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Abstract 

In the present work, we study the motion of a probe in the gravitational field generated by an elongated geo-cruiser asteroid of irregular 

shape, which we model by an inhomogeneous mass distribution. We propose a model of inhomogeneous mass distribution with a 

symmetric polynomial density profile of order 4 and then establish the analytical expression of the gravitational potential generated by 

this segment. The Lagrangian formalism allowed us to establish the dynamic equations of motion of the probe in the gravitational field 

generated by this body, which we solved numerically. 
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Introduction 

The study of near-Earth asteroids is of great scientific interest because of the impact and potential dangers that these celestial 

objects represent for our planet. Their collisions with the Earth have occurred throughout the history of our planet and have had 

profound effects on the biosphere. The NEAR Shomaker (1996) and Hayabusa (2003) missions landed on asteroids and provided 

invaluable information on their composition. The launch of Osiris-Rex (2016) aimed to collect soil samples from the geo-cruiser 

asteroid Benou (2020) and the capsule is scheduled to return to Earth in September 2023. The DART (Double Asteroid Redirection 

Test) mission (2022) succeeded in hitting and deflecting the trajectory of the Dimorphos geo-cruiser asteroid with a kinetic 

impactor. The asteroid belt has a large concentration of rocky and metallic objects and the dynamics in the vicinity of these small 

celestial objects requires the calculation of the gravitational potential. Among these objects are those with an elongated shape and 

the modelling of these by a linear mass distribution has generated several attempts. Riaguas A, Elipe A and Lara M calculated the 

potential generated by a homogeneous segment [1]. Elipe A and Lara M were interested in the dynamic study in the vicinity of the 

asteroid Eros-433 by exploiting the results of [2,3,1]. Some works have modelled the asteroid Castilia-4769 by a harmonic 
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polyhedron and while others have chosen a ellipsoidal model [4-7]. We have proposed a non-homogeneous model for Eros-433 

whose density has a quadratic form, and we have treated the case of an anisotropic ring [8-10]. Other studies have focused on the 

search for periodic orbits and on the study of liberation points in the vicinity of a rotating segment [11, 12]. Studies have been 

carried out on a model dealing with a straight segment linked to two masses at its extremities, and which has been improved by an 

intelligent inversion method using Hopfield (HNN) neurons [13-15]. Our work consists first in modelling the asteroid by an 

inhomogeneous segment whose density profile is a fourth-order polynomial, then in establishing the analytical expression of the 

gravitational potential generated by this segment as a function of the density parameters. We then establish the dynamic equations 

of motion of the probe in the vicinity of the segment. At the end we numerically integrate these equations in order to extract 

particular orbits for different density shapes. 

 

Dynamic Equations in the Vicinity of the Segment 

Consider a segment, of mass M and length 2l, extending along the axis (x’x) of a reference frame R(x,y,z) whose origin O is the 

centre of the segment (FIG.1). The mass density profile is given by λ(x)=b−ax
2
+ cx

4
 with a, b and c are positive constants related to 

the mass of the segment by 𝑀 = 2𝑏𝑙 −
2

3
𝑎𝑙3 +

2

5
𝑐𝑙5. 

Potential generated by the segment 

The potential gravitational per unit mass created by this one dimensional body at a certain point P in the space is given by the line 

integral: 

( )
dm

U P G
r

                                                                                         (1) 

 

FIG. 1 Study coordinates (ρ, θ, x). 

 

with G is the gravitational constant and dm is the mass element located at the point H of the segment and of abscissa xH, as it is 

represented on FIG. 2. We define a new variable of integration 0 ≤ ν ≤ 1 given by 𝑣 =
1

2
(1 +

𝑥𝐻

𝑙
). The distance r is given by [1]: 
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2 2 2 2 2 2 2

1 2 1
4 ( 4 )r r l v r r l v                                                                             (2) 

where r1 and r2 are the distances between the point P and the ends of the segment. The mass element becomes: 

2 4
5 4 3 2

2 2

5 1
32 2

44 4 4 4 16

a a b al cl
dm cl v v v v dv

cl cl cl

 
      

    
    
    

                                      (3) 

The equation (3) becomes: 

1

0

4 3 2
4 3 2 1 0

2
( )

v

a v a v a v a v a
U P G dv

v B C

   
  

 

                                                                     (4) 

B and C are functions of the position of point P, they are given by: 

2 2 2
2 1

2

4

4

r r l
B

l

 
 ; 

2
1

2
4

r
C

l
                                                                                    (5) 

 

FIG. 2 New coordinates r1 and r2. 

 

0 1 3, ,a a a and 4a are the constants given by:  

2 4

0
a b al cl   , 

2 2

1
4 ( )a l a cl  ,

4
3 32a cl  , 

2
16a cl  

After calculation and simplification of equation (6), we establish the analytical form of the potential generated by this 

inhomogeneous segment: 

1 2
1 2 3 4

2
( )

2 2 2

r r s l
U P G z z z z Ln

l l s l

  
  

  


    


                                                              (6) 

The coefficients ( ) 1..4
i

z i  are auxiliary functions of the position of point P, their expressions are: 

3

2

1

3

2
4 3

55 2

48 3
z a BC a BC    
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3

2

2

4 2 13

35 5 3

64 8 4
z a B a B a B a     

3 2
3 4 4 3 2 4 4 3 1 2 3 43 4

35 35 5 5 7 3 55 3 2 1 1 1

64 96 8 12 24 4 48 8 3 2 3 4
z a B a a B a a a B a BC a a C a a a a            

     
     
     

 

4 3 2 2 2

4 4 3 4 2 1 4 2 0

35 5 15 3 3 1 3 1

128 16 16 8 4 2 8 2
z a B a B a CB a B CB a B a C a C a          

The expression (6) represents the gravitational potential generated by an inhomogeneous segment of mass line density given by 

λ(x)=b-ax
2
 +cx

4
 . The case of a parabolic distribution is obtained by giving a c = 0 and the homogeneous one  is obtained by giving 

a a = c = 0 [8,1]. 

 

Equations of motion 

The dynamic study of a test particle, of unit mass, placed at the point P where the gravitational field generated by the 

inhomogeneous segment prevails, is done in the sidereal reference frame R(O, x, y, z) provided with the cylindrical base as it is 

represented in FIG.1. The Lagrangian of the system is given by  2 2 2 2
1 2

1
( , )

2
L x U r r      with 

1

2 2
( )r x l   and

2

2 2
( )r x l   . 

The dynamic equations of motion of the test particle are: 

2 3 32
4 2

1 2

2
4 4 32 2

2 2 4
4 32 2 2 2 2

165

192 2 2 2

15 1 3 2

2 96 2 8 3

15 3 3 2
4

32 8 8 4 2 ( 4 )

a zz
G a B C C

l l r l r

r
G a B a a

l l l

a z ss l
G a B a B C Ln l

l l l l s l p s l

 
   

 


   

     

  


     

 

  
  

 
   
   

  
     
    

   

                                          (7) 
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4 2 2
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2 32 2 2 2
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zr
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l l l l

r
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      

     

    

  

 
 
 

  
  
  

    
    
    

4 42
3

42 2

3 2 2
4 3 4 22

1 2
3 42 2

2

1 3 2
( 1) ( )

2 8 3

4
( 4 )

70 15 15 15 3 2
( 1)

32 8 4 32 2 2

3 3 3 2
( ) B ( ) ( )

8 2 8 4 2

a B x a x l
l a

xs ld
Gl z

p s l

s l
G a B a B BC a x B a B Ln

l l l l s l

a a s l
G x l a C a x l C x l Ln

l l l l s l

   







     




       





  
   

  

   
     

   
  
  
























                                  (8) 

2





                                                                                            (9) 

We obtain the case of a parabolic distribution is obtained by injecting c=0 into the equations (7), (8) and (9) [8]. 

Numerical Examples and Discussions 

The resolution of equations (7), (8) and (9) allows describing the dynamic behaviour of the test particle in the area of the 

inhomogeneous distribution via the coordinates ρ(t), x(t) and θ(t).  

A numerical resolution allows, for different initial conditions, to extract equatorial, meridian and three-dimensional orbits. 

 

Study of resulting orbits 

The FIG. 3 contains the different profiles of the distribution of the matter along the segment. The FIG.4 to FIG. 10 contains 

numerical trajectories in the equatorial plane which is orthogonal to the segment for different initial conditions 0 0 0 0 0 0, , , , ,x x    
  . 
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FIG. 3 Profile of density λ(x)=b-a×x
2
+c×x

4
. 

Discussion 

We are interested in orbits in the (yOz) plane by fixing x=0 and 0x  . In this case the motion variables are  ,  , θ and . 

 

FIG. 4 Profile of density λ(x)=2-0.3×x
2
+x

4
 

For a density λ(x) =2-0.3×x
2
+x

4
 , (FIG.3a): 
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 We launch the particle with the following initial conditions ρ = 1, 0  , x = 0, 0x  , θ=0 and 0  . The FIG.4a shows 

that for a time of t=50 the test particle gravitates around the segment with a precession. The FIG. 4b shows that for a time 

of t=500 the precession continues giving a confined orbit between two circles. ˆ  

 The figures FIG.4a, FIG.4c, FIG.4d and FIG.4e show that when we increase the energy of the particle it remains bound 

to the segment. 

For a density λ(x)=1-0.2×x
2
+x

4
 , (FIG. 3b): 

 

FIG. 5 Profile of density λ(x)=2-0.3×x
2
+x

4
. 

 We launch the particle with the following initial conditions ρ = 1, 0  , x = 0, 0x  , θ = 0 and 0.01  . The figures 

FIG.7a, FIG. 7b, FIG. 7c and FIG. 7d are obtained by increasing the integration time; they show the existence of a very 

slow precession giving a confinement state. The FIG.7e is obtained by changing the value of 0.18  . ˆ  

 The orbits which are in the FIG. 8 are obtained for different initial conditions. 

 

For a density λ(x)=1-0.2×x
2
+0.8×x

4
 , (FIG. 3c): 

 We launch the particle with the following initial conditions ρ = 1, 0  , x = 0, 0x  , θ = 0 and 0.9  . The orbits 

obtained in FIG. 9 present other types of resonances. 
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FIG. 6 Profile of density λ(x)=2-0.3×x
2
+x

4
 

 The orbits in FIG. 9 and FIG. 10 are obtained for different initial conditions. 
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FIG. 7 Model λ(x)=1-0.2×x
2
+x

4 

Conclusion 

In this work, a geo-cruiser has been modelled by a non-homogeneous static segment whose mass density is λ(x)=b-a×x
2
+c×x

4
 

where a, b and c are coefficients modelling the internal structure of the asteroid. After having established the analytical expression 

of the gravitational potential generated by this mass distribution we established the equations of motion of the probe in the vicinity 

of this segment. The numerical resolution of these equations showed the existence of confined orbits for well-defined initial 

conditions allowing the probe to gravitate indefinitely. Among our perspectives we will treat the case where the segment is 

uniformly rotated around its major axis of inertia in order to search, in the synodic reference frame, for the existence of equilibrium 

positions and to study their stability as a function of the parameters a, b and c. Using Poincare’s sections, we will compare the 

results of our model and that of concerning the chaotic behavior of orbits and the existence of possible bifurcations [9]. 
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FIG. 8 Model λ(x)=1-0.2×x
2
+x

4 

 

Fig. 9 Model λ(x)=1-0.2×x
2
+0.8×x

4 
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Fig. 10 Model λ(x)=1-0.2×x
2
+0.8×x

4 
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