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ABSTRACT 

Tumor necrosis factor-α converting enzyme (TACE) and matrix metalloproteinases (MMP-2 and MMP-13) 
inhibition activities of α- and β-sulfone piperidine hydroxamic acid derivatives have been quantitatively analyzed in terms of 
chemometric descriptors. The identified descriptors, have highlighted the role of the weaker forces (polarization or van der 
Waals types) and the electronic effect for inhibition of the TACE. The flexibility in a compound and presence of certain 
structural fragments are prerequisite for inhibition of the MMP-2 while the atom centered fragments, in addition to some 
structural moieties are responsible for inhibition of the MMP-13. PLS analysis has further confirmed the dominance of the 
CP‐MLR identified descriptors. Applicability domain analysis revealed that the suggested models have acceptable 
predictability. Except one outlier compound predicted for MMP-2 activity, all the compounds were within the applicability 
domain of the proposed models of TACE, MMP-13 and MMP-2 activities and were evaluated correctly. The guidelines 
provided may be helpful in exploring more potential analogues of the series. 

The in vivo inhibition activities for LPS-stimulated TNF production in Raw Cells and human whole blood (HWB), 
reported for a few compounds,  have also been correlated with such descriptors. The descriptors for inhibition of Raw Cells 
have emphasized the significance of lag 2 and lag 3 of autocorrelations weighted, respectively, by atomic van der Waals 
volumes and atomic Sanderson electronegativities. The electronic and polarizability weighted descriptors, on the other hand, 
have exhibited their importance in the inhibition of HWB. 

Key words: TNF-α converting enzyme (TACE) inhibitors, MMP inhibitors, Combinatorial protocol in multiple linear 
regression (CP-MLR) analysis, Chemometric descriptors, Sulfone piperidine hydroxamic acid derivatives, 
QSAR. 

INTRODUCTION 

Tumor necrosis factor-α (TNF-α) is one of the cytokines, which is involved in immunomodulation 
and proinflammation events. The overproduction of TNF-α has been concerned in many autoimmune 
disorders namely rheumatoid arthritis, Crohn’s disease and psoriasis1-4. The reduction of TNF-α level has 
been managed for successful treatment of inflammatory diseases5. Thus, the finding of a low cost, orally 
active small drug which could moderate TNF-α levels is of prime importance at clinical level at present. One 
important strategy to reduce the levels of soluble TNF-α is to block the release of TNF-α from the cell 
surface by the inhibition of TNF-α converting enzyme (TACE) 6-8. This enzyme being a membrane-bound 
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zinc-metalloprotease is able to convert the 26-kD transmembrane pro-form of TNF-α to the mature 17-kD 
soluble form9,10. It was shown that the active site of TACE shares many common features with the matrix 
metalloproteinases (MMP’s) 11,12, therefore, depending on the scaffold used, different inhibitors can provide 
varying cellular activity and selectivity of TACE.  

Previously, it was reported that butynyloxyphenyl moiety attached to α- and β-sulfone piperidine 
hydroxamate scaffolds can provide potent TACE inhibitors13-15. From these inhibitors, the β-sulfone 
piperdine hydroxamates are generally more potent than α-sulfone piperdine hydroxamates in both the TACE 
enzyme and cellular assays. Though these inhibitors exhibited reasonable enzyme and cellular activity but 
revealed moderate activity in human whole blood (HWB). Also, they demonstrated poor pharmacokinetic 
properties, making it difficult to achieve and sustain plasma levels above the HWB IC50 (concentration 
required to bring out 50% inhibition). To further improve activity and selectivity, the piperidine α-sulfone 
hydroxamate scaffold bearing butynyloxyl group constant has been optimized14 so far in which the 
substituent on the piperidine nitrogen were only varied. Replacement of butynyloxyl group with 
quinolinylmethyl ether moiety has been shown to provide very active and extremely selective TACE 
inhibitors15. In view of this fact, the α-sulfone hydroxamate scaffold attached with quinolinylmethyl ether 
moiety has been recently explored16. However these studies were targeted at the alterations of substituents at 
piperidine nitrogen in a trial-and-error manner.  

The present communication is, therefore, aimed at to perform a quantitative structure-activity 
relationship (QSAR) study on α- and β-sulfone piperidine hydroxamate derivatives so as to provide the 
rationale for drug-design and to explore the possible mechanism of action. In the congeneric series, where a 
relative study is being performed, the chemometric 2D-descriptors may play important role in deriving the 
significant relationships with biological activities of the compounds. The novelty and importance of a 2D-
QSAR study is due to its simplicity for the calculations of different descriptors and their interpretation              
(in physical sense) to explain the biological activities of compounds at molecular level.  

EXPERIMENTAL 

Materials and methods 

The compounds under investigation include α- and β-sulfone piperidine hydroxamate derivatives 
having substituent variations at piperidine nitrogen. These analogues along with their inhibition activity, IC50 
values for TACE, MMP-2, MMP-13, Raw Cells and HWB, were taken from the literature16

 and the same, 
expressed as pIC50 (–logIC50) on molar basis, are listed in Table 1. A total number of 23 compounds, having 
general structures as in Figure 1, have been considered for present investigation. 
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Fig. 1: General structures of piperidine hydroxamic acid derivatives; (A) Quinolinylmethyl ether α-
sulfones, (B) Butynyloxy α-sulfones and (C) Butynyloxy β-sulfones 
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For modeling purpose, the data sets, related to TACE, MMP-2 and MMP-13 inhibition activities, 
were divided into training and test sets to insure external validation of models derived from appropriate 
descriptors. Additionally, the leave-one-out (LOO) and leave-five-out (L5O) procedures were employed for 
internal validation of such models. The selection of compounds for test set has been made through 
SYSTAT17 using the single linkage hierarchical cluster procedure involving the Euclidean distances of the 
activity, pIC50, values. Nearly 25% of the compounds, from total population, were selected from the 
generated cluster tree in such a way to keep them at a maximum possible distance from each other. In 
SYSTAT, by default, the normalized Euclidean distances are computed to join the objects of cluster. The 
normalized distances are root mean-squared distances. The single linkage uses distance between two closest 
members in clustering. It generates long clusters and provides scope to choose objects at different intervals. 
Due to this reason, a single linkage clustering procedure was applied. However, the criterion of test set was 
improper for the inhibition of Raw Cells and the HWB due to limited activity data reported for them.  

Molecular descriptors 

The structures of the compounds under study have been drawn in 2D ChemDraw18 using the 
standard procedure. All these structures have been ported to DRAGON software19 for computing the 
descriptors corresponding to 0D-, 1D-, and 2D-classes. Table 2 provides the definition and scope of these 
descriptor-classes in addressing the structural features which were employed in the present work. The 
combinatorial protocol in multiple linear regression (CP-MLR) computational procedure20 has been used in 
developing QSAR models. The descriptors of database have been scaled21 so that their values remain 
between 0 and 1. The scaled descriptors would then show equal influence in the QSAR models and none 
dominate each other like in the case of pre-scaled descriptors with larger or smaller values. 

Model development 

The CP-MLR is a ‘filter’-based variable selection procedure for model development in QSAR 
studies20. Its procedural aspects and implementation are discussed in some of our recent publications.22-26 
The developed software for this method has four embedded filters which make the variable selection process 
efficient and leads to a unique solution. Filter-1 seeds only those variables which have inter-parameter 
correlations to a predefined level (upper limit ≤ 0.79); filter-2 controls the variables entry to a regression 
equation through t-values of coefficients (threshold value ≥ 2.0); filter-3 provides comparability of equations 
with different number of variables in terms of square root of adjusted multiple correlation coefficient of 
regression equation, r-bar; filter-4 estimates the consistency of the equation in terms of cross-validated Q2 
with leave-one-out (LOO) cross-validation as default option (threshold value 0.3 ≤ Q2 ≤ 1.0). In order to 
collect the descriptors with higher information content and explanatory power, the threshold of filter-3 was 
successively incremented with increasing number of descriptors (per equation) by considering the r-bar 
value of the preceding optimum model as the new threshold for next generation.  

To discover any chance correlations associated with the models obtained through CP-MLR, each 
cross-validated model has been put to a randomization test27,28 by repeated randomization of the activity to 
ascertain the chance correlations, if any, associated with them. For this, every model has been subjected to 
100 simulation runs with scrambled activity. The scrambled activity models with regression statistics better 
than or equal to that of the original activity model have been counted, to express the percent chance 
correlation of the model under scrutiny. Goodness of fit of models was assessed by examining the multiple 
correlation coefficient (r), the standard deviation (s), the F-ratio between the variances of calculated and 
observed activities (F).  

The internal validation was ascertained through the cross-validated index, Q2, from leave-one-out 
(Q2

LOO) and leave-five-out (Q2
L5O) procedures. A value greater than 0.5 of Q2-index hints towards a 
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reasonable robust model. The external validation or predictive power of derived model is based on test set 
compounds. The statistical index r2

Test, representing the squared correlation coefficient between the observed 
and predicted data of the test-set, has also been computed for this purpose. A value greater than 0.5 of r2

Test 
suggests that the model obtained from training set has a reliable predictive power. 

Table 2: Descriptor classes used for the analysis of inhibition activities of α- and β-sulfone piperidine 
hydroxamic acids 

Descriptor class (acronyms) Definition and scope 

Constitutional (CONST) Dimensionless or 0D descriptors; independent from molecular 
connectivity and conformations. 

Topological (TOPO) 2D-descriptor from molecular graphs and independent conformations. 

Molecular walk counts  
(MWC) 

2D-descriptors representing self-returning walk counts of different 
lengths. 

Modified Burden eigenvalues 
(BCUT) 

2D-descriptors representing positive and negative eigenvalues of the 
adjacency matrix, weights the diagonal elements and atoms. 

Galvez topological charge indices 
(GLVZ) 

2D-descriptors representing the first 10 eigenvalues of corrected 
adjacency matrix. 

2D-autocorrelations  
(2DAUTO) 

Molecular descriptors calculated from the molecular graphs by 
summing the products of atom weights of the terminal atoms of all 
the paths of the considered path length (the lag). 

Functional groups  
(FUNC) 

Molecular descriptors based on the counting of the chemical 
functional groups. 

Atom-centred fragments  
(ACF) 

Molecular descriptors based on the counting of 120 atom-centred 
fragments, as defined by Ghose-Crippen. 

Empirical (EMP) 1D-descriptors represent the counts of non-single bonds, hydrophilic 
groups and ratio of the number of aromatic bonds and total bonds in 
an H-depleted molecule. 

Properties (PROP) 1D-descriptors representing molecular properties of a molecule. 

Partial least squares analysis 

Partial Least Squares29-31 (PLS) linear regression is a method suitable for overcoming the problems 
in MLR related to multicollinear or over-abundant descriptors. This is a modeling technique where 
information in the descriptor matrix X is projected onto a small number of latent variables (LV) called PLS 
components, which are linear combination of the original variables. The matrix Y is simultaneously used in 
estimating the “latent” variables in X that will be most relevant to predict the Y variables. All descriptor 
variables are preprocessed by autoscaling, using weights based on the variables’ standard deviation and the 
data are mean-centered prior to PLS processing. Scaling of descriptors is necessary because the values have 
different orders of magnitude. 

Cross-validation was employed to select the used optimum number of LVs. With cross-validation, 
some samples were kept out of the calibration and used for prediction. The process was repeated so that each 
of the samples was kept out once. The predicted values of left-out samples were then compared to the 
observed values using predicted residual sum of squares (PRESS). The PRESS obtained in the cross-
validation was calculated each time that a new LV was added to the model.  
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Applicability domain 

The utility of a QSAR model is based on its accurate prediction ability for new compounds. A model 
is valid only within its training domain and new compounds must be assessed as belonging to the domain 
before the model is applied. The applicability domain is assessed by the leverage values for each 
compound32,33. The Williams plot (the plot of standardized residuals versus leverage values, h) can then be 
used for an immediate and simple graphical detection of both the response outliers (Y outliers) and 
structurally influential chemicals (X outliers) in the model. In this plot, the applicability domain is 
established inside a squared area within ± x× (s.d.) and a leverage threshold h*. The threshold h* is generally 
fixed at 3 (k + 1)/n (n is the number of training set compounds and k is the number of model parameters) 
whereas x = 2 to 3. Prediction must be considered unreliable for compounds with a high leverage value           
(h > h*). On the other hand, when the leverage value of a compound is lower than the threshold value, the 
probability of accordance between predicted and observed values is as high as that for the training set 
compounds. 

RESULTS AND DISCUSSION 

A total number of 465 descriptors, belonging to 0D-2D classes of DRAGON, have been computed 
for 23 compounds of Table 1. Next, these descriptors have been scaled between 0 and 1 and collated in the 
separate pools, pertaining to inhibition activities of TACE, MMP-13, MMP-2, Raw Cells and HWB, for CP-
MLR analyses. A test set has been selected through SYSTAT and the same was used for external validation 
of the models, derived from the training set compounds. Six compounds (A1, A3, A10, A12, B17 and C20; 
Table 1) were identified for the test set for TACE, MMP-13 and MMP-2 activities while remaining 
compounds constitute the training set. A common test set was considered here to reveal the influence of 
similar structural features on these inhibition activities. Compounds having uncertain activity values have 
been eliminated from the data set prior to CP-MLR analysis. A number of models in one- two- and three-
descriptors have been derived in succession. In doing so, filter-3 was in turn incremented with increasing 
number of descriptors (per equation) by considering the r-bar value of the preceding optimum model as the 
new threshold for next generation.  

In order to quantify the TACE, MMP-13 and MMP-2 inhibition activity in terms of molecular 
descriptors, the corresponding training sets were employed to explore predictive models through CP-MLR. 
A total number of 17 and 8 models in three descriptors, respectively, for the TACE and MMP-13 activities 
and 8 models in two descriptors for the MMP-2 activity have divulged statistical significant parameters.  
However, three highest significant models for each of the TACE, MMP-13 and MMP-12 inhibition activities, 
are given by Equations (1)-(9) 

 pIC50 (TACE) = 8.596 –5.256 (0.821) SEigp –1.882 (0.297) JGI2 + 1.824 (0.306) MATS6v  

n = 16, r = 0.945, s = 0.302, F (3, 12) = 33.071, Q2
LOO = 0.798, Q2

L5O = 0.828, r2
Test = 0.709 …(1) 

pIC50 (TACE) = 8.451 –5.771 (0.820) SEigp –1.680 (0.293) JGI2 + 2.039 (0.342) MATS6p 

n = 16, r = 0.945, s = 0.302, F (3, 12) = 33.098, Q2
LOO = 0.785, Q2

L5O = 0.823, r2
Test = 0.645 …(2) 

pIC50 (TACE) = 10.560 –6.029 (0.818) SEigp –1.834 (0.293) JGI2 – 1.973 (0.328) GATS6v 

n = 16, r = 0.945, s = 0.300, F (3, 12) = 33.595, Q2
LOO = 0.793, Q2

L5O = 0.767, r2
Test = 0.742 …(3) 

pIC50 (MMP-13) = 6.561 + 1.050 (0.194) nCs – 0.990 (0.181) H-050 – 0.422 (0.197) H-052 



 P. Singh and N. Shekhawat: Molecular Descriptors in the Rationale of…. 322

n = 17, r = 0.901, s = 0.236, F (3, 13) = 18.657, Q2
LOO = 0.653, Q2

L5O = 0.619, r2
Test = 0.728 …(4) 

pIC50 (MMP-13) = 6.283 + 1.033 (0.189) nCs + 0.284 (0.124) C-040 – 0.804 (0.181) H-050 

n = 17, r = 0.905, s = 0.232, F (3, 13) = 19.515, Q2
LOO = 0.719, Q2

L5O = 0.619, r2
Test = 0.721 …(5) 

pIC50 (MMP-13) = 6.688 – 0.521 (0.228) nH + 1.081 (0.193) nCs – 1.035 (0.182) H-050 

n = 17, r = 0.905, s = 0.232, F (3, 13) = 19.533, Q2
LOO = 0.536, Q2

L5O = 0.627, r2
Test = 0.715 …(6) 

pIC50 (MMP-2) = 5.526 + 0.850 (0.356) VEA1 + 1.140 (0.256) nCs 

n = 11, r = 0.891, s = 0.274, F (2, 8) = 15.355, Q2
LOO = 0.512, Q2

L5O = 0.568, r2
Test = 0.738 …(7) 

pIC50 (MMP-2) = 6.265 + 1.213 (0.273) PHI – 1.585 (0.287) C-011 

n = 11, r = 0.917, s = 0.240, F (2, 8) = 21.074, Q2
LOO = 0.643, Q2

L5O = 0.672, r2
Test = 0.639 …(8) 

pIC50 (MMP-2) = 5.703 + 1.344 (0.195) nCs + 0.558 (0.144) nCONR2Ph 

n = 11, r = 0.937, s = 0.211, F (2, 8) = 28.638, Q2
LOO = 0.746, Q2

L5O = 0.756, r2
Test = 0.522 …(9) 

In all emerged models, the F-values remained significant at 99% level [F2,8 (0.01) = 8.649,               
F3,12 (0.01) = 5.953 and F3,13 (0.01) = 5.739] and  the standard errors of regression coefficients (data within 
the parentheses) were significant at more than 95% level. The indices Q2

LOO and Q2
L5O (> 0.5) have 

accounted for internal robustness of the developed models while the index r2
Test greater than 0.5 specified 

that the selected test set is accountable for external validation of these models. The signs of the regression 
coefficients have indicated the direction of influence of explanatory variables; the positive regression 
coefficient associated to a descriptor will augment the activity profile of a compound while the negative 
coefficient will cause detrimental effect to it. In fact, 17, 8 and 8 models developed, respectively, for the 
inhibition of TACE, MMP-13 and MMP-2, in the same order, have 20, 11 and 12 shared descriptors among 
individual activity profile. The shared descriptors along with their class, brief description, average regression 
coefficients and total incidences are given in Table 3. The participated descriptors, in the listed Equations 
(1)-(9), are the highly influential ones to address the biological effects of compounds. 

In Equations (1)-(3) the descriptors, SEigp and JGI2 representing, respectively the eigenvalue sum 
from polarizability weighted distance matrix and the mean topological charge index of order 2, are the 
common variables of Equations (1)-(3) and remained the negative contributors to activity. The descriptors, 
GATS6v, and MATS6p and MATS6v characterizing the autocorrelations of Geary and Moran, respectively, 
and displayed the importance of lag (path) 6 which is weighted either by atomic van der Waals volumes (v) 
or atomic polarizabilities (p). The GATS6v has negative impact on TACE inhibition activity (Equation 3) 
while MATS6p (Equation 2) or MATS6v (Equation 1) has positive effect on it. From participating 
descriptors of Equations (1)-(3), it appeared that the weaker forces (polarization or van der Waals types) and 
the electronic effect dominate for inhibition of the TACE. 

In Equations (4)-(6) the descriptors, nCs and C-040 accounting, respectively, for the number of total 
secondary carbons (sp3) and the fragments such as R-C(=X)-X/ R-C#X/ X=C=X have made positive 
influence on activity. The atom centered fragment descriptors nH, H-050 and H-052 are the representative of 
number of hydrogen atoms, hydrogen attached to heteroatom and  hydrogen attached to C0(sp3) with one X 
attached to next C respectively. The latter three descriptors, on the other hand, have imparted negative effect 
on MMP-13 inhibition activity. Thus, these atom centered fragments or the structural moieties are 
responsible for inhibition of the MMP-13.  
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aThe descriptors have been identified from the models, emerged from CP-MLR protocol with a 
training set of 16, 17 and 11 compounds for TACE, MMP-13 and MMP-2 inhibition activities respectively.  
bThe average regression coefficient of the descriptor corresponding to all models and the total number of its 
incidence. The arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the 
models. 

In Equations (7)-(9) the descriptors, PHI, VEA1, nCs and nCONR2Ph denoting, respectively, the 
Kier flexibility index, the eigenvector coefficient sum from adjacency matrix, number of total secondary 
carbons (sp3) and number of tertiary amides (aromatic). These descriptors have shown incremental effect on 
MMP-2 inhibition activity while the descriptor, C-011, corresponds to the fragment CR3X, has detrimental 
effect on it. One compound (A8; Table 1) remained outlier and the same was eliminated from the data set 
while deriving models for MMP-2 activity. Possibly, the compound entails an error in the determination of 
its inhibition activity. From developed models, it appeared that the flexibility and presence of certain 
structural fragment in a compound are prerequisite for inhibition of the MMP-2. 

Equations (3), (6) and (9), being the most significant models, have been retained for further 
discussion. The calculated inhibition activities, using these equations, for TACE, MMP-13 and MMP-2 have 
been documented in Table 1. The same remained in parity with the observed ones. The variations between 
observed and calculated pIC50 values for TACE, MMP-13 and MMP-2 activities, displaying the training set 
and test set compounds, are given in Figure 2. For each activity the compounds have exhibited the 
systematic variations, reflecting upon the goodness of fit of these models. 
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Fig. 2: Plot of observed versus caculated pIC50 values relating to inhibition of TACE, MMP-13 and 

MMP-2 for training set and test set compounds 

From Equation (3), it appeared that the lower values of descriptors SEigp, JGI2 and GATS6v are 
beneficial in improving the TACE inhibition activity of a compound. Similarly, Equation (6) and (9) may be 
used to further improve the MMP-13 and MMP-2 activities of a compound. The presence of higher number 
of aromatic tertiary amides in addition to higher number of total secondary carbons (sp3) and lower number 
of hydrogen atom or lower number of hydrogen attached to heteroatom are the essential features of a 
compound to make it an effective inhibitor of MMP-13 and MMP-2. 

Further, the PLS analyses have also been performed on 20, 11 and 12 identified descriptors related, 
respectively, to TACE, MMP-13 and MMP-2 inhibition activities of the compounds and the results are 
summarized in Table 4. In the study, the descriptors were autoscaled (zero mean and unit standard deviation) 
to provide each one of them equal weightage. In the PLS cross-validation, two-components remained 
optimum for each of these 20, 11 and 12 descriptors and they have explained, respectively, 94.7%, 89.3% 
and 88.2% of variances in the said activities. The PLS equations of optimum two-components and MLR-like 
PLS coefficients of identified descriptors for TACE, MMP-13 and MMP-2 activities are given in Table 4. 
The calculated activity values of training and test set compounds remained in close agreement to that of the 
observed ones and are listed in Table 1. For comparison, the plot between observed and calculated activities 
(through PLS analyses) for the training and test set compounds is given in Figure 2. Figure 3 shows a plot of 
the fraction contribution of normalized regression coefficients of these descriptors to the activity (Table 4). 
Different orders, indicating the level of significance, of 20, 11 and 12 descriptors, respectively, for TACE, 
MMP-13 and MMP-2 activities are included in Table 4. For a given descriptor, lower is the order higher 
would be its significance in addressing the biological activity. 

 
Cont… 
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Fig. 3: Plot of fraction contribution of MLR-like PLS coefficients (normalized) against 20, 11 and 12 
identified descriptors (Table 4) associated, resepectively, with TACE, MMP-13 and                            

MMP-2 inhibition activities of the compounds 

Table 4: PLS and MLR-like PLS models from the descriptors of three parameter CP-MLR models for 
TACE, MMP-13 and MMP-2 inhibition activities   

A: PLS equation B: PLS regression statistics 

PLS coefficient (s.e.)a Estimate PLS 
components TACE MMP-13 MMP-2 

Symbol 
TACE MMP-13 MMP-2 

Component-1 0.300 
(0.021) 

-0.247 
(0.026) 

-0.221 
(0.029) 

 

n 16 17 11 

Component-2 -0.108 
(0.024) 

-0.113 
(0.022) 

-0.061 
(0.034)  r 0.973 0.945 0.939 

Constant 8.213 6.532 6.161  s 0.206 0.171 0.207 

     F 113.344 58.655 29.643 

     Q2
LOO 0.916 0.800 0.654 

     Q2
L5O 0.917 0.784 0.579 

     r2
Test 0.515 0.689 0.656 

C: MLR-like PLS Equation 
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TACE MMP-13 MMP-2 
S. 

No. Descriptor 
MLR-like 
coefficient 

(f. c.)b 
Order Descriptor

MLR-like 
coefficient 

(f. c.)b 
Order Descriptor 

MLR-like 
coefficient 

(f. c.)b 
Order

1 TI2 0.334 
(0.079) 5 nH 0.280 

(0.070) 5 X1A 0.229 
(0.090) 4 

2 TIE -0.096      
(-0.020) 17 SPI -0.344     

(-0.094) 4 X3A 0.202 
(0.084) 8 

3 PW5 0.192 
(0.045) 11 D/Dr10 -0.136     

(-0.059) 6 S2K 0.206 
(0.085) 6 

4 SEigv -1.138     
(-0.073) 7 T(N..O) -0.129     

(-0.042) 10 PHI 0.301 
(0.104) 2 

5 SEigp -1.157      
(-0.080) 3 T(N..S) -0.175      

(-0.053) 8 VAR 0.138 
(0.066 10 

6 GGI4 0.425 
(0.077) 6 ATS3e 0.184 

(0.051) 9 VEA1 0.286 
(0.086) 5 

7 GGI5 0.532 
(0.089) 1 MATS4p -0.285     

(-0.057) 7 MATS4v -0.178      
(-0.058) 11 

8 JGI2 -0.324      
(-0.063) 10 nCs 0.777 

(0.220) 2 MATS3p 0.338 
(0.091) 3 

9 MATS6v 0.169 
(0.031) 14 C-040 0.212 

(0.095) 3 GATS4v 0.128 
(0.045) 12 

10 MATS8v -0.101      
(-0.018) 18 H-050 -0.786     

(-0.236) 1 nCs 0.334 
(0.140) 1 

11 MATS2p -0.417      
(-0.079) 4 H-052 0.082 

(0.023) 11 nCONR2Ph 0.117 
(0.067) 9 

12 MATS6p 0.197 
(0.032) 13 Constant 6.436  C-011 -0.257      

(-0.084) 7 

13 GATS6v -0.124      
(-0.021) 16    Constant 5.500  

14 GATS8v 0.167 
(0.030) 15       

15 GATS2p 0.430 
(0.065) 8       

16 GATS3p -0.434      
(-0.087) 2       

17 GATS6p -0.022      
(-0.004) 19       

18 nCONR2 0.008 
(0.002) 20       

19 C-011 -0.252      
(-0.040) 12       

20 N-072 0.276 
(0.064) 9       

 Constant 7.770        
aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms of 
descriptors for their original values; f.c. is fraction contribution of regression coefficient, computed from the 
normalized regression coefficients obtained from the autoscaled (zero mean and unit standard deviation) data 
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The descriptors having positive contribution will augment the activity and their higher values are 
desirable to further improve it. On the other hand, the descriptors having negative contribution will diminish 
the activity. The lower or more negative values of such descriptors may, therefore, enhance the activity of a 
compound.  

The applicability domain (AD) has been analyzed for the models based on whole data-set relating to 
the TACE, MMP-13 and MMP-2 inhibition activities. It is characterized by the Williams plot of 
standardized residuals versus leverage (hi) values. For this purpose, the participated descriptors in the most 
significant Equations (3), (6) and (9) have been considered to derive corresponding models based on whole 
data sets. The developed models are given in Equations (10)-(12) while standardized residuals and leverage 
values, calculated in conjunction with them, are further used to ascertain their ADs. 

pIC50 (TACE) = 10.673 –6.270 (0.794) SEigp –1.862 (0.298) JGI2 – 2.167 (0.337) GATS6v 

n = 22, r = 0.923, s = 0.340, F (3, 18) = 34.646, Q2
LOO = 0.788, Q2

L5O = 0.770 …(10) 

pIC50 (MMP-13) = 6.656 –0.555 (0.279) nH + 1.197 (0.226) nCs – 1.122 (0.181) H-050 

n = 23, r = 0.883, s = 0.300, F (3, 19) = 22.525, Q2
LOO = 0.676, Q2

L5O = 0.634 …(11) 

pIC50 = 5.517 + 1.576 (0.317) nCs + 0.706 (0.245) nCONR2Ph 

n = 15, r = 0.847, s = 0.377, F (2, 12) = 15.178, Q2
LOO = 0.602, Q2

L5O = 0.643 …(12) 

The limits of normal values for the standardized residuals (response or Y outliers) were set as 
±2×(s.d.) while leverage threshold as h* [= 3(k+1)/n; k is number of independent descriptors and n is 
number of compounds used in the derivation of model]. The graphical representations for the models related 
to the TACE, MMP-13 and MMP-2 inhibition activities, delineating the training set and the test set 
compounds is given in Figure 4. For both the training and test set compounds, the suggested models match 
the high quality parameters with good fitting power and the capability of assessing external data. Further, all 
of the compounds were within the AD of TACE and MMP-13 models. However, except one obvious 
“outlier” (compound A8; Table 1), all other compounds also remained within the AD of MMP-2 model. 
This connotes that the models under consideration are able to evaluate, both the training and test set 
compounds, correctly. 
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Fig. 4: Williams plot for whole data-set for TACE, MMP-13 and MMP-2 inhibition activities of α- and 
β-sulfone piperidine hydroxamic acid derivatives, listed in Table 1 (h* values, in that order,                       

are  0.545, 0.522 and 0.563 and  residual limits are ± 2.0 × s.d.) 

A few α- and β-sulfone piperidine hydroxamates have also been evaluated for their ability to inhibit 
LPS-stimulated TNF production in Raw cells and in human whole blood (HWB). The in vivo inhibition 
activities (pIC50) for these compounds have been included in Table 1. However the activity data, after 
eliminating uncertain values, remained insufficient to consider a test set for external validation. Therefore, 
models have been developed from whole data set for these two activities. For this, the computed and scaled 
465 chemometric descriptors were subjected to CP-MLR to derive models for 11 and 14 compounds active 
towards Raw Cells and HWB respectively. A total number of 6 models in two descriptors for Raw Cell and 
38 models in three descriptors for HWB were obtained and the highest significant of them for individual 
activity are given in Equation (13) and (14). 

pIC50 (Raw Cells) = 6.533 + 0.616 (0.153) MATS2v – 0.820 (0.141) GATS3e 

n = 11, r = 0.916, s = 0.124, F (2, 8) = 20.755, Q2
LOO = 0.686, Q2

L5O = 0.684 …(13) 

pIC50 (HWB) = 5.318 + 0.583 (0.119) Me + 0.500 (0.215) BELp5 – 1.305 (0.194) JGI7 

n = 14, r = 0.918, s = 0.201, F (3, 10) = 17.800, Q2
LOO = 0.742, Q2

L5O = 0.581 …(14) 
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The F-values for above equations remained significant at 99% level [F2,8 (0.01) = 8.649 and F3,10 

(0.01) = 6.552] while their r-values have accounted, respectively, for 83.9% and 84.3% of variances in the 
observed activities. The Q2 (Q2

LOO and Q2
L5O) values are significant enough to divulge substantial internal 

strength of these models. The participated descriptors, MATS2v and GATS3e, in Equation (13), have 
highlighted the role of Moran and Geary autocorrelations of lag (path) 2 and lag 3 of the compounds which 
are weighted, respectively by atomic van der Waals volumes and atomic Sanderson electronegativities. To 
further improve the activity of compound towards Raw Cells, the value of MATS2v should be higher while 
the value of GATS3e should be lower. The descriptors, Me, BELp5 and JGI7, appeared in Equation (14), 
representing, respectively the mean atomic Sanderson electronegativity (scaled on carbon atom), the lowest 
eigenvalue no. 5 of Burden matrix/ weighted by atomic polarizabilities and the mean topological charge 
index of order 7. Thus, the electronic and polarization effects appear to dominate during interaction of a 
compound at receptor sites (HWB). The higher values of descriptors Me and BELp5 and lower value of 
descriptor JGI7 are advantageous in improving the HWB inhibition activity. The calculated pIC50 values, 
using Equation (13) and (14), are listed in Table 1 for the sake of comparison with the observed ones. The 
two are found in close agreement with each other.  

CONCLUSION 

The TACE, MMP-2 and MMP-13 inhibition activity of selective α- and β-sulfone hydroxamates 
have been quantitatively analyzed in terms of chemometric descriptors. The statistically developed 
quantitative structure-activity relationship (QSAR) models provided rationales to explain the inhibition 
activities of these congeners.  

For TACE inhibition activity, the descriptors identified through CP-MLR analysis have highlighted 
the role of the electronic effect and weaker forces (van der Waals and polarization) during interaction with 
receptor site(s). The flexibility in a compound and presence of certain structural fragment, such as, number 
of total secondary carbons (sp3) and number of tertiary amides (aromatic) are prerequisite for inhibition of 
the MMP-2 while the atom centered fragments (R-C(=X)-X/ R-C#X/ X=C=X) or the number of hydrogen 
atoms, hydrogen attached to heteroatom and  hydrogen attached to C0 (sp3) with one X attached to next C 
are responsible for inhibition of the MMP-13. The guidelines included in the discussion may be helpful in 
exploring more potential analogues of the series. The statistics emerged from the test set have validated the 
identified significant models. PLS analysis has further confirmed the dominance of the CP‐MLR identified 
descriptors. Applicability domain analysis revealed that the suggested models have acceptable predictability. 
Except one outlier compound (A8; Table 1) for MMP-2 activity, all the compounds were within the 
applicability domain of the proposed models of TACE, MMP-13 and MMP-2 activities and were evaluated 
correctly. 

The in vivo inhibition activities for LPS-stimulated TNF production in Raw Cells and human whole 
blood (HWB), reported for a few compounds,  have also been correlated with chemometric descriptors. The 
identified descriptors for inhibition of Raw Cells have emphasized the importance of lag 2 and lag 3 of 
autocorrelations weighted, respectively, by atomic van der Waals volumes and atomic Sanderson 
electronegativities. Similarly, the electronic and polarizability weighted descriptors have exhibited their 
worth in the inhibition of HWB. 
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