ISSN: 0974 - 7435

BioTechnology

An Indian Journal
FULL PAPER

BTAIJ, 9(12), 2014 [505-510]

Aflatoxin M₁ detoxification in kefir using Lactobacillus acidophilus

A.Mohammadi Sani¹, Z.Marhamati^{2*}, M.H.Marhamatizade³

¹Food Science and Technology Department, Quchan Branch, Islamic Azad University, Quchan, (IRAN)

²Food Science and Technology Department, Young Researchers Club, Quchan Branch,

Islamic Azad University, Quchan, (IRAN)

³Food Hygiene Department, Veterinary Faculty, Kazerun Branch, Islamic Azad University, Kazerun, (IRAN) E-mail: Zohreh.marhamati@yahoo.com

ABSTRACT

Kefir is fermented milk only made from kefir grains and kefir cultures and nowadays consumed widely around the world. It may become contaminated with aflatoxin M₁ (AFM₁) which even in small quantities, have hazardous effects for human beings. Therefore, a practical and effective method is needed to be developed for the detoxification of AFM, contaminated milk or decreased its toxicity. It has been reported that specific lactic acid bacteria are able to remove or degrade AFM, from liquid media by physical binding. The objective of this study was to detect the effect of kefir starter and Lactobacillus acidophilus to bind AFM, in kefir made from milk spiked with 500 pg AFM, mL⁻¹. Accordingly, five levels of kefir starter (2, 4, 6%, 8 and 10%) as group 1 and five levels of Lb. acidophilus (0.1, 0.3, 0.5, 0.7 and 0.9%) with constant amount of kefir starter (4%) as group 2 were used. After 48h, the AFM, content of kefir samples was measured by competitive ELISA technique. Statistical analyses, in group 1, showed that the sample containing 6% kefir starter had the most reduction in AFM, concentration (88.17%) which was significant (p<0.05). In group 2 the sample containing 0.9% Lb. acidophilus and 4% kefir starter had the maximum amount of AFM, binding (89.04%) and there were no significant differences (p<0.05) between 0.3, 0.5 and 0.7% levels in AFM, reduction. Generally, the effect of kefir starter (alone) was more than Lb. acidophilus in AFM, binding and the combination of these strains had synergistic effect in AFM, reduction. These findings affirmed that particular bacteria and yeast used in this study can offer decontaminating AFM, kefir. © 2014 Trade Science Inc. - INDIA

INTRODUCTION

Aflatoxins (AFs), a group of potent mycotoxins, are produced by some competent mould strains of *Aspergillus flavus*, *Aspergillus parasiticus* and *Aspergil*

KEYWORDS

Aflatoxin M₁; Kefir starter; Lb. acidophilus; ELISA.

lus nomius as their secondary metabolic products^[2,15,25]. These filamentous fungi easily occur on agricultural products during growth, harvest, storage or transportation and contaminated feeds and foods by producing toxins^[13,19,32].

FULL PAPER

Aflatoxin M₁ (AFM₁) is the monohydroxylated derivate of aflatoxin B₁ (AFB₁) which excreted into milk when lactating animals are feed with AFB₁ contaminated feeds^[2,24]. It is estimated that approximately 0.3–6.2% of AFB₁ in animal feed is transformed to AFM₁ in milk, but this carryover rate has been shown to vary from animal to animal, day to day and also from one milking process to another. 12 h after ingestion of AFB₁ it could be revealed in milk and following the withdrawal of contaminated source, AFM₁ disappeared within 72 h^[3,4,31].

Although, AFM₁, is less carcinogenic, hepatogenic and mutagenic than AFB₁, it can inhibit several metabolic systems and causing liver, kidney and heart damage^[8,14,36]. So, occurrence of AFM₁ in milk and subsequently in other dairy products such as cheese, yogurt, butter, ice cream, kefir and etc. is a global concern since milk is a main nutrient for human diet particularly infants and children^[7,18,34]. Due to serious health concerns, many countries have set maximum limits for aflatoxins, which vary from country to country^[5,6]. The European Commission (EC) has set a limit of 50 ng/L for AFM₁ in milk^[16] while the US food and drug administration^[35] and institute of standards and industrial research of Iran^[21] prescribed the maximum level for AFM1 500 ng/L.

The best way to control the presence of aflatoxins in foods and feeds is to prevent their formation. Various physical and chemical methods have been used to detoxify aflatoxins from food and feed materials. But the use of many of them is currently limited due to problems concerning safety^[1,19,30]. This has led to search for alternative strategies such as biological agents. Studies undertaken in the last two decades suggested that lactic acid bacteria (LAB) and fermented dairy products possess anticarcinogenic activity. Recently, strains of LAB and yeasts were also reported to remove AFB₁ and AFM₁ from contaminated liquid media and milk^[11,17,20,22,23,27,28]. This study focuses on the ability of kefir starter and *Lactobacillus acidophilus* for binding AFM₁ from kefir.

MATERIALS AND METHODS

Materials

Bacterial and yeast strains

Kefir starter (cominox company, Spain) and Lac-

BioTechnology

Au Indian Pournal

tobacillus acidophilus (CHR Hansen Company, Denmark) were used in this research.

Preparation of AFM₁ standard solution

AFM₁ powder (Sigma Chemical Co., St Louis, MO) was dissolved in a mixture of HPLC grade benzene/acetonitrile (97:3 v/v) to a concentration of $0.1\mu g/mL$. Subsequently, the standard solution was prepared by diluting the mixture in PBS (0.5 M, pH 7.2). The benzene/acetonitrile was evaporated by heating (80 p C, 10 min) in a water bath^[10,22]. The final concentration of the standard solution (0.05 $\mu g/mL$) was calculated using the Lambert-Beer equation ($A = \varepsilon$. c. l) using the absorbance at 450 nm. The resulting solution was transferred to a glass bottle and stored in the dark at 4°C until used^[9,22].

Contamination of low-fat sterilized milk and kefir production

Five mLAFM₁ standard solution (0.05 μg/mL) was re-suspended in 495 mL of low-fat sterilized milk (1.5% fat), which was randomly purchased from a local supermarket in Shiraz-Iran, to a concentration of 500 pg of AFM, mL-1. Kefir samples made from milk with AFM₁ (500 pg AFM₁/ml), as previously explained. In order to evaluate the ability of kefir starter and Lb. acidophilus, ten tubes were considered which divided into two groups. Moreover, two tubes were considered as control samples. First group including five tubes each containing 10 mL of contaminated milk were considered. Different doses of kefir starter: 0.2, 0.4, 0.6, 0.8 and 1g(2, 4, 6, 8) and 10%) were added to the tubes respectively and mixed properly so that kefir starter was uniformly distributed. Second group including five tubes each containing 10 mL of contaminated milk and constant amount of kefir starter (0.4 gr which equals to 4%). Lb. acidophilus was added directly to all tubes in different concentrations: 0.01, 0.03, 0.05, 0.07 and 0.09 gr (0.1, 0.3, 0.5, 0.7 and 0.9%) and mixed properly. Afterwards, all the ten tubes were placed in incubator at 24°C for 24 h. Then coagulum was separated from the milk by filtering with a filter paper and the liquid was distributed in caps then placed in incubator at 14°C for 24 h. Finally, kefir samples were stored at 4°C in refrigerator for 48 h, then ELISA test procedure was performed. In order to prepare control samples two tubes (C₁ and C₂) were considered. C₁ sample

FULL PAPER

was for evaluating the initial contamination of low-fat sterilized milk which containing 10 mL of milk. It was stored at 4° C in refrigerator for 48 h, and finally ELISA test procedure was performed. C_2 sample containing 10 mL of contaminated milk plus 0.1% (0.01 g) *Lb. acidophilus* which was added directly and mixed properly. Then placed in incubator at 38°C for 8 h and finally stored at 4° C in refrigerator for 48 h. Afterwards, ELISA test procedure was performed.

AFM₁ analysis

AFM, analysis was performed by ELISA procedure according to EuroProxima B.V. recommendations. All samples were centrifuged (at 2000 for 10 min at 4°C) and the supernatant fluids were analyzed for AFM, residues using direct competitive Enzyme-Linked Immunosorbent Assay (dc-ELISA) method. The ELISA system (BioTek, USA) consisted of ELISA reader (model ELx808), ELISA washer (model ELx50) and the ELISA kit (Euro Proxima). In the direct competitive ELISA (dc-ELISA) assay, the 96- wells ELISA plate coated with anti-AFM, antibodies (clones G11, 6G4, and ATX2) was used. One hundred μL of the supernatant fluid was directly used per well. One hundred µL of the AFM₁ standard solutions and test samples $(100 \,\mu\text{L/well})$ in duplicate were added to the wells of microtiter plate and incubated for 60 min at room temperature in the dark. The liquid was poured off the wells and the micro well holder was tapped upside down vigorously (three times in a row) against absorbent paper to ensure complete removal of liquid from the wells. All the wells were filled with 250 µL of washing buffer and emptied as described earlier. The washing procedure was repeated twice. One hundred µL of the enzyme conjugate was added and incubated for 60 min at room temperature in the dark. The washing sequence was repeated three times. 50 µL of substrate and 50 μL of chromogen were added to each well and mixed thoroughly and incubated for 30 min at room temperature in dark. Then 100 µL of the stop reagent was added to each well, mixed, and measured at wave long of 450 nm in ELISA reader.

Statistical analysis

Statistical analyses of AFM₁ removal assays were carried out by using the Student's t-test for significant

differences between binding amounts of AFM₁ by the two microorganisms at different levels (kefir starter and *Lb. acidophilus*). All treatments were done in duplicate.

RESULTS AND DISCUSSION

The optical density (OD) values of the standards and samples were divided by the mean OD value of the zero standard and multiplied by 100. The zero standard was thus made equal to 100% (maximal absorbance) and the other OD values were quoted in percentages of the maximal absorbance. The amount of AFM $_1$ in the samples was expressed as AFM $_1$ equivalents. The AFM $_1$ equivalents in the samples (pg/mL) corresponding to the maximal absorbance percentage of each extract can be read from the calibration curve (Figure 1). TABLE 1 shows the concentration of unbound AFM $_1$ in each sample according to amount of absorbance OD $_{450 \text{nm}}$ based on standard curve.

Effect of kefir starter in detoxification of AFM,

The results for ability of different levels of kefir starter to bind AFM₁ are presented in Figure 2. AFM₁ levels in kefir samples treated with different doses of kefir starter ranged from 81.83 to 88.17%. Although all samples had more than 80% AFM₁ reduction after 48 h, the highest reduction of AFM₁ was related to the sample containing 6% kefir starter (88.17%) and then the samples containing 8, 10, 4 and 2% kefir starter had lower amounts of reduction, respectively. The percentages of AFM₁ binding in these four samples were

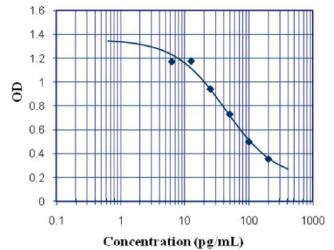


Figure 1: Calibration/standard curve

FULL PAPER

 $TABLE \ 1: The \ concentration \ of \ unbound \ AFM_1 in \ each \ sample \ according \ to \ amount \ of \ absorbance \ OD_{450nm} \ based \ on \ standard \ curve$

sample		AFM ₁ added to milk (pgmL ⁻¹)	Initial AFM ₁ in milk (pg mL ⁻¹)	Unbound AFM ₁ in kefir (pg mL ⁻¹)	AFM ₁ absorbance (%)	
C_1			188	188	27.16	
C_2		500	688	147	30.63	
	T_1	500	688	125	33.28	
TZ (**	T_2	500	688	107	35.79	
Kefir starter samples	T_3	500	688	81.4	37.49	
samples	T_4	500	688	102	33.87	
	T_5	500	688	107	33.21	
	T_6	500	688	102	36.61	
	T_7	500	688	86.9	40.07	
Lb. acidophilus samples	T_8	500	688	83.9	40.96	
samples	T_9	500	688	81.3	41.62	
	T_{10}	500	688	75.4	43.47	

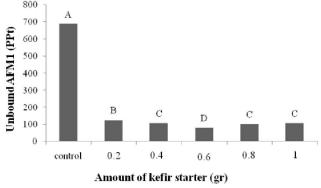


Figure 2 : Effect of kefir starter in reduction of ${\rm AFM}_{_{\rm I}}$ in kefir

equal to 85.17, 84.45, 84.45 and 81.83%. No significant differences (p<0.05) were found between AFM₁ binding in treatments with 4, 8 and 10% of kefir starter. Consequently, it is suggested to use 6% kefir starter to achieve the maximum reduction of AFM₁ in industrial production of kefir. There is no previous report on using kefir starter to decontaminate kefir for AFM₁ (TABLE 2). The mechanism involved in kefir starter ability to bind aflatoxins remains unclear. It is currently accepted that yeast cell wall has the ability to absorb the toxin^[11,12,26,27,33].

Effect of Lb. acidophilus in detoxification of AFM

Figure 3 shows the effect of *Lb. acidophilus* alone and in presence of kefir starter at different levels in AFM₁ reduction. After 48 h, the results of our study revealed that 0.1% *Lb. acidophilus* (without kefir starter) removed 78.63% of AFM₁ content. Using 0.1% *Lb. acidophilus* with a constant amount of kefir starter (4%)

caused significant increase (p<0.05) in the percentage of AFM₁ binding which was equal to 85.17%. AFM1 levels in kefir samples treated with different doses of *Lb. acidophilus* and constant amount of kefir starter (4%) ranged from 85.17 to 89.04%.

The sample containing 0.9% *Lb. acidophilus* and 4% kefir starter had the maximum amount of AFM₁ binding (89.09%) and then the samples containing 0.7, 0.5, 0.3 and 0.1% starter had lower amounts of reduction, respectively. The percentages of AFM₁ binding in these four samples were equal to 88.18, 87.81, 87.37 and 85.17% respectively. Statistical analyses showed no significant differences (p<0.05) between 0.3, 0.5 and 0.7 levels in AFM₁ reduction.

Our results shows that by increasing *Lb. acidophilus* amount, AFM₁ binding increased and the sample containing 0.9% *Lb. acidophilus* and 4% kefir starter showed the maximum AFM₁ reduction. Generally, the



Figure 3 : Effect of L. acidophilus in reduction of AFM_1 in kefir

BioTechnology
An Indian Journal

509

effect of kefir starter (alone) was more than *Lb. acido-philus* in AFM₁ binding and the combination of kefir

starter and *Lb. acidophilus* had synergistic effect in AFM, reduction.

TABLE 2: Studies on LAB and yeast potential for AFM, detoxification

Strain	Product type	Method of detection	AFM ₁ concentration		AFM ₁ Detoxification rate (%)		Reference
S. cerevisiae			Milk	HPLC	0.5 ng/mL	92.7 ± 0.7	Corrassin et al. (2013)
LAB pool 1			Milk	HPLC	0.5 ng/mL	11.7 ± 4.4	Corrassin et al. (2013)
S. cerevisiae	+ LAB		Milk	HPLC	0.5 ng/mL	Nearly 100	Corrassin et al. (2013)
L. acidophilu	s Lf10		Yogurt	HPLC	$5~\mu g/L$	18.4 ± 0.5	Motawee et al. (2011)
Streptococcu	s thermophilu	s K45	Yogurt	HPLC	$5~\mu g/L$	28.2 ± 4.3	Motawee et al. (2011)
L. bulgaricus	R21		Yogurt	HPLC	$5~\mu g/L$	31.4 ± 2.6	Motawee et al. (2011)
L. helveticus	A34		Yogurt	HPLC	$5~\mu g/L$	29.4 ± 1.5	Motawee et al. (2011)
L. rhamnosus	s GG		Yogurt	HPLC	$5~\mu g/L$	48.4 ± 2.8	Motawee et al. (2011)
L. rhamnosus	s LC705		Yogurt	HPLC	$5~\mu g/L$	49.6 ± 2.4	Motawee et al. (2011)
L. bulgaricus	i		Yogurt	ELISA	$0.05~\mu g/L$	87.6	El khoury et al. (2011)
Streptococcu	s thermophilu	S	Yogurt	ELISA	$0.05~\mu g/L$	70	El khoury et al. (2011)
L. delbruecki	i subsp. Bulga	ricus CH-2	Yogurt	ELISA	10 ng/mL	18.7 ± 0.5	Sarimehmetoglu et al. (2004)
Streptococcu	s thermophilu	s ST-36	Yogurt	ELISA	10 ng/mL	29.42 ± 0.6	Sarimehmetoglu et al. (2004)
L. rhamnosus	s GG		Milk	HPLC	$0.15~\mu g/L$	50.7 ± 2.1	Pierides et al. (2000)
L. rhamnosus	s LC705		Milk	HPLC	$0.15~\mu g/L$	46.3 ± 2.6	Pierides et al. (2000)
L. gasseri			Milk	HPLC	$0.15~\mu g/L$	30.8 ± 5.8	Pierides et al. (2000)
L. acidophilu	ıs LA1		Milk	HPLC	$0.15~\mu g/L$	18.3 ± 4.0	Pierides et al. (2000)
L. rhamnosus	s strain 1/3		Milk	HPLC	$0.15~\mu g/L$	18.1 ± 1.2	Pierides et al. (2000)
C. kefir			Kefir	ELISA	0.5 ng/mL	85	Current study
L. acidophilus		Kefir	ELISA	0.5 ng/mL	78.63	Current study	
L. acidophilu	ıs + C. kefir		Kefir	ELISA	0.5 ng/mL	87.51	Current study

REFERENCES

- [1] A.Beta, R.Lasztity; Trends in Food Science and Technology, **10**, 223 (**1999**).
- [2] Aflatoxins in Foods: Risk Assessment Studies. Report No.5. Food and Environmental Hygiene Department, (2001).
- [3] A.Mohamadi Sani, E.Gholampour Azizi, E.Ataye Salehi, K.H.Rahimi; Toxicology and Industrial Health, 1, (2012).
- [4] A.Mohamadi Sani, H.Nikpooyan; Toxicology and Industrial Health, **29**(4), 334 (**2011**).
- [5] A.Mohamadi Sani, H.Nikpooyan, R.Moshiri; Food and Chemical Toxicology, **48**, 2130 (**2010**).
- [6] A.Mohamadi Sani, M.Khezri, H.Moradnia; ISRN Toxicolgy, 1, (2012).
- [7] A.Prandini, G.Tansini, S.Sigolo, L.Filippi, M.Laporta, G.Piva; Food and Chemical Toxicology, 47, 984 (2009).
- [8] A. Yiannikouris, J.P.Jouany; Animal Research, 51,

81 (2002).

- [9] A.Zinedine, M.Faid, M.Belemlih; International Journal of Agriculture and Biology, **7**, 67 (**2005**).
- [10] C.Haskard, H.El-Nezami, P.Kankaanpaa, S.Salminen, J.Ahokas; Applied and Environmental Microbiology, 67, 3086 (2001).
- [11] C.H.Corassin, F.Bovo, R.E.Rosim, C.A.F.Oliveira; Food Control, 31, 80 (2013).
- [12] D.J.Bueno, C.H.Casale, R.P.Pizzolitto, M.A.Salano, G.Olivier; Journal of Food Protection, 70, 2148 (2006).
- [13] D.J.Webley, K.L.Jackson, J.G.Mullins; Food Australia, 49, 375 (1997).
- [14] E.E.Creppy; Toxicology Letters, 127, 19 (2002).
- [15] E.O.Farombi; African Journal of Biotechnology, 5, 87 (2006).
- [16] European Commission Regulations. No 1881/2006/ EC of December, 12th setting maximum levels of certain contaminants in foods. Official Journal of European Communities, L 364/5, (2006).
- [17] F.Bovo, C.H.Corassin, R.E.Rosim, C.A.Oliveira;

FULL PAPER G

- Food and Bioprocess Technology, (2012).
- [18] F.Galvano, V.Galofaro, G.Galvano; Occurrence and stability, of aflatoxin M1 in milk and milk products: A worldwide review. Journal of Food Protection, **59**, 1079 (**1996**).
- [19] G.Davegowda, M.V.L.N.Raju, H.V.L.N.Swang; Feedstuffs, 70, 12 (1998).
- [20] H.N.Mishra, C.Das; Critical Reviews in Food Science and Nutrition, 43, 245 (2003).
- [21] ISIRI; Milk and milk products-raw milk-specifications and test methods. Iranian National Standard 164 (2nd revision), Institute of Standards and Industrial Research of Iran, Karaj, Iran, Jan. (2005).
- [22] J.C.Serrano-Niño, A.Cavazos-Garduño, A.Hernandez-Mendoza, B.Applegate, M.G.Ferruzzi, M.F.San Martin-Gonzálezc, H.S.García; Food Control, 31, 202 (2013).
- [23] M.Pierides, H.El-Nezami, K.Peltonen, S.Salminen, J.Ahokas; J Food Prot., 63, 645 (2000).
- [24] P.Rosi, A.Borsari, G.Lasi, S.Lodi, A.Galanti, A.Fava, S.Girotti, E.Ferri; International Dairy Journal, 17, 429 (2007).
- [25] P.A.Murphy, S.Hendrich, C.Landgren, C.M.Bryant; Journal of Food Science, 71, 51 (2006).
- [26] P.H.Shetty, B.Hald, L.Jespersen; International Journal of Food Microbiology, 113, 41 (2007).

- [27] P.H.Shetty, L.Jespersen; Trends in Food Science and Technology, 17, 48 (2006).
- [28] Q.Wu, A.Jezkova, Z.Yuan, L.Pavlikova, V.Dohnal, K.Kuca; Drug Metabolism Reviews, 41, 1 (2009).
- [29] R.Ricordy, E.Cacci, G.Augusti Tocco; Review in food and nutrition toxicity. 4th Edition, London: CRC Press, 213 (2005).
- [30] S.C.Basappa, T.Shantha; Journal of Food Science Technology, 33, 95 (1996).
- [31] S.H.Hussein, J.M.Brasel; Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 167, 101 (2001).
- [32] S.S.Deshpande; Fungal toxins. In S.S.Deshpande, (Ed); Handbook of Food Toxicology New York: Marcel Decker, 387 (2002).
- [33] S.S.Parlat, M.Ozcan, H.Oguz; Research in Veterinary Science, 71, 207 (2001).
- [34] U.Boriboon, D.Suprasert; Min.Publ.Heal.J., 13, 108 (1994).
- [35] US FDA; Sec.527.400 whole milk, low fat milk, skim milk-aflatoxin M₁ (CPG 7106.210). FDA compliance policy guides. FDA, Washington, DC, 219 (1996).
- [36] V.Razavilar; Tehran University Press, 197 (2003).

