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INTRODUCTION

Planets moving in a gravitational field are subjected to
forces and other interactions, mainly from the primary,
but also from adjacent planets, moons and other matter.
For most of the moons, rotation is bounded such that
orbit angular velocity, equals the own axis rotation. This
is since there is a coupling tidal force between moon
and primary. From these rules, there are but a few ex-
ceptions. Phoebe, one of the outermost moons of Sat-
urn, does not have a bounded rotation. The moon
Hyperion, with non-symmetric shape, is found to rotate
chaotic about own axis, (but the orbital rotation is noti-
fied as bounded). Saturn has about 60 moons, and plan-
etary rings, in which so-called shepherds moves with a
different velocity than the rings, e.g. the moon Daphnis
in Keeler Gap in Saturn.
For the orbit around a primary, in vicinity i.e. sufficiently
close, satellites rotate with the same angular velocity,
and far rotation is gravitational according to Kepler�s
law. In between, there are regions, e.g. a so-called Roche-
region, where other forces act, that may cause objects
to disintegrate, and create gaps in planetary rings. Out-
side the Roche limit is the limit for a synchronous orbit,
and in between a region where objects may have in-
creased angular velocities. It is found that the moon
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moons in the solar system

Models for unusual motions of moons and planets are presented. Results are compared with
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figurations of Gas giants at formation, and a deterministic analysis for oscillation of non-
spherical satellites[1].

Received: March 21, 2013
Accepted: June 28, 2013
Published: July 29, 2013

Abstract

Full Paper

Keywords

Celestial mechanics; Phobos; Hyperion; Wobbling; Nonlinear rotation; Deterministic chaos;
Conservation law; Configuration torque.

*Corresponding author�s Name & Add.

Lena Strömberg
Dep. of Solid Mechanics, Royal Insti-
tute of Technology (KTH), (SWEDEN)
E-mail: ljtstr@gmail.com

Lena Strömberg

Dep. of Solid Mechanics, Royal Insti-
tute of Technology (KTH), (SWEDEN)
E-mail: ljtstr@gmail.com

Phobos, close to Mars, is moving very fast, about 3
times its primary. Another exceptional phenomenon
notified is that two moons in Saturn change orbits at
passing each other.
In[1], results for non-spherical satellites, in terms of oscil-
lation in angular velocity, so-called libration, were obtained
with a deterministic analysis. In the present context, other
mechanical models describing some rare phenomena will
be derived and discussed. To calculate an angular velocity
for orbital motions, a generalisation of a conservation
law, will be exploited. For the sidereal motion of
Hyperion, nonlinear wobbling is derived.

ESTIMATIONS FOR ANGULAR VELOCITY,
FROM A NOETHER THEOREM

Consider optimization of a functional in a time interval
[S,T], with the Lagrangian () where  = (t) is the
angular velocity in the orbit. From the general variation
of a functional, a conservation law is obtained when the
Lagrangian function is homogeneous of 2nd order[1]. In
one dimension, functions hom. of 2nd order reads C2

where C is constant. Variational calculus with Euler-
Lagrange�s equations give that also (t) is constant. Here,
it is assumed that Euler-Lagrange�s equations are not ex-
actly fulfilled at all points in the time interval [S,T]. This
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may be denoted a weak optimization and admits that the
angular velocity  and  depend on t. Subsequently, 
will be denoted a potential and an energy-conjugated vari-

able to  is defined as P= ù,Ø

Assumption

With the preliminaries above, we suppose an equation for
the dynamical variables, at t=S, and t=T.
When  is proportional to 2, the general variation of a
functional gives a conservation law

0]P)2/It(t[ T

S  (1)

where I denotes the angle I =   dt, and subscript S and
superscript T denotes the value at time points T

 
and S,

and P= ù,Ø , is the conjugated force.
This formula is derived from the conservation law given
in[2] for linear elasticity. The present format is obtained by
replacing spatial dependence with time t, and displace-
ments with angular velocity . Initial time S and terminal
time T correspond to boundary of the elastic body.
To apply the formula (1), it is assumed that the conju-
gated force P, (generally also I and ) may couple, with
corresponding values connected to an adjacent rotating
system.

INCREASED ORBITAL VELOCITY OF THE
MOON PHOBOS

It appears that interactions and oscillation phenomena may
increase the velocity. Mars has 2 moons. The closest,
Phobos, is orbiting, (so-called super-synchronous) with
increased angular velocity, 0.31d. This is somewhat faster,
but the same magnitude as the Gas giants, Jupiter and
Saturn. In a kinematic description, the moon may achieve
an increased absolute radial acceleration, since Mars have
an eccentric orbit. However the magnitude will not be so
large as to describe the 3 times higher angular velocity.
Instead, a framework with coupling will be assumed. The
moon is non-symmetric, such that chaotic motion or
wobbling could be possible, but tidal interaction with Mars
dominates and the orbit is locked. It is possible that be-
fore tidal locking, a coupling to a chaotic sidereal motion
created the increased orbital angular velocity.

Application of the conservation law

Let S=0 and I(0)=0. Then, the potential is given by  =
( - I / (2T))P. The variables , I and P may either be
assumed as the values of the own system, or as values
that couples with outer adjacent system at time point T.
When chaotic rotation, values for angular velocity com-
ponents are large, at times. If coupling to these are as-
sumed, such that P

orbit
=P

sidereal
, the potential for orbital ro-

tation given by (1), will be increased to read  = P
sidereal

/
2 = 

sidereal
/2. After coupling, the new  determines the

new angular velocity 
new

, as /2ùØ 2

new .

ASSUMPTIONS ON COUPLING FOR TWO
MOONS THAT CHANGE ORBITS

One of the moons has an elliptical orbit, which occasion-
ally is very close to the circular orbit of the other moon.
Briefly, two models will be outlined:
 In a simplified approach, the above conservation law,

together with additional coupling conditions, e.g. that
the two moons, when sufficiently close, move as a
dumbbell and details of the interaction may be de-
scribed by the calculations in[1].

 To describe the eccentric orbit, additional d.o.f:s are
required. For this purpose, a more complex version
of (1), is to be derived.

NONLINEAR EQUATION DESCRIBING A
POSSIBLE WOBBLING OF HYPERION

Linear wobbling for Mc-vehicle and Earth

Wobbling usually refers to the oscillations of a vehicle.
For a Motorcycle, when no actions from driver, and fric-
tion at ground contact is neglected, the model will be
linear with 2 d.o.f. The eigenfrequency is the same for
both oscillations and depends on the angular velocity of
the front wheel, the inertia moment of the front wheel,
the inertia moment of fork plus steering device, and the
inertia moment of driver plus vehicle minus front wheel.
Planets with non-symmetric shape display wobbling. The
frequency and amplitude for earth wobble have been cal-
culated by Milankovic.

Wobbling model

The moon Hyperion is non-symmetric and the wobbling
has a large amplitude such that it faces different sides to
its primary. If the equations for planetary wobbling, are
modified to also consider the net torque since gravity is
larger on the inside part, a nonlinear model is achieved.
With 1-direction tangential to the orbit the equations of
motions read

J
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where 
3 
is a constant angular velocity, J

i
 denotes inertia

moments, and the torque M
1
 depends the masses, the

length of the moon and nonlinear on the rotation-angle
in 1-direction. A detailed analysis of a related model is
given in[1], as well as a comparison with possible evolu-
tion the moon to the earth. A phase portrait of such
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models is to be found in the literature, cf. figure below.

Energy approach

When the kinetic energy is constant, i.e. independent of t,
the amplitude of the oscillation around the part with smaller
inertia moment J, will be the larger. In Mc-wobbling, this
is a phenomenon known as tank slapper, when the fork
and steering device move with very large amplitude[3].
For a planetary wobble omitting torque, steady state is
obtained when two inertia moments are equal. Including
torque and other interactions provides solutions also at
other shapes. Then tank slapper corresponds to a large
rotation oscillation around the axis with smallest J. In the
case when this axis points towards the center of the orbit,
the orientation is such that the moon has the same side to
the center, also at large wobbling amplitude. Hereby, if
the planet is very elongated, a tidally locked orbit is ad-
mitted also at wobbling.
Uranus has a large inclination angle such that it rolls in its
orbit, with a part almost always facing the sun. Presently,
it is not rigid and non-symmetric, but the inclination could
be a reminiscence of the motion at formation. Also the
fact that outer moons of Gas giants move the opposite
direction may be a spatial peck of past state, planetary
shape and history of oscillation.

Intrinsic properties/interactions related to material
forces and configuration forces

In a weak formulation (energy approach), presence of
other torques may be tacitly assumed. In a strong formu-
lation of, a priori, nonlinear wobbling, other torques may
be included in the equations of motion. In Mc-wobbling
these emanate from vehicle contact with ground and ac-
tions from driver. Integration and differentiation of equa-

tions of motion, give that
 at ceased contact, torque is zero but integrated torque

is nonzero
 at beginning of contact, torque is zero but time differ-

ential is nonzero
Hereby initially, the torque is determined by the (free)
motion. Since dependent on such intrinsic properties, the
interaction may be considered a configuration torque. Such
notations are introduced in other modelling, e.g. Fracture
mechanics[4-6]. For planets, there is evidence of significant
material torques: In[7], a core mantle friction is assumed
to interact with rotation.

CONCLUSION

The non-stable rotation of Hyperion was described with
deterministic chaos, including a torque due to gravity. Then
large �wobbling� amplitude can occur also at tidally locked
orbit.
On the planetary scale, it is observed that Mercury[7] has
3/2 coupling and Venus (-1)/1. Comparing with current
dynamical states at the Gas giants, it is possible that Mer-
cury and Venus rotated locked, as moons to the Sun, with
Venus in opposite direction, in the beginning, at forma-
tion.
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