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ABSTRACT
This study is concerned with the treatment of the dynamic behavior of
piezoelectric bimaterials containing interacting interface crack and circular
cavity under time-harmonic anti-plane shearing. The exact electric
boundary conditions at the edge of the circular cavity and the permeable
conditions at the crack surface are used to enable the treatment. The
theoretical solutions of the problem are formulated using Green�s function
method and conjunction technique. The resulting Fredholm integral
equations are solved using the direct discrete method to provide the
dynamic stress and electric fields. Numerical examples are provided to
show the effect of the geometry parameters, the piezoelectric constants
of the material and the frequency of the incident wave upon the dynamic
stress concentration. The results show the significant effect of
electromechanical coupling upon local stress distribution.
 2013 Trade Science Inc. - INDIA
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INTRODUCTION

Due to their intrinsic electro-mechanical coupling
behavior, piezoelectric materials have been widely used
as sensors and actuators in smart components. How-
ever, failure often occurs in piezoelectric materials be-
cause of their brittleness and presence of faults. So the
investigation of the failure behaviors caused by stress
concentrations has become more important.

In recent years, Ou and Chen[1] investigated near-
tip stress fields and intensity factors for an interface crack
in metal/piezoelectric bimaterials. Zhong and Li[2] gave

a closed-form solution for two collinear cracks in a pi-
ezoelectric strip. Li and Wang[3] studied the problem of
an anti-plane shear crack normal to terminating at the
interface of two boned piezoelectric ceramics. Zhou
and Wang[4] obtained the basic solution of two parallel
non-symmetric permeable cracks in piezoelectric ma-
terials. Wang[5] et al investigated the scattering of anti-
plane shear wave by a piezoelectric circular cylinder
with an imperfect interface. Wang and Gao[6] solved
the stress intensity factor of the mode III cracks origi-
nating from the edge of a circular hole in a piezoelectric
solid. It should be noted that most of the above docu-

id7263812 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

mailto:lidong242@163.com


Dong Li et al. 873

FULL PAPER

BTAIJ, 8(6) 2013

BioTechnology
An Indian Journal

BioTechnology

volve an exponential harmonic factor e-iÉt. For the sake
of convenience, this factor will be suppressed.

In the absence of body forces and free charges, the
equilibrium equations of linear piezoelectric medium for
a time-harmonic anti-plane shearing problem are given
as [7]

2 2 2 2 2
44 15 15 110, 0c w e w e w            (1)

Where 2  stands for 2 2 2 2x y     , and w , ,   are

anti-plane displacement, electric potential, mass den-

sity of the medium. While 44c , 15e , 11  are the elastic
modulus, the piezoelectric constant and dielectric con-
stant of the medium, respectively. Equation (1) can be
simplified further
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By introducing a complex variable ix iy re    

and its conjugate ix iy re     , the equation (2) can

be rewritten as
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While the constitutive relations can be rewritten as
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In which rz  and z  are anti-plane shear stress

components, rD  and D  are in-plane electric displace-
ment components, respectively.

The boundary conditions of the present problem
can be written as

ments are static, the dynamic cases have not been re-
ported too many.

The objective of the present study is to provide a
theoretical treatment of the dynamic interaction between
the circular cavity and the interface crack in piezoelec-
tric bimaterials under time-harmonic anti-plane shear-
ing. The exact electric boundary conditions at the edge
of the circular cavity and the permeable conditions at
the crack surface are used in present paper. The dy-
namic electromechanical behavior is studied using
Green�s function method and conjunction technique. The
present problem is reduced into the solutions for
Fredholm integral equations of the first kind, which are
solved by the direct discrete method. Numerical ex-
amples are provided to show the effect of the geometry
parameters, the piezoelectric constants and the fre-
quency of the incident wave upon the dynamic stress
concentration.

FORMULATION OF THE PROBLEM

Consider the problem of two bonded infinite pi-
ezoelectric materials containing a circular cavity near
the interface and a crack subjected to a harmonic inci-
dent wave of frequency É with an incident angle ±

0
, as

shown in Figure 1. Suppose the piezoelectric medium
has been poled along the z-axis. R is the radius of the
circular cavity in medium I. And h represents the dis-
tance of the cavity from the interface. The length of the
interface crack is 2A along the x axis.

The steady-state mechanical and electrical fields
corresponding to this incident wave will generally in-
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Figure 1 : Interacting interface crack and a circular cavity
in a piezoelectric bimaterials
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The superscript I, II and c refer to the variable
in the medium I, medium II and the cavity respectively.

SOLUTIONS OF GREEN�S FUNCTION

The displacement Green�s function and the electric
potential Green�s function in medium I are the solutions
for an isotropic piezoelectric half space with a circular
cavity impacted by an out-plane harmonic line source
loading at the horizontal surface.

The fundamental solutions, which satisfy the gov-
erning equation (3) and the boundary condition equa-
tions (6), can be decomposed into two parts: one is the
disturbance impacted by a line source loading and the
other is the scattered wave excited by the circular cav-
ity. The first part can be expressed as [8]
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Where (1)
0 (*)H expresses the zero-order Hankel func-

tion of the first kind. And the second part can be writ-
ten as
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So the expressions of the Green�s functions in me-
dium I can be written as

I ( ) ( ) I ( ) ( ),i s i s
w w wG G G G G G      (9)

The cavity is assumed to be vacuum or filled with

homogeneous gas of dielectric constant 0 , and free of
forces and surface charges [9]. Only electric field exists
in the cavity. The infinite expression of the electric po-
tential which is satisfied the Laplace equation inside the
cavity should be

0
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The Unknown Coefficients D
n
 and E

n
 can be ob-

tained by boundary condition equations (6).
The Green�s functions of medium II are the funda-

mental solutions for a half space impacted by an out-
plane harmonic line source loading at the horizontal sur-
face. They can be expressed as
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SOLUTIONS OF INTERACTING
BETWEEN THE CAVITY ANDTHE

INTERFACE CRACK

Consider the incident wave is a harmonic wave
which is directed at an angle ±

0
 with the interface. The

incident, reflected and transmitted waves can be gen-
erally expressed as [10]
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The detailed expressions of w
j
 and 

j
 (j=0,1,2),

which are the amplitudes of these waves, are fully de-
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scribed in Wang�s work[10].
Now, the incident wave and the reflected wave are

applied to the half space of medium I which contains
the circular cavity. To satisfy the traction free and the
impermeable conditions at the surface, the scattered
anti-plane displacement and electric potential in the
medium I can be expressed as
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The infinite expression of electric potential inside
the cavity should be expressed as

(I )
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The value of the Unknown Coefficients S
0
, S

n
 and

T
n
 can be obtained by the boundary conditions (6).

Similarly, the transmitted waves are applied to the
half space of medium II. The scattered waves do not
exist because there is no defect in medium II.

Based on the obtained Green�s functions, the anti-
plane displacements and the electric potentials in the
half spaces of medium I and II, the interacting solutions
of the circular cavity and the interface crack in piezo-
electric bimaterials can be constructed by using the con-
junction technique, as shown in Figure 3.

The construction process as follows. Firstly, the pi-
ezoelectric bimaterials are divided into two parts: the
upper half space of medium I and the lower half space
of medium II along the interface at y=0. The total anti-

plane displacement Iw , the total electric potential field I ,

the total shear stress I
z  and the total electric displace-

ment ID
 on the surface of medium I can be respec-

tively expressed as
I ( ) ( ) (I ) I ( ) ( ) (I ),i r s i r sw w w w          (17)

I ( ) ( ) (I ) I ( ) ( ) (I ),i r s i r s
z z z z D D D D               (18)

And IIw , II , II
z , IID

 on the surface of medium a!

can be written respectively as
II ( ) II ( ) II ( ) II ( ), , ,t t t t

z zw w D D          (19)

Secondly, a pair of opposite sheares I
z and II

z

are upper and lower surfaces at n, respectively.  And

additional shear stresses 1 0 0( , )f r  , 2 0 0( , )f r  and addi-

tional electric displacement 3 0 0( , )f r  , 4 0 0( , )f r  are also
applied on the surfaces respectively, so as to meet the
continuity conditions of the surface y=0 while conjunc-
tion of two parts, as shown in Figure 3. This can create
the traction free and electrically permeable crack.
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Figure 2 : Conjunction of two semi-infinite piezoelectric
media

Figure 3 : The results in elastic bimaterials
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By employing the following continuity conditions
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The shear stress at the circular cavity�s edge can be
expressed as
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The dynamic stress concentration factor (DSCF) *  is

defined by
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The dynamic stress intensity factor at the crack�s

tip can be introduced as follows

 
0

III 1 0 0lim , 2( )
r A

k f r r A


  (28)

A dimensionless dynamic stress intensity factor

(DSIF) 3k in the application is defined as

III
3

0

k
k

Q



 (29)

Where Q A  refer to the characteristic dimension of

the crack.

NUMERICAL EXAMPLES

As examples, some of the calculating results for
DSCFs and DSIFs are plotted from Figure 4 up to
Figure 10 based on formula (27) and formula (29). It
should be recognized that the effect of some param-
eters will be expressed by using the following dimen-
sionless components

*
II Ik k k , * II I

44 44c c  , *
I II  
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It can be seen from Figure 3 that the results of the
present paper coincide well to document [11] while the
two dissimilar piezoelectric media is reduced to the elas-
tic bimaterials.

Figure 4 and Figure 5 show variations of DSCFs at
the edge of the circular cavity with material constants
under vertical incidence, respectively. Figure 5 shows
that DSCFs increase with the increment of *k , and the
locations for maximum value are obviously different ac-
cording to *k . And Figure 6 implies that the influence of
the material mismatch on DSCFs is more signifi-
cant at higher incident frequencies.

Figure 6 and Figure 7 show variations of DSCFs
with the geometry parameters under vertical incidence,

respectively. Figure 6 shows that DSCFs increase with
the increment of h/R at lower frequencies, but the phe-
nomenon is not exist at higher frequencies. Figure 7
implies that DSCFs decrease approximately with the
increment of A/R. The maximum value of DSCF is ob-
tained at A/R=2.0.

Figure 8-10 exhibits the variation of DSIFs against
the materials� constants, geometric parameters and the
frequencies of incident wave under vertical incidence,
respectively. Figure 8 displays that DSIF attains its maxi-

mum in the region of k
I
R=1.15-1.25 for different * .

And the DSIFs increase with the increment of * when
k

I
R<1.2. The mismatch of the two materials will de-
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Figure 4 : Variation of DSCF vs. density
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Figure 6 : Variation of DSCF vs. h/R
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Figure 7 : Variation of DSCF vs. A/R
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Figure 10 : Variation of DSIF vs. wave number and h/R

crease the sensitivity of the stress intensity factor at lower
frequencies. Figure 9 shows that the peak values of
DSIFs always appear at lower frequencies which de-
crease with the increment of A/R. Figure 10 shows that
oscillation phenomenon of DSIFs is more significant at
higher incident frequencies. The biggest peak value is
obtained when h/R=1.5, indicating the complicated scat-
tering of elastic waves due to the interaction between
the circular cavity and the interface crack.

CONCLUSIONS

A general solution is provided to the dynamic inter-
action between a circular cavity and the interface crack
in piezoelectric bimaterials under time-harmonic anti-
plane shearing. The analysis is based on Green�s func-
tion and conjunction technique. The effect of the mate-
rial constants, the geometry parameters and the fre-
quency of the incident wave upon the dynamic stress
concentration factor and the dynamic stress intensity
factor is examined and discussed in the present paper.
Dynamic analyses in piezoelectric bimaterials are more
important than those on homogenous piezoelectric me-
dium, because the former may have larger dynamic stress
intensity factor. While the oscillating phenomena of dy-
namic stress intensity factors should also be paid atten-
tion, especially in high-frequency situation. The results
reveal that the material mismatch isn�t invariably increas-
ing the failure possibility. The stress concentration at
the edge of the cavity will decrease if the appropriate
parameters are chosen.
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