areas, increase in consumption patterns and higher demands for transport, energy, other infrastructure, thereby leading to pollution problems. The air pollutants can be divided into two groups. The traditional Major Air Pollutants (MAP, comprising sulphur dioxide, nitrogen dioxide, carbon monoxide, particles, lead and the secondary pollutant ozone) and the Hazardous Air Pollutants (HAP, comprising chemical, physical and biological agents of different types). Sulphur dioxide \(\text{(SO}_2 \text{)} \) is the classical air pollutant associated with sulphur in fossil fuels. The emission can be successfully reduced using fuels with low sulphur content e.g. natural gas or oil instead of coal \(^1\). Nitrogen oxides \(\text{(NO}_x \text{)} \) are formed by oxidation of atmospheric nitrogen during combustion. The main part, especially from cars, is emitted in the form of the nontoxic nitric oxide \(\text{(NO)} \), which is subsequently oxidised in the atmosphere to the secondary ‘real pollutant’ \(\text{NO}_2 \). The emissions can be reduced by optimisation of the combustion process (low NOx burners in power plants and lean burn motors in motor vehicles) or by means of catalytic converters in the exhaust \(^2\).
STUDY AREA CHARACTERISTICS

Coimbatore is the second largest city in Tamilnadu. The city has six major arterial roads and three National Highways. Most of the textile industries are situated in Coimbatore. The population of the city is around 1.25 million. There are about 50,000 small, medium and large scale industries in the city. Due to industrialisation and urbanisation Coimbatore’s air quality is worsening. The ambient air quality of Coimbatore has deteriorated with an increase in the number of vehicles and industrial pollution. It has been found that in some areas the levels of suspended particulate matter is higher than the WHO prescribed limit of 200 mg/m3 and respirable particulate matter of 35 mg/m3.

Analysis of particulate matter

The high-volume sampler is used for sampling and monitoring. The high volume air sampler was placed on buildings at a height of 4m, near to the intersection of roads and an average of 8 hours reading were recorded. The sampler uses a continuous duty and TSPM (Total suspended particulate matter) is measured by passing air at flow rate of about 1.1 m3/min through high efficiency cyclone which retains the dust particles greater than 10 micron size and allows only fines (less than 10 micron particles) to reach the glass micro fiber filter where these particles are retained. When fitted with a particle size classifier, it separates particles greater than 10μm size from the air stream. The air stream is then passed through a filter paper to collect particles lesser than 10μm size (PM$_{10}$). Gravimetric measurements yield values of suspended particulate matter, as the sum of the two fractions, and PM$_{10}$ is the material retained on the filter paper.

\[\text{TSPM} = \text{Filter paper average} + \text{Pouch average} \]

Analysis of NO$_x$

Air was collected over NaOH solution and analysed by Jacobs and Hochhesier method in the laboratory. The NO$_2$ produced is allowed to react with H$_3$PO$_4$, sulphanilamide and N(1-naphthyl) ethylenediamine dichloride. Air is bubbled through 50 ml of absorbing reagent of NaOH at 200 ml/min for 24 hours. 10 ml of the sample is taken and added to 1 ml diluted H$_2$O$_2$, 10 ml of diluted sulphanilamide and 1.4 ml of N(1-naphthyl) ethylenediamine dihydrochloride and mixed thoroughly. After 1 hour a purple azo dye is formed and absorbance at 543 nm is measured.

Analysis of SO$_2$

SO$_2$ was collected over a scrubbing solution using a sampling train containing HgCl$_4^{2-}$ (HgCl$_2$ + KCl), fitted to the high volume sampler. Sulphur dioxide was analysed using modified West-Gaeke method in the laboratory. The solution is allowed to react with HCHO and then with para-rosaniline hydrochloride. The absorbance of the product red-violet is measured at 548nm. 30 to 60 L of air is pumped through 10mL of the scrubbing solution in a small impinger, at 1 to 21/ min. Then 1 ml of dilute paraosaniline reagent solution and 1 ml of 0.2% HCHO solution is added. After 20 to 30 minutes, the absorbance at 560 nm is measured$^{[3]}$.

Meteorological data

Any study of air pollution should include a study of the weather patterns (meteorology) of the local area because the air pollutants are influenced by the movements and characteristics of the air mass into which they are emitted. If the air is calm and pollutants cannot disperse then the concentration of these pollutants will build up. Conversely, if a strong, turbulent wind is blowing any pollution generated will be rapidly dispersed into the atmosphere and will result in lower concentrations near the pollution source. The measurements of wind speed, temperature, humidity, rainfall and solar radiation
are important parameters used in the study of air quality monitoring results and to further understand the chemical reactions that occur in the atmosphere. Meteorological monitoring is used to predict air pollution events such as inversions, high pollutant concentration days and to simulate and predict air quality using computer models\cite{4}. The meteorological data was collected from the Surface and Ground water Department at Taramani.

<table>
<thead>
<tr>
<th>TABLE 1 : Meteorological data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Max. Temp in °C</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Jan 31.71</td>
</tr>
<tr>
<td>Feb 34.38</td>
</tr>
<tr>
<td>Mar 37.68</td>
</tr>
<tr>
<td>Apr 38.47</td>
</tr>
<tr>
<td>May 38.58</td>
</tr>
<tr>
<td>Jun 35.12</td>
</tr>
<tr>
<td>Jul 31.74</td>
</tr>
<tr>
<td>Aug 32.63</td>
</tr>
<tr>
<td>Sep 32.55</td>
</tr>
<tr>
<td>Oct 32.44</td>
</tr>
<tr>
<td>Nov 31.77</td>
</tr>
<tr>
<td>Dec 30.26</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSIONS

A box plot is a way of summarizing a set of data measured on an interval scale. It is often used in exploratory data analysis. It is a type of graph which is used to show the shape of the distribution, its central value, and spread. The picture produced consists of the most extreme values in the data set (maximum and minimum values), the lower and upper quartiles, and the median. Box plots are also very useful when large numbers of observations are involved and when two or more data sets are being compared. They are helpful for indicating whether a distribution is skewed and whether there are any unusual observations (outliers) in the data set. Box plots are plotted to find the concentration variations through-
It is found that the pollutant concentrations are high during the rainy season. Linear least squares regression is by far the most widely used modeling method. However, the regression model can be estimated by calculating the parameters of the model for an observed data set\[5\]. The general purpose of multiple regressions is to learn more about the relationship between several independent or predictor variables and a dependent or criterion variable\[6\]. Regression analysis was carried out for the data taken during Feb-March 2007 and the results are tabulated as follows:

The monitored data at the selected 25 stations in Coimbatore City are analyzed by multi regression and the evolved models for prediction of each of the pollutants as a function of the chosen meteorological parameter are given below.

\[
\begin{align*}
\text{SPM} &= 5.07 + 3.087 \times T + 1.187 \times RH - 0.118 \times WD - 1.118 \times WV \\
\text{SO}_2 &= -2.89 + 0.536 \times T + 0.157 \times RH - 0.033 \times WD - 0.485 \times WV \\
\text{NOx} &= 5.05 + 0.879 \times T + 0.181 \times RH - 0.045 \times WD - 0.822 \times WV
\end{align*}
\]

\(T\)-Temperature; \(RH\)- Relative Humidity; \(WD\)-Wind Direction; \(WV\)-Wind Velocity

Table 2: Results of statistical analysis

<table>
<thead>
<tr>
<th></th>
<th>TSPM</th>
<th>SO(_2)</th>
<th>NO(_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple R</td>
<td>0.730001</td>
<td>0.662118</td>
<td>0.90563</td>
</tr>
<tr>
<td>R Square</td>
<td>0.532902</td>
<td>0.4384</td>
<td>0.820165</td>
</tr>
<tr>
<td>Adjusted R Square</td>
<td>0.439482</td>
<td>0.32608</td>
<td>0.784198</td>
</tr>
<tr>
<td>Standard Error</td>
<td>16.97328</td>
<td>3.636688</td>
<td>2.271736</td>
</tr>
</tbody>
</table>

REFERENCES