
Modeling continuous health risk factors by using fractional
polynomials transformation

Dalin Zeng1, Youquan Xu2*, Xiancun Hu3

1School ofEconomicManagement,TongjiUniversity, Shanghai, 200092, (CHINA)
2School ofManagement Engineering, Shandong JianzhuUniversity, Jinan, Shandong, 250101, (CHINA)

3School ofArchitecture and Building,DeakinUniversity,Austrilia, (CHINA)
E-mail: zdllw8102@163.com;yqxu@sdjzu.edu.cn; huxiancun@163.com

FULL PAPER

ABSTRACT
Assessing health risk factors often involves observational data that with
heterogeneous patient background that information is limited to
researchers. Thus forms a curvature, sometimes in complicate shape, on
the continuous predictive variables in fitting models. Fractional
Polynomials (FP) transformation provide a flexible model fitting framework
account such curvature. In this paper we assess the utilization of FP
model fitting framework in health risk factor assessment.
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INTRODUCTION

Regression analysis can be used to determine sig-
nificant predictors of a response, as well as for predict-
ing the response variable from a set of covariates (fac-
tors). In many situations, researchers would like to de-
termine a relationship between response variable (Y)
and predictive variables (covariates, X

1
, X

2
, �X

m
) so

that they can assess the effects of predictors on response
as well as predict the mean response based on a cer-
tain set of values of predictors.

Through ordinary least squares (linear regression
only) or maximum likelihood, the model parameters
could be estimated from a set of observed values of Ys
and corresponding Xs. Through such fitted model, a
mean response of Y could be estimated according to
values ofXs.

However, in modeling health outcomes, research-

ers often deal with observational data that with limited
patient background information. These heterogeneity
forms curvature shape, non-linearity between outcome
and predictors, in continuous risk factors (e.g Age, Year
of Disease Durations, etc.) that creates difficulties in
fitting models in regression analyses. Fractional Poly-
nomials (FP) transformation provides a flexible yet pow-
erful solution.

FRACTIONAL POLYNOMIAL REGRESSION
MODELS

When the relationship between a response and
covariates is not linear, researchers may fit nonlinear
polynomial models. However, in many cases, even poly-
nomial models may not fit well or need to fit in a much
higher order (powere�3) because of the limited shapes

of low order polynomials. However, higher power terms
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fit poorly in extreme values, which limit their applica-
tion. On the other hand, conventional polynomial mod-
els usually include lower order terms and/or linear terms
when a higher order term appears. This restrains the
flexibility in choosing polynomial terms because linear
and quadratic functions are limited in their range of curve
shapes, whereas cubic and higher order curves often
produce undesirable edge effects and waves[1].

Royston et al.[1] introduced Fractional Polynomials
(FP) models that can be incorporated into any regres-
sion model to provide a flexible approach for modeling
nonlinear relationships between a response and con-
tinuous covariates[1,2].

The Fractional Polynomials regression model for a
given continuous variable X is defined as:
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,; (5) p are all possible m-

tuples fromP ={-2, -1, -½, 0, ½, 1, 2, max(3,m)}.
FPs are a family of regression models that use a subset
of powers on the covariates from a defined set of pow-
ers (suggested [-2, -1, -½, 0, ½, 1, 2, 3�], where 0

means using logarithm)[1]. Note that in the definition of
Fraction Polynomials regression model above the mean
response can be Y or a link function transformed vari-
able. The following two examples are both Fractional
Polynomials regression models.

(1)  )5.0,;(  Xm = 2/1
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Although many powers and power combinations
can be chosen, in practice fewer than two powers from
the defined set of powers for each predictive variable
are sufficient in fitting most practical models. Mean-
while, we generally do not need to consider powers
that are more than 3 or less than -2 since such powers
do not provide much benefit compared to their com-
plexity.

The degree of a Fractional Polynomials model is

the maximum number of polynomial terms used on a
predictor in a fitted model. Here we denote(m, p)
denotes a Fractional Polynomials model, where m is
the degree of the model, and p is the set of Fractional
Polynomial terms listed inside braces.

Under this style of notation, the above two examples
of FP models on X are denoted as:
(1) (1, {-0.5})
(2) (2, {-1, 0.5})

Because many combinations of powers may be
used to fit a given set of data, it is critical to determine a
best fitting model. For such determination, all possible
models with different combinations of powers are fitted
using maximum likelihood.

We further denote D(m, p) denotes the deviance of
a Fractional Polynomials Regression model (m, p),
where D(m,p)= - 2log-likelihood of the model (in Maxi-
mum Likelihood estimation framework or MLE) or Sum
of Squares (in Ordinary Least Squares estimation frame-
work or OLS). Throughout the paper, we only demon-
strate D(m,p) in MLE. The optimum model determina-
tion on OLS is similar and will is left to the reader.

Under this style of notation, deviances of the above
two examples of FP models on X are denoted as:
(1) D(1, {-0.5})
(2) D(2, {-1, 2})

In addition, we denote D
max

 the maximum deviance
difference from all Fractional Polynomials Regression
models to the model with only linear term.D

max

=max(D(1, {1}) - D(m, p) ), for all possible p on a
certain m.

For a given m, the best power vector

)~,...~,~(~
mppp 21p is the one associated with the model

with the highest likelihood (the lowest deviance,). Thus

p~ may be regarded as the maximum likelihood estima-
tor of p over the restricted parameter space based on

P. The value D(m, p) - D(m, p~ ) has an approximate
2 distribution with m degree of freedom for large n. In
determining the degree of FP, Royston suggested using

D = D(m, p~ ) � D(m+1, p~ ) >2
2; 0.90

 (=4.7) as a
rule for preferring models with degree m+1 to those
with degree m. Also suggested is the benchmark sig-
nificant level of test =0.1[1,2].

In practice, since usually only models up to degree
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two are considered when working with FP models, it is
convenient to use the deviance of linear first order term
(D(1,{1})) as a baseline. The maximum deviance dif-
ference comparing the fit of a model with that of a straight
line (p = 1) is distributed approximately, for large n, as
a 2 distribution with 1or 3 degrees of freedom for first-
or second-degree models, respectively. Also suggested
is the benchmark significant level of test =0.05[2].

Under such conditions, we can recursively fit mod-
els with all possible combinations of powers (up

to 



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8
=36). Those models with deviance greater

than first order FP (1,{1}) become candidate FPs.
We then find the model that has maximum deviance
difference D

max
, and finally determine if D

max
>2

=0.0.5
(1

or 3 df for first or second degree FP, respectively). If
the test is not significant (p-value> 0.05) then the
(1,{1}) model is sufficient. Otherwise the model with
deviance D

max
 will be the optimal FPs model[1,2].

APPLICATION IN HEALTH RISK FACTORS
ASSESSMENT

We apply the FP transformation in a Logistic re-
gression model using the data similar to Brodie et al.[3],
to estimate the effect of Door-to-Balloon Time (DBT)
on Survival of ST-elevated Myocardial Infarction Pa-
tient under Primary Percutaneous Coronary Interven-
tion. We compare our results to the publications, using
a Cox Proportional Hazard model, and receive similar
conclusions. Our purpose is to demonstrate the esti-

mation framework and model fitting process rather than
to find out the health outcome implications of the risk
factors.

DATA AND RESULTS

Study data is a randomly selected sample from stud-
ies described in[4]. Summary Statistics are in TABLE 1.

We follows the same methodology and model de-
termination described above. All model estimations are
carried and compute by programs authors developed
in statistical software R. First we assess the First De-
gree Fractional Polynomials (FDFP) fitting model, FP
applies only on DBT, estimation results are shown in
TABLE 2. The best fitted FP is (1,{-2}), with Devi-
ance Difference of 9.75, a p-value of 2 at 0.001792
(p-value of 2 column in the table). In the TABLE and
what follows, we only show p-values when they are
statistically significant at 5% level.

Next we assessed the Second Degree FPs (SDFP)
fitting model, estimations are shown in TABLE 3. From

TABLE 2 : Logistic regression with fractional polynomials on dbt, first degree of fractional polynomials.

Survival 
(Odds Ratio) Deviances 

Wald Confidence 
(95%) 

 
FP Power p-value   of 

coefficient 
Point 

Lower Upper 
D(1, p)) Drop-in-Deviance 

(Likelihood Ratio) 
Deviance Difference 

D(1, {1}) -D(1,p) DF 
p-value of 


2 

(1,{3}) 3.00 0.5545 1 1 1 1058.979 334.3671 -3.106 1  

(1,{2}) 2.00 0.799 1 0.997 1.002 1059.316 334.05 -3.443 1  

(1,{1}) 1.00 0.0483 0.95 0.902 1 1055.873 337.4728 0 1  

(1,{0.5}) 0.50 0.005 0.684 0.524 0.892 1052.071 341.2756 3.802 1 0.051191 

(1,{0}) 0.00 0.001 0.629 0.477 0.83 1048.765 344.5812 7.108 1 0.007674 

(1,{-0.5}) -0.50 0.0007 5.263 2.026 13.67 1046.897 346.4492 8.976 1 0.002736 

(1,{-1}) -1.00 0.0008 3.354 1.651 6.811 1046.124 347.2223 9.749 1 0.001794 

(1,{-2}) -2.00 0.0028 2.34 1.341 4.084 1046.12 347.2238 9.751 1 0.001792 

TABLE 1 : Summary statistics of outcomes and predictors.

Measurements Possible Values (unit) 
Role in 
model 

Death in hospital not lab (0,1) 0 = alive, 1 = dead Response 

Door-to-balloon Time 
Continuous positive value 
(hour) 

Predictor 

Age of the patient 
Continuous positive value 
(year) 

Predictor 

Sex of the patient 0 = male, 1 = female Predictor 

Prior Myocardial 
infartion 

0 = No, 1 = Yes Predictor 

Presence of Diabetes 0 = No, 1 = Yes Predictor 

Current or former 
Smoker 

1 = current,  2 = Former Predictor 
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TABLE 3 : Logistic regression with fractional polynomials, dbt, second degree of fractional polynomials (SDFP)

Powers Deviances 
Survival 

(Odds Ratio by p) 
Survival 

(Odds Ratio by q) 
Wald 

Confidence 
(95%) 

Wald 
Confidence 

(95%) FP             p q D(m, p) 

Drop in 
Deviance 

(Likelihood 
Ratio) 

Deviance 
Difference 
D(1, {1}) 
-D(m,p) 

DF 
p-value 

of 


2 
Point 

Lower Upper 

Point 

Lower Upper 

(1,{1})             1 . 1055.873 337.473 0 1  0.95 0.902 1    

(2,{1, 3})         1 3 1044.812 348.534 11.061 3  0.831 0.748 0.923 1 1 1.001 

(2,{1, 2})         1 2 1044.985 348.361 10.888 3  0.77 0.664 0.892 1.011 1.002 1.019 

(2,{1,  0.5})     1 0.5 1046.09 347.256 9.783 3  1.28 1.037 1.579 0.206 0.073 0.581 

(2,{1,0})          1 0 1046.304 347.042 9.569 3  1.088 0.975 1.215 0.435 0.251 0.756 

(2,{1, -0.5})     1 -0.5 1046.278 347.068 9.595 3  1.032 0.952 1.12 7.776 1.939 31.182 

(2,{1, -1})        1 -1 1046.091 347.255 9.782 3  1.006 0.939 1.079 3.511 1.47 8.385 

(2,{1, -2})        1 -2 1045.734 347.612 10.139 3  0.981 0.924 1.041 2.186 1.223 3.907 

(1,{3})             3 . 1058.979 334.367 -3.106 1  1 1 1    

(2,{3, 2})         3 2 1046.324 347.022 9.549 3  1.001 1 1.002 0.976 0.961 0.992 

(2,{3, 0.5})      3 0.5 1044.376 348.97 11.497 3  1 1 1 0.495 0.341 0.717 

(2,{3, 0})         3 0 1044.234 349.112 11.639 3 0.008728 1 1 1 0.541 0.393 0.745 

(2,{3, -0.5})    3 -0.5 1044.316 349.03 11.557 3 0.009066 1 1 1 6.673 2.41 18.477 

(2,{3,  -1})      3 -1 1044.527 348.819 11.346 3  1 1 1 3.662 1.761 7.615 

(2,{3,  -2})      3 -2 1045.271 348.075 10.602 3  1 1 1 2.395 1.361 4.215 

(1,{2})            2 . 1059.316 334.03 -3.443 1  1 0.997 1.002    

(2,{2,  0.5})    2 0.5 1045.026 348.32 10.847 3  1.005 1.001 1.01 0.432 0.276 0.678 

(2,{2,  0})       2 0 1045.175 348.171 10.698 3  1.003 1 1.007 0.514 0.36 0.735 

(2,{2, -0.5})    2 -0.5 1045.329 348.017 10.544 3  1.002 0.999 1.005 7.04 2.39 20.741 

(2,{2,  -1})      2 -1 1045.487 347.859 10.386 3  1.001 0.998 1.004 3.678 1.73 7.819 

(2,{2,  -2})      2 -2 1046.04 347.306 9.833 3  1 0.998 1.003 2.371 1.344 4.182 

(1,{0.5})        0.5 . 1052.071 341.275 3.802 1  0.684 0.524 0.892    

(2,{0.5, 0})    0.5 0 1046.654 346.692 9.219 3  2.116 0.743 6.028 0.303 0.106 0.871 

(2,{0.5, -0.5})0.5 -0.5 1046.498 346.848 9.375 3  1.201 0.675 2.136 8.989 1.279 63.166 

(2,{0.5, -1})   0.5 -1 1046.123 347.223 9.75 3  0.995 0.645 1.534 3.323 1.147 9.629 

(2,{0.5, -2})     0.5 
(1,{0})               0 

-2 
. 

1045.238 
1048.765 

348.108 
344.581 

10.635 
7.108 

3 
1 0.007674 

0.85 
0.629 

0.61 
0.477 

1.185 
0.83 1.999 1.082 3.692 

(2,{0, -0.5})       0 -0.5 1046.53 346.816 9.343 3  1.421 0.447 4.52 16.325 0.343 777.587 

(2,{0, -1})          0 -1 1046.121 347.225 9.752 3  0.982 0.519 1.857 3.224 0.698 14.881 

(2,{0, -2})          0 -2 1045.085 348.261 10.788 3  0.81 0.544 1.206 1.813 0.904 3.635 

(1,{-0.5})        -0.5 . 1046.897 346.449 8.976 1 0.002736 5.263 2.026 13.67    

(2,{-0.5, -1})  -0.5 -1 1046.12 347.226 9.753 3  0.873 0.012 61.711 3.687 0.176 77.159 

(2,{-0.5, -2})  -0.5 -2 1045.315 348.031 10.558 3  2.217 0.402 12.235 1.668 0.698 3.986 

(1,{-1})            -1 . 1046.124 347.222 9.749 1  3.354 1.651 6.811    

(2,{-1, -2})       -1 -2 1045.652 347.694 10.221 3  1.899 0.312 11.55 1.533 0.429 5.481 

(1,{-2})            -2 . 1046.122 347.224 9.751 1 0.001792 2.34 1.341 4.084    

the table we can see the best fitted FP is (1,{-0.5}),
with Deviance Difference of 8.976, a p-value of 2 at
0.002736. As shown in the same table, even the best
SDFP is not better than FDFP (also shown in TABLE
3.) So FDFP is better when only FPS on DBT is ap-

plied.
We then apply FPs to both DBT and Age, how-

ever making the two continuous variables in the risk
factors. Shown in TABLE 4 is the SDFP on Age with
DBT set on (1,{-2}), then best FPs on DBT we
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found in earlier step. As we can see in the table, we
cannot find any significant transformation of FP. We
also evaluate different combinations of FPs on DBT
and Age but fail to find a statistically significant FP

transformation on Age, respectively (results not shown
here). Since no significant FDFP on Age when FDFP
(-2) present in DBT, we did not go further degree
FPs on Age.

TABLE 4 : Logistic regression with fractional polynomials on age, with dbt-2, first degree fractional polynomials on age

Survival(Odds Ratio) Deviances 

Wald Confidence 
(95%) 

FP Power p-value of 
coefficient Point 

Lower Upper 
D(1, p) Drop-in-Deviance 

(Likelihood Ratio) 
Deviance Difference 

D(1, {1}) -D(1,p) DF 
p-value of 


2 

(1,{3}) 3.00 0.0001 1 1 1 1049.691 343.6552 -3.5686 1  

(1,{2}) 2.00 0.0001 0.999 0.999 1 1046.909 346.4375 -0.7863 1  

(1,{1}) 1.00 0.0001 0.935 0.921 0.949 1046.122 347.2238 0 1  

(1,{0.5}) 0.50 0.0001 0.341 0.266 0.436 1046.649 346.6971 -0.5267 1  

(1,{0}) 0.00 0.0001 0.014 0.005 0.039 1047.863 345.4828 -1.741 1  

(1,{-0.5}) -0.50 0.0001 - - - 1049.802 343.5445 -3.6793 1  

(1,{-1}) -1.00 0.0001 - - - 1052.48 340.8659 -6.3579 1  

(1,{-2}) -2.00 0.0001 - - - 1060.01 333.3388 -13.885 1  

Thus we reach our best fitting model: -2 transfor-
mation on DBT but linear in Age (no FP). Results are
shown in TABLE 5. From the results we can see that

the longer Door-to-Balloon Time (DBT) the lower sur-
vival chance, Age follows the same pattern. The results
are similar to[4] in a survival analysis framework.

TABLE 5 : Summary of the final fitted model

Maximum Likelihood Estimates Odds ratio 
Covariate DF 

Estimate Error 
2 Pr>2 Estimates 95% Wald�s Lower CI Upper 

Intercept 1 10.5952 0.6171 294.810 <.0001    

Door-to-balloon Time-2 1 -0.3345 0.102 10.750 0.0010 0.629 0.477 0.830 

Age of the patient 1 -0.067 0.0077 75.581 <.0001 0.935 0.921 0.949 

Sex of the patient 1 -0.0510 0.1786 0.0816 0.7752 0.950 0.670 1.349 

Prior Myocardial infartion 1 -2.5321 0.1877 181.955 <.0001 0.079 0.055 0.115 

Presence of Diabetes 1 -0.3227 0.2047 2.4869 0.1148 0.724 0.485 1.082 

OLDMI 1 -0.0454 0.2120 0.0459 0.8304 0.956 0.631 1.448 

OLDCABGS 1 -0.5228 0.3199 2.6707 0.1022 0.593 0.317 1.110 

VESLADZ 1 -0.6346 0.1689 14.1210 0.0002 0.530 0.381 0.738 
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