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ABSTRACT 
 
Based on the adaptation of grey forecast models on the new product, this paper considers
the influence of marketing on the demand, and establishes an improved grey model
GMM(1,1) based on the definition of marketing efforts flexible of new product, which is
compared with GM(1,1),GM(1,2), GM(0,2) and regression modelby theoretical analysis
and calculation to verify its feasibility and superiority. It is improved that GMM(1,1)can
be effectively applied in new productsdemand forecast when it is relative lack ofdata. 
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INTRODUCTION 
 
 Market share of new products always has a great growth potential, however it isinfluenced 
significantly by marketing in turn.In order to reduce risk, enterprises need to forecast new product 
demand before making production or ordering decisions, which is considered one of the challenges 
enterprises facing[1]. Various factors such as lack of historical sales data lead to a higher accuracy of 
forecasts, which further leads to inventory redundancy or out of stock. Therefore, enterprises urgently 
need appropriate new product demand forecasting methods. The traditional time-series methods and 
causal regression analysis require a large amount of historical data[2, 3], thus, these traditional forecasting 
methods are not suitable for new products. 
 Early scholars have noted the problem of data shortage in terms of new product demand 
forecasting and proposed appropriate solutions. Morrison proposed an expansion model for unlisted 
products, which uses three parameters: the long-term saturation level, turning point in the expansion 
curve and delay factor. As per the study, not all of the sales curves are incremented before the turning 
point, curve symmetrical features also needs further study[4]

. Goldfisher and Chan proposed a forecasting 
method using sales target, however, the result is not accurate enough because of relying on only three 
periods’historical data[5]. Mclean and Wortham thought that prediction function could be replaced by 
Taylor sequence, thus prediction becomes a sum of historical data and weights multiply, and the more 
recent data the greater the weight, the smaller the contrary[6]. Since the new century, some scholarsuse 
heuristic algorithms to solve new product forecasting problem with the support of decision support 
systems. With the application of clustering and classification tools,Thomasseyproposeda decision 
support systembased on neural network to solve product sales forecasting problems with lack of 
historical data[7]. Chernetl proposed a sales forecasting system of new products, which includes model 
selection module, model solving module, prediction module, etc. The results show that the system is 
better than moving average method and involves in less subjective factors[8]. However, the model 
assumes thatproducts of same type have the same sales mode and are applicable for the same model. In 
practice, this assumption does not have the versatility. 
 Compared with other quantitative methods, grey prediction method can be effectively applied to 
the case of less data. Chu and Liu applied Grey Model GM (1,1) to predict transport volume in China[9]. 
Li etl used trends and tracking technology to analyze sample behavior and extract potential information, 
then applied the gray model to predict[10]. These methods are only suitable for monotonically increasing 
or decreasing data, data fluctuationsandother influence factors are rarely considered. 
 This paper first summarizes the characteristics of new product demand, and then analyzes the 
adaptability of grey prediction modelfor new product demand forecast. By defining marketing efforts 
flexibility, this paper establishes a modified grey prediction modelGMM(1,1)based on marketing efforts 
(GM based on Marketing Efforts, GMM), and compares the prediction results with regression prediction 
model (Regression based on the Marketing Efforts, RM), GM(1,1), GM(1,2) and GM(0,2). The results 
show that the proposed GMM(1,1) has a higher accuracy over other models and can effectively 
solvenew product forecasting problems in terms of marketing efforts. 
 
MODIFIED GREY DEMAND FORECASTING MODEL BASED ON MARKETING EFFORTS 
 
 Seeking law trough processing and sorting out raw data, grey model is suitable for the analysis 
and prediction of scarce information. In addition,in the stage of introducing new products, demand 
generally appears trend of monotonically increasing, while grey model performances well for predicting 
monotonous sequence. Therefore, grey model is a feasible and effective methodto forecast demand of 
new products. 
 There are several grey prediction models based on difference of forecast mechanisms. GM (1,1) 
model is a widely used grey forecasting model, in which the two “1” respectively denotes a first-order 
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product forecasting problem considering marketing efforts. There are two reasons: first, the grey 
prediction method based on marketing effortsconsiders the randomness of the demand sequence, and has 
strong adaptability when the historical data is not enough; second, the GMM model considers the 
characteristics of FMCG itselfand takes fully advantage of marketing efforts and other information. 
Therefore, better prediction results can be obtained if the grey forecast is executed after marketing 
efforts factor removed. 
 

CONCLUSIONS 
 
 Basing on analysis of demand characteristics of FMCG and review of new product forecast 
methods, this paper analyzes the suitability of grey prediction model; concerning FMCG new product 
prediction problem, this paper proposes the definition of marketing efforts and establishes a modified 
GMM grey forecast model based on the definition, the research makes up the shortcoming of requiring 
large amounts of historical data of the previous quantitative researches. And a case analysis shows that 
when the time-series sequence has less samples and is influenced more significantly by external factors, 
the forecast effect of GM is obviously not as good as RM, while the modified GMM model 
performances better than RM, at the same time, the modified GMM model also performances better 
thanGM (1,2) and GM (0,2) considering influence factors. In future studies, concerning the relationship 
between marketing costsand sales, the research of GMM model can be combined with corporate 
marketing decisionsthe perspective ofintegrated logistics management, which will improve the 
performance of marketing efforts in business operations. 
 

ACKNOWLEDGEMENTS 
 
 This work was financially supported by the earmarked fund for Beijing Innovation Team of Food 
Industry Technology Research System(Project No. is BITF -13)and of Quota of Personnel 
TrainingProject of Beijing Univesity of Agriculture(5095237001-039). 
 

REFERENCES 
 
[1] V.Shankar; New product introduction and incumbent response strategies, Their interrelationship and the role 

of multi-market contact, Journal of Marketing Research, 36(3), 327–344 (1999). 
[2] J.D.Cryer, K.S.Chan; Time series analysis with applications in R. USA, Springer, (2008). 
[3] T.J.Mentzer, M.A.Moon, Sales forecasting management, A demandmanagement approach, Sage 

Publications, Inc. (2005). 
[4] J.Morrison, How to use diffusion models in new product forecasting, The Journal of Business Forecasting 

Methods & Systems, 15(2), 6–9 (1996). 
[5] K.Goldfisther, C.Chan; New product reactive forecasting, The Journal of Business Forecasting Methods & 

Systems, 13(4), 7–9 (1994). 
[6] B.L.McLean, A.W.Wortham; Methodology aids forecasting with limitedamounts of data, Industrial 

Engineering, 20(2), 18–22 (1988). 
[7] S.Thomassey, M.Happiette, A neural clustering and classification system for sales forecasting of new 

apparel items, Applied Soft Computing, 7, 1177-1187 (2007). 
[8] C.C.Chern, L.L.Wu, L.C.Kung; Designing a decision-support system for new product sales forecasting, 

Expert Systems with Applications, 37, 1654-1665 (2010). 
[9] Chu Yanfeng, Liu Sifeng The Predictionof Chinese Future Logistics Scale Basedon Grey Systems Theory, 

20(3), 58-62 (2008). 
[10] D.C.Li, C.W.Yeh, C.J.Chang; An improved grey-based approach for early manufacturing data forecasting, 

Computers & Industrial Engineering, 57, 1161–1167 (2009). 
[11] Deng Julong, Grey prediction and decision, Wuhan, Huazhong University of Science and TechnologyPress, 

(1986). 


