December 2008



Trade Science Inc.

Organic CHEMISTRY

An Indian Journal — FUII Paper

OCAIJ, 4(6-8), 2008 [401-407]

## Molecular descriptors based comparative QSTR study of saturated alcohols derivatives

Satyenrdra Singh\*, A.K.R.Khan, R.K.Singh Department of Chemistry, M.L.K. (P.G.) College, Balrampur, U. P., (INDIA) E-mail:krkhan@rediffmail.com Received: 7th November, 2008; Accepted: 12th November, 2008

### ABSTRACT

In this present work, we have taken saturated alcohol derivatives and comparative QSTR model have been made with the help of few important groups of descriptors like topological, constitutional descriptors, geometrical and getaway descriptors have been tested and to final QSTR model has been made with the help of the most significant descriptors. The values of these descriptors have been calculated by Dragon software. Finally, we have been made direct relationship between most significant descriptors (S<sub>2</sub>) and observed toxicity. The cross validation coefficient and correlation coefficient of best model are 0.453139 and 0.852744 respectively. © 2008 Trade Science Inc. - INDIA

#### **1. INTRODUCTION**

Computer simulation techniques have gained significance in bridging the gap between the experimental and theoretical evidence. Modeling macroscopic processes in the realistic environment is one of the most challenging problems in theoretical and computational chemistry. The synthesis of novel pharmacologically active molecules with reduced toxicity is of prime interest. QSAR has gained importance in the field of pharmacological sciences<sup>[1]</sup>. QSAR methodologies save resources and expedite the process of development of new molecules and drugs. QSAR techniques increase the probability of success and reduce the time and cost involvement in the drug discovery process<sup>[2,3]</sup>. Success of QSAR not only rests on the development of new drug molecules but also in exploring the toxicological and ecotoxicological characterstics of molecules<sup>[4]</sup>. Hence

## KEYWORDS

**QSTR**; Topological descriptors; Constitutional descriptors; Geometrical descriptors; Getaway descriptors; Sum of sanderson electronegativities (Se).

Quantitative Structure Toxicity Relationship (QSTR) are predictive tools for a preliminary evaluation of the hazards of chemical compounds by using computer aided models. In our recent communication, we have made a comparative QSTR study on a series of alcohol derivatives<sup>[5]</sup>. In this present work, we have taken saturated alcohol derivatives and comparative QSTR model have been made. Here, few important groups of descriptors like topological, constitutional descriptors, geometrical and getaway descriptors have been tested and to final QSTR model has been made with the help of the most significant descriptors. Finally, we have been made relationship between most significant descriptors and observed toxicity.

#### 2. EXPERIMENTAL

The different compound of saturated alcohol de-

## Full Paper

rivatives have been chosen with their toxicity values[6-9] in terms of 50% inhibitory growth cocentration (IGC50) against tetrahymena pyriformis. T.pyriformis is one of the generally used ciliated protozoa, for laboratory research. In this ciliate species, diverse end points can be used to originate the cytotoxic effects and xenobiotics. Experimental determination of toxicological and biochemical end points as well as the human health end points is a difficult task. Hence QSTR modeling of the toxicity of compounds on the T. pyriformis is vital importance in investigating its toxicity in terms of its 50% inhibitory growth cocentration. For this purpose, all the molecules have been drawn and designed with the help of CAChe pro software in SYBYL Mol2 format.

The following groups of descriptors have been tested to describe the toxicity of the compound and the values of these descriptors have been calculated on Dragon software.

#### **Topological descriptors**<sup>[10-18]</sup>

The following descriptors of this class have been studied: information index in molecular size (ISIZ), total information index of atomic composition (IAC), Mean information index on atomic composition (AAC), first Zagreb index (ZM1), First zagreb index by valence vertex degrees (ZMIV) and Second zagreb index by valence vertex degrees (ZM2).

#### Constitutional descriptors<sup>[19]</sup>

The following descriptors of this class have been studied: molecular weight (M<sub>w</sub>), average molecular weight (AM<sub>w</sub>), sum of atomic vander waals volume (scaled on carbon atom) (SV), sum of atomic sanderson

| S.no. | Compound name                    | ISIZ    | IAC    | AAC   | ZM1 | ZM1V   | ZM2 | IGC <sub>50</sub> | pIGC <sub>50</sub> |
|-------|----------------------------------|---------|--------|-------|-----|--------|-----|-------------------|--------------------|
| 1     | 2-Bromoethanol                   | 28.529  | 14.92  | 1.658 | 10  | 33.067 | 8   | -0.3538           | -1.144             |
| 2     | 2-Chloroethanol                  | 28.529  | 14.92  | 1.658 | 10  | 33.605 | 8   | -1.5343           | -1.144             |
| 3     | 1-Chloro-2-propanol              | 43.02   | 18.613 | 1.551 | 16  | 39.605 | 14  | -1.2446           | -1.005             |
| 4     | 3-Chloro-1-propanol              | 43.02   | 18.613 | 1.551 | 14  | 37.605 | 12  | -1.1622           | -1.005             |
| 5     | 4-Chloro-1-butanol               | 58.603  | 22.074 | 1.472 | 18  | 41.605 | 16  | -0.5329           | -0.774             |
| 6     | 3-Chloro-2,2-dimethyl-1-propanol | 75.059  | 25.395 | 1.411 | 28  | 51.605 | 28  | -0.8568           | -0.479             |
| 7     | 6-Chloro-1-hexanol               | 92.239  | 28.623 | 1.363 | 26  | 49.605 | 24  | -0.353            | -0.136             |
| 8     | 6-Bromo-1-hexanol                | 92.239  | 28.623 | 1.363 | 26  | 49.067 | 24  | 0.5721            | -0.136             |
| 9     | 2,3-Dibromopropanol              | 69.487  | 22.658 | 1.333 | 26  | 24.134 | 26  | -0.9264           | -0.801             |
| 10    | Methyl alcohol                   | 15.51   | 7.51   | 1.252 | 2   | 26     | 1   | -2.6656           | -2.402             |
| 11    | Ethyl alcohol                    | 28.529  | 11.02  | 1.224 | 6   | 30     | 4   | -1.9912           | -2.123             |
| 12    | 1-Propanol                       | 43.02   | 14.265 | 1.189 | 10  | 34     | 8   | -1.7464           | -1.821             |
| 13    | 2-Propanol                       | 43.02   | 14.265 | 1.189 | 12  | 36     | 9   | -1.8819           | -1.821             |
| 14    | 1-Butanol                        | 58.603  | 17.384 | 1.159 | 14  | 38     | 12  | -1.4306           | -1.48              |
| 15    | (±)-2-Butanol                    | 58.603  | 17.384 | 1.159 | 16  | 40     | 14  | -1.542            | -1.48              |
| 16    | 2-Methyl-1-propanol              | 58.603  | 17.384 | 1.159 | 16  | 40     | 14  | -1.3724           | -1.48              |
| 17    | 2-Pentanol                       | 75.059  | 20.429 | 1.135 | 20  | 44     | 18  | -1.1596           | -1.101             |
| 18    | 3-Pentanol                       | 75.059  | 20.429 | 1.135 | 20  | 44     | 19  | -1.2437           | -1.101             |
| 19    | 3-Methyl-2-butanol               | 75.059  | 20.429 | 1.135 | 22  | 46     | 21  | -0.9959           | -1.101             |
| 20    | tert-Amylalcohol                 | 75.059  | 20.429 | 1.135 | 24  | 48     | 22  | -1.1729           | -1.101             |
| 21    | 2-Methyl-1-butanol               | 75.059  | 20.429 | 1.135 | 20  | 44     | 19  | -0.9528           | -1.101             |
| 22    | 3-Methyl-1-butanol               | 75.059  | 20.429 | 1.135 | 20  | 44     | 18  | -1.0359           | -1.101             |
| 23    | 2,2-Dimethyl-1-propanol          | 75.059  | 20.429 | 1.135 | 24  | 48     | 22  | -0.8702           | -1.101             |
| 24    | 2-Methyl-2-propanol              | 58.603  | 17.384 | 1.159 | 16  | 40     | 14  | -1.7911           | -1.48              |
| 25    | 1-Hexanol                        | 92.239  | 23.426 | 1.116 | 22  | 46     | 20  | -0.3789           | -0.693             |
| 26    | 3,3-Dimethyl-1-butanol           | 92.239  | 23.426 | 1.116 | 28  | 52     | 26  | -0.7368           | -0.693             |
| 27    | 4-Methyl-1-pentanol              | 92.239  | 23.426 | 1.116 | 24  | 48     | 22  | -0.6372           | -0.693             |
| 28    | 1-Heptanol                       | 110.039 | 26.388 | 1.099 | 26  | 50     | 24  | 0.105             | -0.264             |
| 29    | 2,4-Dimethyl-3-pentanol          | 110.039 | 26.388 | 1.099 | 32  | 56     | 33  | -0.7052           | -0.264             |

TABLE 1: Values of topological descriptors, observed toxicity and predicted toxicity

| Organic | CHEMISTRY         |
|---------|-------------------|
| '       | An Indian Dournal |

Journal

| S.n. | Compound name                    | MW     | AMW   | Sv    | SP    | Se    | Ss    | IGC <sub>50</sub> | pIGC <sub>50</sub> |
|------|----------------------------------|--------|-------|-------|-------|-------|-------|-------------------|--------------------|
| 1    | 2-Bromoethanol                   | 124.97 | 13.89 | 5.39  | 9.22  | 6.08  | 11.75 | -0.3538           | -0.981             |
| 2    | 2-Chloroethanol                  | 80.52  | 8.95  | 5.04  | 9.32  | 5.59  | 13.11 | -1.5343           | -1.496             |
| 3    | 1-Chloro-2-propanol              | 94.55  | 7.88  | 6.64  | 12.2  | 7.35  | 14.94 | -1.2446           | -1.325             |
| 4    | 3-Chloro-1-propanol              | 94.55  | 7.88  | 6.64  | 12.2  | 7.35  | 14.61 | -1.1622           | -1.122             |
| 5    | 4-Chloro-1-butanol               | 108.58 | 7.24  | 8.24  | 15.09 | 9.11  | 16.11 | -0.5329           | -0.747             |
| 6    | 3-Chloro-2,2-dimethyl-1-propanol | 122.61 | 6.81  | 9.83  | 17.98 | 10.86 | 18.36 | -0.8568           | -0.918             |
| 7    | 6-Chloro-1-hexanol               | 136.64 | 6.51  | 11.43 | 20.87 | 12.62 | 19.11 | -0.353            | -0.045             |
| 8    | 6-Bromo-1-hexanol                | 181.09 | 8.62  | 11.78 | 20.77 | 13.12 | 17.75 | 0.5721            | 0.036              |
| 9    | 2,3-Dibromopropanol              | 217.89 | 18.16 | 8.07  | 12.34 | 9.2   | 15.83 | -0.9264           | -0.351             |
| 10   | Methyl alcohol                   | 32.05  | 5.34  | 2.71  | 6.11  | 2.97  | 8     | -2.6656           | -2.455             |
| 11   | Ethyl alcohol                    | 46.08  | 5.12  | 4.31  | 8.99  | 4.73  | 9.5   | -1.9912           | -1.987             |
| 12   | 1-Propanol                       | 60.11  | 5.01  | 5.9   | 11.88 | 6.49  | 11    | -1.7464           | -1.783             |
| 13   | 2-Propanol                       | 60.11  | 5.01  | 5.9   | 11.88 | 6.49  | 11    | -1.8819           | -1.783             |
| 14   | 1-Butanol                        | 74.14  | 4.94  | 7.5   | 14.77 | 8.25  | 12.5  | -1.4306           | -1.344             |
| 15   | (±)-2-Butanol                    | 74.14  | 4.94  | 7.5   | 14.77 | 8.25  | 12.83 | -1.542            | -1.547             |
| 16   | 2-Methyl-1-propanol              | 74.14  | 4.94  | 7.5   | 14.77 | 8.25  | 12.83 | -1.3724           | -1.547             |
| 17   | 2-Pentanol                       | 88.17  | 4.9   | 9.1   | 17.66 | 10    | 14.33 | -1.1596           | -0.984             |
| 18   | 3-Pentanol                       | 88.17  | 4.9   | 9.1   | 17.66 | 10    | 14.33 | -1.2437           | -0.984             |
| 19   | 3-Methyl-2-butanol               | 88.17  | 4.9   | 9.1   | 17.66 | 10    | 14.75 | -0.9959           | -1.242             |
| 20   | tert-Amylalcohol                 | 88.17  | 4.9   | 9.1   | 17.66 | 10    | 14    | -1.1729           | -0.782             |
| 21   | 2-Methyl-1-butanol               | 88.17  | 4.9   | 9.1   | 17.66 | 10    | 14.33 | -0.9528           | -0.984             |
| 22   | 3-Methyl-1-butanol               | 88.17  | 4.9   | 9.1   | 17.66 | 10    | 14.33 | -1.0359           | -0.984             |
| 23   | 2,2-Dimethyl-1-propanol          | 88.17  | 4.9   | 9.1   | 17.66 | 10    | 14.75 | -0.8702           | -1.242             |
| 24   | 2-Methyl-2-propanol              | 74.14  | 4.94  | 7.5   | 14.77 | 8.25  | 13.25 | -1.7911           | -1.804             |
| 25   | 1-Hexanol                        | 102.2  | 4.87  | 10.7  | 20.55 | 11.76 | 15.5  | -0.3789           | -0.339             |
| 26   | 3,3-Dimethyl-1-butanol           | 116.23 | 4.84  | 12.29 | 23.43 | 13.52 | 17.75 | -0.7368           | -0.54              |
| 27   | 4-Methyl-1-pentanol              | 102.2  | 4.87  | 10.7  | 20.55 | 11.76 | 15.83 | -0.6372           | -0.541             |
| 28   | 1-Heptanol                       | 116.23 | 4.84  | 12.29 | 23.43 | 13.52 | 17    | 0.105             | -0.08              |
| 29   | 2.4-Dimethyl-3-pentanol          | 116.23 | 4.84  | 12.29 | 23.43 | 13.52 | 18    | -0.7052           | -0.693             |

TABLE 2: Values of constitutional descriptors, observed toxicity and predicted toxicity

electronegativities (scaled on carbon atom) (Se), sum of atomic polarzibilities (scaled on carbon atom) (Sp) and sum of Kier-Hall electrotopological states (Ss).

#### Geometrical descriptors<sup>[20-29]</sup>

The following descriptors of this class have been studied: 3D-Winner index (W3D), 3D-Balban index (J3D), 3D-Haray index (H3D), Average geometric distance degPTe (AGDD), D/D index (DDI) and Average distance/distance degPTe (ADDD).

#### GETAWAY descriptors<sup>[30-32]</sup>

The following descriptors of this class have been studied: Total information content on leverage equality (ITH), standardization information content on leverage equality (ISH), mean information content on leverage magnitude (HIC), geometric mean on the leverage magnitude (HGM), H autocorrelation of lag1/unweighted (H1u) and H autocorrelation of lag2/unweighted (H2u).

### **3. RESULTS AND DISCUSSION**

For QSTR study of saturated alcohol derivatives, it was necessary to identify a good tool. The values of four sets of descriptor are included in four TABLES separately (TABLES 1-4). Various QSTR models for each sets of descriptor in different combinations have been developed. The best five model of each sets of descriptor are given below:

Full Paper



# Full Paper

TABLE 3: Values of geometrical descriptors, observed toxicity and predicted toxicity

| S.n. | Compound name                    | W3D     | J3D   | 3D     | AGDD   | DDI     | ADDD   | IGC 50  | pIGC50 |
|------|----------------------------------|---------|-------|--------|--------|---------|--------|---------|--------|
| 1    | 2-Bromoethanol                   | 86.43   | 3.694 | 9.883  | 19.207 | 39.502  | 8.778  | -0.3538 | -1.276 |
| 2    | 2-Chloroethanol                  | 85.42   | 3.73  | 10.003 | 18.982 | 39.011  | 8.669  | -1.5343 | -1.396 |
| 3    | 1-Chloro-2-propanol              | 169.39  | 4.676 | 15.691 | 28.232 | 68.264  | 11.377 | -1.2446 | -1.271 |
| 4    | 3-Chloro-1-propanol              | 176.78  | 4.506 | 15.482 | 29.463 | 69.254  | 11.542 | -1.1622 | -1.142 |
| 5    | 4-Chloro-1-butanol               | 316.86  | 5.059 | 21.296 | 42.248 | 108.58  | 14.477 | -0.5329 | -0.843 |
| 6    | 3-Chloro-2,2-dimethyl-1-propanol | 446.92  | 6.313 | 28.882 | 49.658 | 152.318 | 16.924 | -0.8568 | -0.725 |
| 7    | 6-Chloro-1-hexanol               | 783.311 | 5.788 | 33.561 | 74.601 | 215.012 | 20.477 | -0.353  | -0.091 |
| 8    | 6-Bromo-1-hexanol                | 785.881 | 5.774 | 33.429 | 74.846 | 215.781 | 20.551 | 0.5721  | -0.027 |
| 9    | 2,3-Dibromopropanol              | 184.69  | 4.331 | 14.213 | 30.782 | 72.856  | 12.143 | -0.9264 | -0.478 |
| 10   | Methyl alcohol                   | 27.5    | 3.01  | 6.162  | 9.167  | 15.352  | 5.117  | -2.6656 | -2.525 |
| 11   | Ethyl alcohol                    | 81.1    | 3.9   | 10.989 | 18.022 | 36.888  | 8.197  | -1.9912 | -1.957 |
| 12   | 1-Propanol                       | 170.63  | 4.636 | 16.509 | 28.438 | 66.701  | 11.117 | -1.7464 | -1.607 |
| 13   | 2-Propanol                       | 170.63  | 4.636 | 16.509 | 28.438 | 66.701  | 11.117 | -1.8819 | -1.607 |
| 14   | 1-Butanol                        | 309.18  | 5.156 | 22.34  | 41.224 | 105.74  | 14.099 | -1.4306 | -1.231 |
| 15   | (±)-2-Butanol                    | 286.6   | 5.529 | 23.093 | 38.213 | 102.366 | 13.649 | -1.542  | -1.6   |
| 16   | 2-Methyl-1-propanol              | 288.89  | 5.517 | 22.86  | 38.519 | 103.965 | 13.862 | -1.3724 | -1.394 |
| 17   | 2-Pentanol                       | 472.39  | 5.92  | 29.254 | 52.488 | 149.338 | 16.593 | -1.1596 | -1.195 |
| 18   | 3-Pentanol                       | 476.96  | 5.851 | 29.123 | 52.996 | 150.712 | 16.746 | -1.2437 | -1.036 |
| 19   | 3-Methyl-2-butanol               | 434.77  | 6.423 | 30.432 | 48.308 | 146.223 | 16.247 | -0.9959 | -1.437 |
| 20   | tert-Amylalcohol                 | 505.56  | 5.552 | 28.405 | 56.173 | 153.906 | 17.101 | -1.1729 | -0.844 |
| 21   | 2-Methyl-1-butanol               | 460.15  | 6.103 | 29.558 | 51.128 | 149.586 | 16.621 | -0.9528 | -1.134 |
| 22   | 3-Methyl-1-butanol               | 463.65  | 6.056 | 29.487 | 51.517 | 149.751 | 16.639 | -1.0359 | -1.129 |
| 23   | 2,2-Dimethyl-1-propanol          | 439.35  | 6.402 | 29.967 | 48.817 | 149.42  | 16.602 | -0.8702 | -1.086 |
| 24   | 2-Methyl-2-propanol              | 279.82  | 5.677 | 23.179 | 37.309 | 103.242 | 13.766 | -1.7911 | -1.46  |
| 25   | 1-Hexanol                        | 772.291 | 5.849 | 34.621 | 73.551 | 211.675 | 20.16  | -0.3789 | -0.39  |
| 26   | 3,3-Dimethyl-1-butanol           | 912.12  | 7.482 | 45.189 | 76.01  | 263.288 | 21.941 | -0.7368 | -0.377 |
| 27   | 4-Methyl-1-pentanol              | 710.6   | 6.359 | 35.857 | 67.676 | 205.909 | 19.61  | -0.6372 | -0.645 |
| 28   | 1-Heptanol                       | 1119.08 | 6.081 | 40.955 | 93.257 | 279.05  | 23.254 | 0.105   | 0.175  |
| 29   | 2,4-Dimethyl-3-pentanol          | 895.53  | 7.566 | 47.365 | 74.627 | 257.884 | 21.49  | -0.7052 | -0.867 |

In the above regression models, model number 2 is the best model. Which consists of ISIZ and AAC, the cross validations and correlation coefficient is 0.677 and 0.8 respectively, and the predicted toxicity is placed in TABLE 1.

 $^{c}RE1{=}{-}0.105469\,M_{w}{+}10.6277\,S_{v}{-}4.92706\,Se{-}0.587344\,Ss{+}6.96706\,rCV^{2}{=}0.438912\,r^{2}{=}0.830077$ 

<sup>c</sup>RE2=32.1159 S<sub>v</sub>-2.87901 Se-23.8397 Sp-0.469024 Ss+2.77084 rCV<sup>2</sup>=0.467544 r<sup>2</sup>=0.83751

<sup>c</sup>RE3=-0.0447712 MW+26.1038 S<sub>v</sub>-3.9987 Se-16.0964 Sp-0.561363 Ss+5.05471

rCV^2=0.463269r^2=0.841599

 $^{\rm C}\rm RE4{=}0.0650289\,\rm AM_w{+}33.0848\,S_v{-}2.73479\,Se{-}24.9567\,Sp{-}0.457403\,Ss{+}2.10189$ 

rCV^2=0.430097 r^2=0.842181

 $^{\rm C}\text{RE5}{=}{-}0.0795186\text{M}_{\rm w}{+}0.110997\text{AM}_{\rm w}{+}23.0915\text{S}_{\rm v}{-}4.62153\text{Se}{-}11.9932\text{Sp}{-}0.613194\,\text{Ss}{+}5.68544$ 

rCV^2=0.453139r^2=0.852744

In the above regression models, model number 5 is best model. Which consist of  $M_w$ ,  $AM_w$ ,  $S_v$ ,  $S_p$  and  $S_s$ ,



the cross validations and correlation coefficient is 0.453and 0.852 respectively, and the predicted toxicity is placed in TABLE 2. <sup>G</sup>PT1=0.00554877W3D-1.40673J3D-0.245488AGDD+1.18339ADDD-2.21495rCV<sup>2</sup>=0.577145r<sup>2</sup>=0.79313

<sup>G</sup>PT2=0.00941297 W3D -1.29153 J3D -0.269004 AGDD - 0.0170625 DDI +1.29729 ADDD-2.84314

rCV^2=0.554905 r^2=0.795067

<sup>G</sup>PT3=0.00738207 W3D -0.194848 H3D -0.159052 AGDD +0.00119957 DDI +0.801606 ADDD-4.12025

rCV^2=0.386082r^2=0.78077

<sup>G</sup>PT4=-0.964487 J3D -0.0904001 J3D -0.167278 AGDD +0.0282225 AGDD +0.83483 ADDD-2.0947

rCV^2=0.496312r^2=0.790085

 $^{\rm G}\text{PT5}{=}0.00802128\,\text{W3D}{-}0.998262\,\text{J3D}{-}0.0554464\,\text{H3D}{-}0.240971$  AGDD  ${-}0.00718161\,\text{DDI}{+}1.16312\,\text{ADDD}{-}3.03138$  rCV^2=0.345077 r^2=0.796958

In the above regression models, model number 5 is best model. Which consist of W3D, J3D, H3D, AGDD

|     |                                  |        |       |       |        |       | -     |                   |                    |
|-----|----------------------------------|--------|-------|-------|--------|-------|-------|-------------------|--------------------|
| No. | Compound name                    | ITH    | ISH   | HIC   | HGM    | H1u   | H2u   | IGC <sub>50</sub> | pIGC <sub>50</sub> |
| 1   | 2-Bromoethanol                   | 8      | 1     | 2.922 | 25.139 | 0.695 | 0.05  | -0.3538           | -1.454             |
| 2   | 2-Chloroethanol                  | 8      | 1     | 2.927 | 25.287 | 0.711 | 0.049 | -1.5343           | -1.455             |
| 3   | 1-Chloro-2-propanol              | 11.61  | 1     | 3.396 | 20.519 | 1.113 | 0.617 | -1.2446           | -1.341             |
| 4   | 3-Chloro-1-propanol              | 11.61  | 1     | 3.371 | 19.978 | 0.891 | 0.347 | -1.1622           | -1.161             |
| 5   | 4-Chloro-1-butanol               | 15.51  | 1     | 3.699 | 16.008 | 0.969 | 0.449 | -0.5329           | -0.726             |
| 6   | 3-Chloro-2,2-dimethyl-1-propanol | 17.651 | 0.898 | 4.016 | 12.378 | 1.612 | 1.604 | -0.8568           | -0.847             |
| 7   | 6-Chloro-1-hexanol               | 24     | 1     | 4.184 | 11.33  | 1.085 | 0.762 | -0.353            | 0.114              |
| 8   | 6-Bromo-1-hexanol                | 24     | 1     | 4.182 | 11.305 | 1.077 | 0.751 | 0.5721            | 0.122              |
| 9   | 2,3-Dibromopropanol              | 15.51  | 1     | 3.322 | 19.279 | 0.868 | 0.374 | -0.9264           | -0.719             |
| 10  | Methyl alcohol                   | 2      | 1     | 2.327 | 34.799 | 0.374 | 0.078 | -2.6656           | -2.287             |
| 11  | Ethyl alcohol                    | 4.755  | 1     | 2.939 | 25.834 | 0.79  | 0.081 | -1.9912           | -1.857             |
| 12  | 1-Propanol                       | 8      | 1     | 3.375 | 20.275 | 0.942 | 0.407 | -1.7464           | -1.621             |
| 13  | 2-Propanol                       | 8      | 1     | 3.375 | 20.275 | 0.942 | 0.407 | -1.8819           | -1.621             |
| 14  | 1-Butanol                        | 11.61  | 1     | 3.706 | 16.203 | 1.019 | 0.506 | -1.4306           | -1.215             |
| 15  | (±)-2-Butanol                    | 11.61  | 1     | 3.741 | 17.151 | 1.298 | 1.03  | -1.542            | -1.562             |
| 16  | 2-Methyl-1-propanol              | 11.61  | 1     | 3.735 | 16.915 | 1.294 | 1.039 | -1.3724           | -1.565             |
| 17  | 2-Pentanol                       | 15.51  | 1     | 3.995 | 14.139 | 1.347 | 1.161 | -1.1596           | -1.157             |
| 18  | 3-Pentanol                       | 15.51  | 1     | 3.978 | 12.978 | 1.255 | 0.923 | -1.2437           | -0.991             |
| 19  | 3-Methyl-2-butanol               | 13.51  | 0.871 | 4.048 | 14.624 | 1.619 | 1.607 | -0.9959           | -1.27              |
| 20  | tert-Amylalcohol                 | 15.51  | 1     | 3.96  | 13.127 | 1.083 | 0.716 | -1.1729           | -0.86              |
| 21  | 2-Methyl-1-butanol               | 15.51  | 1     | 3.998 | 13.947 | 1.361 | 1.183 | -0.9528           | -1.169             |
| 22  | 3-Methyl-1-butanol               | 15.51  | 1     | 3.988 | 13.987 | 1.364 | 1.19  | -1.0359           | -1.174             |
| 23  | 2,2-Dimethyl-1-propanol          | 13.51  | 0.871 | 4.016 | 12.667 | 1.65  | 1.657 | -0.8702           | -1.277             |
| 24  | 2-Methyl-2-propanol              | 9.61   | 0.828 | 3.75  | 15.94  | 1.512 | 1.28  | -1.7911           | -1.392             |
| 25  | 1-Hexanol                        | 19.651 | 1     | 4.187 | 11.396 | 1.117 | 0.809 | -0.3789           | -0.419             |
| 26  | 3,3-Dimethyl-1-butanol           | 22     | 0.917 | 4.438 | 9.73   | 1.691 | 1.833 | -0.7368           | -0.518             |
| 27  | 4-Methyl-1-pentanol              | 19.651 | 1     | 4.194 | 11.736 | 1.406 | 1.322 | -0.6372           | -0.751             |
| 28  | 1-Heptanol                       | 24     | 1     | 4.374 | 9.951  | 1.148 | 0.908 | 0.105             | 0.038              |
| 29  | 2,4-Dimethyl-3-pentanol          | 24     | 1     | 4.438 | 10.908 | 1.608 | 1.674 | -0.7052           | -0.463             |

TABLE 4: Values of getaway descriptors, observed toxicity and predicted toxicity

DDI and ADDD, the cross validations and correlation coefficient is 0.345077 and 0.796958 respectively, and the predicted toxicity is placed in TABLE 3. GWRE1=0.123948 ITH -3.21758 ISH -0.591598 H2u +0.818364 rCV^2=0.654643 r^2=0.76798 <sup>GW</sup>RE2=0.120587 ITH -3.25358 ISH +0.0639302 HIC -0.621646 H2u+0.688277 rCV^2=0.429161 r^2=0.768197 GWRE3=0.115554 ITH -3.17362 ISH -0.0126019 HGM -0.638932 H2u+1.14417 rCV^2=0.361367 r^2=0.769683 GWRE4=0.117959 ITH -1.39546 HIC -0.105901 HGM -0.166097 H2u+4.3607 rCV^2=0.36025 r^2=0.760248 GWRE5=0.11967 ITH -1.69402 ISH -1.38952 HIC -0.110249 HGM -0.477035 H1u+6.45814 rCV^2=0.313902 r^2=0.769683

In the above regression models, model number 3 is best model. Which consist of ITH, ISH, HGM, and H2u, the cross validations and correlation coefficient is 0.361367 and 0.796958 respectively, and the predicted toxicity is placed in TABLE 4.

All best model of each sets of descriptors are summarized below: <sup>T</sup>RE2=0.0262615 ISIZ+2.25453 AAC -5.63154 rCV<sup>^</sup>2=0.677098 r<sup>^</sup>2=0.800768

<sup>c</sup>RE5=-0.0795186 M<sub>w</sub>+0.110997 AM<sub>w</sub>+23.0915 S<sub>v</sub>-4.62153 Se-11.9932 Sp-0.613194 Ss+5.68544

rCV<sup>2</sup>=0.453139r<sup>2</sup>=0.852744

<sup>G</sup>PT5=0.00802128 W3D -0.998262 J3D -0.0554464 H3D -0.240971 AGDD -0.00718161 DDI +1.16312 ADDD -3.03138

rCV^2=0.345077 r^2=0.796958

 $^{\rm Gw}{\rm RE3}{=}0.115554\,\rm ITH$  -3.17362 ISH -0.0126019 HGM -0.638932 H2u +1.14417

rCV^2=0.361367r^2=0.769683

The cross vadiation coefficient, correlation coefficient and number of variables of the above best regres-

Full Paper



# Full Paper

 TABLE 5 : Relationship between Se and inhibitory growth

 concentration

| Subgroup A   |            |                   |  |  |  |  |  |  |
|--------------|------------|-------------------|--|--|--|--|--|--|
| Compound no. | Se         | IGC <sub>50</sub> |  |  |  |  |  |  |
| 28           | 23.43      | 0.105             |  |  |  |  |  |  |
| 7            | 20.87      | -0.353            |  |  |  |  |  |  |
| 25           | 20.55      | -0.3789           |  |  |  |  |  |  |
| 27           | 20.43      | -0.6372           |  |  |  |  |  |  |
| 6            | 17.98      | -0.8568           |  |  |  |  |  |  |
| 23           | 17.66      | -0.8702           |  |  |  |  |  |  |
| 9            | 12.34      | -0.9264           |  |  |  |  |  |  |
| 4            | 12.20      | -1.1622           |  |  |  |  |  |  |
| 12           | 11.88      | -1.7464           |  |  |  |  |  |  |
| 11           | 8.99       | -1.9912           |  |  |  |  |  |  |
| 10           | 6.11       | -2.6656           |  |  |  |  |  |  |
| Subgroup B   |            |                   |  |  |  |  |  |  |
| 8            | 20.77      | 0.5721            |  |  |  |  |  |  |
| 21           | 17.66      | -0.9528           |  |  |  |  |  |  |
| 15           | 14.77      | -1.542            |  |  |  |  |  |  |
| 13           | 11.88      | -1.8819           |  |  |  |  |  |  |
|              | Subgroup C |                   |  |  |  |  |  |  |
| 29           | 2343       | -0.7052           |  |  |  |  |  |  |
| 19           | 17.66      | -0.9959           |  |  |  |  |  |  |
| 16           | 14.77      | -1.3724           |  |  |  |  |  |  |
| 2            | 9.32       | -1.5343           |  |  |  |  |  |  |
|              | Subgroup D |                   |  |  |  |  |  |  |
| 26           | 23.43      | -0.7368           |  |  |  |  |  |  |
| 22           | 17.66      | -1.0359           |  |  |  |  |  |  |
| 14           | 14.77      | -1.4306           |  |  |  |  |  |  |

sion are collectively placed in TABLE 5. A close look at this table indicates that the model no. 5 is the best model among all the four models. Which is derived from constitutional descriptor. The descriptors are  $M_w$ ,  $AM_w$ ,  $S_v$ , Se, Sv and Ss. So the toxicity of saturated alcohol derivatives are better predict by constitutional descriptors.

#### Relationship between reactive indices and toxicity

The second TABLE (constitutional descriptors) contains 29 saturated alcohol derivatives and their observed biological toxicity is shown in terms of 50% inhibitory growth concentration. The toxicities along with reactive indices are given in TABLE 2. A close look at this TABLE indicates that the toxicity increases by the addition of halo group (-Cl or Br) and toxicity decreases by the decreasing the carbon chain in homologous series. . In this TABLE we showed that the relationship between toxicity and sum of Sanderson electronegativities (Se) and are placed in TABLE 5. Examination

An Indian Journal

Organic CHEMISTRY

of this TABLE shows that the biological toxicity is directly proportional to sum of Sanderson electronegativities (Se). When sum of Sanderson electronegativities is decreases, toxicity decreases but there is no sequential rise or fall. In order to provide sequential relationship this TABLE has been divided into three subgroup A, B, and C. Subgroup A contain ten compounds, subgroup B and C contain eight and five compounds respectively. Compound (**1**, **3**, **5**, **17**, **18**, **20**), and (**24**) do not fallow sequential trend.

#### **Concluding remark**

In this present article we have been made QSTR model of 29 alcohol derivatives with the help of four group of descriptors, viz, topological descriptors, constitutional descriptors, geometrical descriptors and GETAWAY descriptors. The best group of descriptors are constitutional descriptors. The cross validation and correlation coefficient of best model, which is derived by constitutional descriptors, are 0.453139 and 0.852744 respectively. There is direct relationship between reported biological toxicity and sum of sum of Sanderson electronegativities (Se). of twenty nine derivatives of alcohol. The sum of Sanderson electronegativities (Se). can alone be helpful for searching alcohol of desired toxicity.

#### **4. REFERENCES**

- [1] Y.G.Smeyers, L.Bouniam, N.J.Smeyers, A. Ezzamarty, A.Hernandez-Laguna, C.I.Sainz-Diaz; Eur.J.Med.Chem., 33, 103-112 (**1998**).
- [2] F.Choplin, Computers and the medicinal chemist, C.Hansch, P.G.Sammes, J.B.Taylor; 'Comprehensive Medicinal Chemistry', Pergamon Press, Oxford, 4, 33-58 (1990).
- [3] R.Franke; 'Theoretical Drug Design Methods', Elsevier, Amsterdam, (1984).
- [4] D.R.Roy, R.Parthasarathi, B.Maiti, V.Subramanian, P.K.Chattaraj; Bioorg.Med.Chem., 13(10), 3405-3412 (2005).
- [5] A.K.R.Khan, V.K.Sahu; International Journal of Quan.Chem., 108 (2008).
- [6] L.H.Hall, T.A. Vaughn; Med.Chem.Res., 7, 407-416 (1997).
- [7] T.W.Schultz; Toxicol.Methods, 7, 289-309 (1997).
- [8] K.S.Akers, G.D.Sinks, T.W.Schultz; Environ. Toxicol.Pharmacol., 7(1), 33-39 (2003).

407

- [9] S.D.Dimitrov, O.G.Mekenyan, G.D.Sinks, T.W. Schultz; J.Mol.Struct.Theochem., 622, 63-70 (2003).
- [10] H.Narumi; MATCH, Comm.Math.Comp.Chem., 22, 195-207 (1987).
- [11] D.E.Needham, I.C.Wei, P.O.Seybold; J.Am.Chem. Soc., 110, 4186-4194 (1988).
- [12] (a) L.Pogliani; J.Phys.Chem., 100, 18065-18077 (1996).
  - (b) J.R.Platt; J.Chem.Phys., 15, 419-420 (1947).
- [13] (a) I.Gutman; J.Chem.Inf.Comput.Sci., 34, 1037-1039 (1994).
  (b) B.Ren, J.Chem.Inf.Comput.Sci., 39, 139-143 (1999).
- [14] S.Gupta, M.Singh, A.K.Madan; J.Chem.Inf. Comput.Sci., 39, 272-277 (1999).
- [15] H.Wiener; J.Am.Chem.Soc., 69, 17-20 (1947
- [16] O.Ivanciuc, T.S.Balaban, A.T.Balaban; Math. Chem., 12, 309-318 (1993).
- [17] D.Amic, N.Trinajstic; Croat.Chem.Acta, 68, 53-62 (1995).
- [18] A.T.Balaban; Chem.Phys.Lett., 89, 399-404 (1982).
- [19] R.Todeschini, V.Consonni; 'Handbook of Molecular Descriptors', Wiley-VCH, Weinheim, Germany, (2000).
- [20] M.Randic; Int.J.Quantum.Chem.Quantum.Biol. Symp., 15, 201-208 (1998).

- [21] S.Nikolic, N.Trinajstic, Z.Mihalic, S.Carter; Chem. Phys.Lett., 179, 21-23 (1991).
- [22] M.V.Diudea, D.Horvath, A.Graovac; J.Chem.inf. Comput.Sci., 35, 129-135 (1995).
- [23] A.T.Balaban; J.Chem.inf.Comput.Sci., 37, 645-650 (1997).
- [24] O.Mekenyan, D.Peitchev, D.Bonchev, N.Trinajstic, I.P.Bangov; Arzneim.Forsch., 36, 176-183 (1986).
- [25] Z.Mihalic, S.Nikolic, N.J.Trinajstic; Chem.inf. Comput.Sci., 32, 26-37 (1992).
- [26] M.Randic, A.F.Kleiner, L.M.DeAlba; J.Chem.inf. Comput.Sci., 34, 277-286 (1994).
- [27] A.R.Katritzky, L.Mu, V.S.Lobanov, M.Karelson; J.Phys.Chem., 100, 10400-10407 (1996).
- [28] C.Tanford; Physical Chemistry of Macromolecules, Wiley, New York (NY), (1961).
- [29] M.V.Volkenstein; 'Configurational Statistics of Polymeric Chains', Wiley-Interscience, New York (NY), (1963).
- [30] V.Consonni, R.Todeschini, W.Sippl; 'Approaches to Drug Design', Prous Science, Barcelona, Spain, 235-240 (2001).
- [31] V.Consonni, R.Todeschini, M.Pavan; J.Chem.Inf. Comp.Sci., 42, 682-692 (2002).
- [32] V.Consonni, R.Todeschini, M.Pavan, P.Gramatica, V.Consonni, R.Todeschini, M.Pavan; J.Chem.Inf. Comp.Sci., 42, 693-705 (2000).

Organic CHEMISTRY

An Indian Journal