
Model-based testing for UML statechart diagram via extended
context-free grammar

Liping Li1*,Tao He2, Xiaolin Cao1

1Computer and Information Institute, Shanghai Second Polytechnic University, Shanghai, (CHINA)
2Software Engineering Department, Shenzhen Institute of Information Technology, Shenzhen, (CHINA)

E-mail: liliping@sspu.edu.cn; he_tao@foxmail.com; xlcao@sspu.edu.cn

FULL PAPER

ABSTRACT
This paper proposes an approach to checking the consistency and
generating test cases from UML statechart specification through extended
context-free grammar (ECFG) and model checking. UML statechart, test
coverage criteria and ECFG are input to the system, to perform an
automated consistency simulation and property verification for UML
specification. ECFG is considered as external events and test coverage
criteria are expressed as trap properties in CTL. A Simulation-Tree is
introduced to simulate the execution of the system with the trigger events.
The result of the simulation is the refined FSM consistent with the
specification. Finally, test cases which satisfied with the specified test
coverage are generated based on the refined FSM for UML statechart.
 2013 Trade Science Inc. - INDIA

KEYWORDS
Model checking;

Consistency checking;
Context-Free grammar;

UML statechart diagram;
Test cases.

INTRODUCTION

Model checking is a model-based, property verifi-
cation, automatic method to verify a system model with
respect to its specification[1]. Unified Modeling Language
(UML) is the current industrial de-facto standard to
modeling the object-oriented system. UML statechart
diagram can be used to construct software specifica-
tion of object-oriented systems, embedded systems and
reactive systems etc. As they are the most formalizable
aspects of UML, statecharts provide a natural basis for
test cases generation[2].

A test case is a set of conditions or variables which
satisfied with certain test coverage criteria. With the help
of test cases, a tester will determine whether a software

system is working correctly or not. Test cases can be
generated automatically from a formal system model.
This paper presents an approach to checking the con-
sistency of UML statechart specification by extended
context-free grammar (ECFG) and generates test cases
based on model checking. Our consistency testing sys-
tem input UML statechart diagram and extended con-
text-free grammars to perform an automated scenario
simulation for consistency checking. First, we design
an algorithm to transform statechart diagram to a FSM.
Then, the consistency simulation is defined in the form
of a derivation tree, called Simulation-tree, where each
branch from the root to a leaf corresponds to a pos-
sible statechart run on a sequence of external event in-
puts, expressed by ECFG (Extended Context-free

BTAIJ, 8(6), 2013 [815-822]

BioTechnology
An Indian Journal

Volume 8 Issue 6

BioTechnology
ISSN : 0974 - 7435

id6997500 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

mailto:liliping@sspu.edu.cn;
mailto:he_tao@foxmail.com;
mailto:xlcao@sspu.edu.cn

816 Model-based testing for uml statechart diagram via extended context-free grammar

FULL PAPER

BTAIJ, 8(6) 2013

BioTechnology
An Indian Journal

BioTechnology

Grammar). The result of the simulation generates a re-
fined FSM which consistent with the specification. Fi-
nally, we generate test cases from the FSM according
to the specified test coverage criteria expressed by the
CTL (Computation Tree Logic).

The remainder of this paper is organized as fol-
lows: Section 2 presents a brief introduction to con-
text-free grammar, model checking and UML
statechart diagram. Section 3 introduces how to trans-
form UML statechart diagram to FSM. Section 4
shows our approach of UML statechart consistency
testing with ECFG. Section 5 generates test cases ac-
cording to test coverage criteria and FSM. Section 6
discusses some related works for UML statechart dia-
gram. Section 7 concludes this paper and discusses
the future work.

THE PRELIMINARIES

Context-free grammar
Context-free grammar (CFG) is a set of recursive

rewriting rules (or productions) employed to generate
patterns of strings. CFGs can be used to describe the
syntax of the input of the SUT (System Under Test).
And, test cases can be generated conforming to the
grammar of the context-free grammar.

A context-free grammar G is a quarter-tuple (V, ,
W, P), where
 V is a finite set of non-terminals; each element vV

is called a non-terminal or a variable.
 is a finite set of terminals, which corresponding

to a set of external events, V = .
 W is the start variable used to represent the whole

program. It must be an element of V.
 P is a finite relation V(V)*. The members

of P are called the production rules of the grammar.
A language L is a context-free language if and only

if there exists a context-free grammar G such that L = L
(G). Set * denotes the set of all strings over includ-
ing ë�the empty string.

Context-free grammars are an effective tool that
can be used to generate test cases[3-5]. For example,
Maurer[3] developed a data generation generator �dgl�

which translates CFG into test generator and showed
CFG is a remarkably effective tool that can be used to
debug any program.

Model checking

Model checking starts with a model described by
users, and discovers whether properties asserted by
users are valid or not on the model[1]. In general, the
model is finite state transition systems and the proper-
ties are temporal logic formulas, both of them can be
modeled by the description language of a model checker
[6]. Model checkers build a finite state system and ex-
haustively explore the reachable state space searching
for violations of the properties being checked[1]. If the
property fails, a counterexample is generated in the form
of a sequence of states from its initial state to a state
where the violation occurs.

Model checking is based on temporal logic. CTL
(Computation Tree Logic) is a branching-time logic,
meaning that its model of time is a tree-like structure in
which the future is not determined[1]. The verified
properties on model can be formulized by CTL. The
syntax of CTL formulas can be defined by Backus-
Naur form:

 ::= T | | p | | | | | AX |
EX |AF | EF | AG | EG |A[U] | E[U],
where
 T and is true and false, the atomic proposition p

is a CTL formula.
 If , is CTL formula, then , , ,

,AX,EX,AF,EF,AG,EG,A[U]
and E[U] is CTL formulas.
Pay attention to each of the CTL temporal

connectives is a pair of symbols. The first of the pair is
one of A or E. A means �along All paths from the cur-

rent state� and E means �There Exists one path from the

current state�. The second one of the pair is the tempo-

ral operator X, F, G, or U, meaning �neXt state�, �some

Future state�, �all future states (Globally)�, and �Until�.

For example, EFq denotes there is a reach-
able state satisfying q. AFq denotes along all paths, q
is violated sometime in the future. If AFq is violated,
then denotes there existing an infinite path where q al-
ways holds. This path is called a counterexample of
AFq.

UML statechart diagram

UML statechart diagram shows a state machine with
states, transitions, events and actions. Statechart dia-
grams mainly express the information of the state tran-

Liping Li et al. 817

FULL PAPER

BTAIJ, 8(6) 2013

BioTechnology
An Indian Journal

BioTechnology

sitions and actions response for a finite state system
according to external events inspires[13]. A transition is
a relationship between two states, indicating a possible
change from one state to another. Transitions allowed
at each state, the events can trigger transitions to occur
and the actions may perform in response to events.

A typical Web application, Online Flight Reserva-
tion System (OFRS), is used to introduce the statechart
diagram briefly. The statechart diagram for OFRS is
shown as Figure 1. There are four states except start
and end states, NoReserve, PartlyReserve,
ReserveComplete, ReserveClosed. State start is the
only initial state in the statechart diagram. But there may
exist more than one end states. And these states are
changed by events. For example, when system stays at
the NoReserve state and at this point the event reserve
is triggered, the system will transit from state NoReserve
to state PartlyReserve, and the action
reservedNum+=reserveNum will be performed. In the
model, reservedNum is a variable, means the number
of reserved flight tickets, it is updated when the event
reserve() and return() are performed. The guard con-
ditions are in solid brackets �[]�, such as

[reservedNum=vacancyNum]. If event reserve be
triggered and at the same time the guard condition
[reservedNum=vacancyNum] is true, the state
PartlyReserve will transfer to state ReserveComplete.
When cancelFlight() event triggered, state NoReserve
will transfer directly to end state. The more detailed
introduction of UML statechart diagram can be found
in[13,14].

and redundant for read and test cases generation. So,
we design an algorithm to draw the key information of
statechart diagrams. We found a very simple rule in
statechart diagram, all relevant statechart information is
included in the directory of corresponding label, such
as �(object State�, and organizes in the �()� block, and

so on. Therefore, we use a dynamic matching extrac-
tion method to draw the useful information, and stored
in strings. Then we write these strings to XML file con-
forming to state label and transition label.

For the hierarchical and concurrent statechart dia-
grams, we need to flatten them. All useful information
for the statechart diagram are stored in labels <State>
</State> and <Transition> </Transition>, respectively.

A FSM is defined as quarter-tuple T= (Q, T, ä,
q

0
), Where,

 Q is a finite set of states;
 T denoted as a finite set of input alphabet;
 ä is a transition function, if q, q� Q and ó T,

then q� = ä (q, ó);
 q

0
 Q is the initial state.

From the definition of the FSM, we can convert
UML statechart diagrams to FSMs as follows:
 The states of UML statechart diagram are corre-

sponding to the states Q of FSM;
 All the input symbols and transitions in the UML

statechart diagram are converted to the alphabet
T and ä in FSM, respectively.

 The initial state of the UML statechart diagram is
corresponding to q

0
.

In the FSM, nodes represent states and edges de-
note transitions between states. According to the char-
acteristic of statechart diagram, there is a unique start

Figure 1 : An Online flight reservation system

CONVERTING STATECHART TO FSM

System specification is modeled by the statechart
diagrams using IBM Rational Rose. Through analyzing,
we know the UML diagrams are stored as a tree struc-
ture in the.mdl file. But the file is more than complex

Figure 2 : The Direct diagram for OFRS

818 Model-based testing for uml statechart diagram via extended context-free grammar

FULL PAPER

BTAIJ, 8(6) 2013

BioTechnology
An Indian Journal

BioTechnology

node that corresponds to the initial state and one or
more end nodes represent the final states. We use
Graphviz[15] to visualize the FSM. Figure 2 is the FSM
automatically converted from statechart diagram for the
Online Flight Reserve System based on our refined XML
file. The FSM explicitly expressed flows of the statechart
diagram.

CONSISTENCY TESTING FOR
STATECHART USING ECFG

The ECFG for OFRS Example

In this paper, context-free grammar simulates the
moves of the FSM. We extended CFG by � represents

a set of external events with guarded conditions. CFG
describes the syntax of the input of the SUT and test
cases can be generated conforming to the syntax of the
CFG. Referred to[4,16], we extend context-free grammar
with guard conditions along state transitions, actions and
scripts along transitions or alternate productions, called it
extended context-free grammar (ECFG). Our works
focus on the consistency checking and test cases gen-
eration from UML statecharts based on ECFG. Events
of UML statechart diagrams are considered as terminals
in ECFG, and the states are assumed to be non-terminals
of ECFG, where the initial state of the UML statechart
diagrams is the start variable in ECFG.

For the OFRS example, the ECFG is shown as
follows:
 start variable W= NoReserve,
 non-terminal set V= {NoReserve, PartlyReserve,

ReserveComplete, ReserveClosed, end};
 terminal set = {reserve(), return(), close(),

cancelFlight(), exit()},
 and P is a set of production rules defined as fol-

lows:
W å | close() A | reserve () B | cancelFlight()
Breserve () [reservedNum=vacancyNum] Y
Breturn()[returnedNum=reservedNum] W
Bclose() A
Yreturn() | close() A
A exit()

The Simulation-tree

Our simulation system, inputs an UML statechart

diagram specification S and a ECFG G, mainly check
whether the transitions of statechart diagram will react
consistently to any external event sequence wL(G).
In our system, each state of the FSM corresponds to
one non-terminal symbol of the ECFG G and each tran-
sition of the FSM corresponds to one production rule
of the ECFG. Refer to paper[16-18], we also introduces a
derivation tree, called a Simulation-tree, to systemati-
cally simulate all possible moves of FSM running with
the ECFG. Given an external event e, continuously ex-
ecutes the steps associated with enabled internal events
until the simulation system reaches a state where no
further internal or hidden events can be carried out. If
there exists a corresponding Simulation-tree with all
success branches, then the specification of UML
statechart diagrams is consistency. A triplet

(Q, W, B),
Where Q is the state of the FSM, W is the unread

part of the input string of ECFG, and B denotes by True
or False whether the state is a violating one, is called
an instantaneous description (ID) of the simulator.

A move from one ID to another will be denoted by
the symbol |-, there are two kinds of move in the sys-
tem.

(1)Terminal move

If e is an external/terminal event, that is, e and
W { V}�,

 (Q
1
, eW, B

1
) |- (Q

2
,W, B

2
) is possible if and only if

(Q
2
, B

2
) ä((Q

1
, B

1
), e).

(2)Nonterminal move

If E is a non-terminal variable in V, (Q, EW, B) |-
(Q, D

1
�D

n
W, B) is possible if and only if E �!D

1
�D

n
 is

an ECFG production in P.
A same ID can move to different terminals or non-

terminals because of multiple CFG productions from
the same variable to represent different transitions.

Definition 1 (Simulation-tree). Let T be a FSM and
G an extended context-free grammar, the Simulation-
tree for (T, G) is defined as follows:
 Each node of the tree is an instantaneous descrip-

tion (ID).
 The root node is (Q

0
, V

0
, False), where Q

0
 is a set

of initial states, V
0
 is the start variable in the ECFG

G.
 Let (Q, W, B) be a node in the tree. This node has

Liping Li et al. 819

FULL PAPER

BTAIJ, 8(6) 2013

BioTechnology
An Indian Journal

BioTechnology

an arc to one of his children (Q
1
, W

1
, B

1
) for each

possible move (Q, W, B) |- (Q
1
, W

1
, B

1
). W is the

unprocessed part of the grammars of ECFG.
 The following nodes have no children:

I. (Q, W, True) denotes as a violating leaf node,
II. (Q, å, False) denotes as a success leaf node.

Consistency checking of the statechart

Consistency of the statechart specification requires
that in each state, only a single transition is triggered by
a given event[8]. The Simulation-tree can simulate the
running of UML statechart diagram with the input of
extended context-free grammar. The Simulation-tree for
testing the Online Flight Reserve system is shown as
Figure 3. Figure 3 uses a derivation tree illustrating how
the running states move during the simulation, where
the bold solid box and the dashed one denote a leaf
node and a variant node, respectively. A node is called
a variant of another if both nodes in the Simulation-tree
have the same triplet running state[16,17].

The abbreviations from S0 to S4 represent five dif-
ferent object states during the simulation, where,

S0: NoReserve, S1: PartlyReserve, S2:
ReserveComplete, S3: ReserveClosed, S4: end

In the Simulation-tree, a non-terminal move is la-
beled with an applied production rule, such as W �!re-
serve() B, while a terminal move is labeled with the
corresponding leftmost terminal, such as reserve(). The
UML statechart diagram is consistent if all the finite
branches in the Simulation-tree are success branches.
So, the consistency testing of statechart specification is
a traversal of its Simulation-tree to check whether there
have any nodes which B equals to True. Due to the
recursion nature of the context-free grammar, there may
exist many infinite branches in the Simulation-tree, or
the finite branch could be any long[14]. In this paper, we
use the depth-first search to traverse the Simulation-
tree. When traversing, we add a flag to remember if an
ID is visited; any repeated IDs visit later during the tra-
versal will not be explored again. From Figure 3, we
can draw a conclusion: the UML statechart diagram of
WFRS example is consistency for the corresponding
Simulation-tree has all success branches.

The result of the simulation will generate a refined
FSM which consistent with the specification. Then we
generate test case automatically based on the refined

FSM. Test case generated in our system will be the
effective because this FSM is the result of consistency
simulation.

Figure 3 : The Simulation-tree for OFRS

TEST CASES GENERATION]

A test case is a set of external event sequences which
satisfied with certain test coverage criteria. Test cases
can be generated automatically from a formal system
model. And test cases generated can be fed into the
SUT for conformance testing[18]. Our work focuses on
generating test cases while the UML statechart consis-
tency checking.

A test criterion is a rule or collection of rules that
impose test requirements on a set of test cases. Test
criteria mainly answer these questions: what should be
tested, how the testing goals could be achieved and
when to stop. In this paper, we only concentrate on the
transition coverage criterion and state coverage cri-
terion for statechart diagrams.

The model checker SMV[19] takes a model and the
properties to be verified as input, a counterexample will
be generated when the property is discovered to be
false. A counterexample is a sequence of states which
start from initial page to the state that violates the prop-
erty.

State coverage

Test cases TS satisfy the state coverage iff all states
of the system must be covered at least once, i.e., TS

820 Model-based testing for uml statechart diagram via extended context-free grammar

FULL PAPER

BTAIJ, 8(6) 2013

BioTechnology
An Indian Journal

BioTechnology

enable each variable of the model to take all possible
values in its domain at least once. State coverage can
be considered as a reachability property. Reachability
property for a state s is defined in CTL formula with EF
operator: EF s, The trap property is defined by AG
operator: AGs. All trap reachability properties of
OFRS in Figure 1 are listed in TABLE 1. We omit the
start and end states in TABLE 1.

in this paper. The test sequences generated satisfying
the transition coverage criterions for Online Flight Res-
ervation System are shown as follows:
 NoReservereserve () /

reservedNum+=reserveNum PartlyReserve re-
serve() [reservedNum=vacancy- Num]
ReserveComplete close() ReserveClosed
exit() end;

 NoReserve reserve () /
reservedNum+=reserveNum PartlyReserve
re turn () [re turnedNum=reservedNum]
NoReserve close() ReserveClosed exit()
end;

 NoReserve reserve () /
reservedNum+=reserveNum PartlyReserve �!re-
serve() [reservedNum=vacancy- Num]
ReserveComplete return() / reservedNum-
=returnedNum PartlyReserve close()
ReserveClosed exit() end;

 NoReserve cancelFlight() end;

RELATED WORKS

A lot of works[2,7-12] have focused on the automatic
testing of UML statechart diagram. Offutt et al[2] gener-
ates test cases automatically from UML statechart dia-
gram at the system level testing. They developed sev-
eral useful coverage criteria based on UML statecharts,
like transition coverage, full predicate coverage and tran-
sition-pair coverage. Kansomkeat et al[7] proposed a
method for generating test sequences using UML
statechart diagrams. They transform the statechart dia-
gram into a flattened hierarchical structure of states
called Testing Flow Graph (TFG). Test cases are gen-
erated by traversing the TFG from the root node to the
leaf nodes. Kim et al[8] introduced a method to gener-
ating test cases for class testing using UML statechart
diagrams. They first transformed statechart diagrams
to extended finite state machines (EFSMs) to generate
test cases based on control flow. Then, they transformed
the EFSMs into data flow graphs, to which conven-
tional data flow analysis techniques can be applied. R
Swain et al[9] also proposed an approach to generate
test cases from UML statechart diagrams. First, they
constructed the statechart diagram for a given object.
Then the statechart diagram is traversed using DFS al-

TABLE 1: Reachability properties for OFRS

No. State Trap property

S1 NoReserve AG NoReserve
S2 PartlyReserve AG PartlyReserve
S3 ReserveComplete AG ReserveComplete

S4 ReserveClosed AG ReserveClosed

The detail of the model checker SMV to generate
the counterexamples can be found in paper[6,19]. The
test sequences which satisfied state coverage criterion
for Online Flight Reservation System is shown as fol-
lows:

NoReservereserve () /
reservedNum+=reserveNum PartlyReserve re-
serve() [reservedNum=vacancy-Num]
ReserveComplete close() ReserveClosedexit()
end;
Transition coverage

Test cases TS satisfy the transition coverage iff
all transitions of the system must be covered at least
once. In general, behavioral claims include safety claims
and liveness claims. A notion of liveness means that,
under certain conditions, something will ultimately oc-
cur. Transition coverage properties denotes the liveness
of the model, i.e., the system implements all the legal
transitions. The liveless property is

EF(state-s (transition-s� EX state-s�))

The corresponding trap property can be repre-
sented as

AG (state-s (transition -s� EX page-s�))

For example, one of the liveness properties for the
OFRS example is

AG (NoReserve (close EX
ReserveClosed))

The other liveness properties for the OFRS ex-
ample are similar with above; we do not list all of them

Liping Li et al. 821

FULL PAPER

BTAIJ, 8(6) 2013

BioTechnology
An Indian Journal

BioTechnology

gorithm, conditional predicates are selected and these
conditional predicates are transformed to source code.
Then, the test cases are generated and stored by using
function minimization technique. Andrews et al[10] used
FSM with constraints to model and test web applica-
tions. They model system with hierarchical aggregate
FSM in which the FSM transitions are compressed by
selecting a reduced set of inputs in an input constraint
language. Murthy et al[11] proposed a test ready UML
statechart model. Various test cases can be generated
automatically from this test ready model by determining
all the sentential forms derivable from an equivalent ex-
tended context free grammar model.

Some of above work do much help to the test case
generation from UML statechart diagrams. But they all
first assume the specification modeled by UML
statecharts is correctness. Unfortunately, the specifica-
tion is often incomplete, inconsistent and ambiguous
because it is usually constructed by the cooperation of
users, domain experts and system engineers[12]. There
exist consistency problems in UML behavioural mod-
els for the hierarchy and concurrency features of
statechart diagrams. Errors of the specification will cost
much more expensive to amend in the later phases of
the development life cycle. So, the early consistency
checking of the UML specification is significant.

CONCLUSIONS AND FUTURE WORKS

This paper presents a method of consistency check-
ing and test cases generation for UML statechart speci-
fications based on extended context-free grammar
(ECFG) and model checking. Our goals are checking
the consistency of statechart diagram and generate test
cases while the consistency simulation going on. Our
consistency testing system input UML statechart dia-
gram and ECFG to perform an automated scenario
simulation for consistency checking. The result of the
simulation generates a refined FSM which consistent
with the specification. Then test cases are generated
automatically based on the refined FSM and the cov-
erage criteria expressed by the CTL. Test cases gener-
ated in our system will be the effective test cases be-
cause they are the result of consistency simulation.

Our future works include improving our system pro-
totype and generating test cases using symbolic gram-

mars and model checking.

ACKNOWLEDGMENT

This work was supported by a grant from Shang-
hai Second Polytechnic University Key Discipline De-
velopment, Software Engineering (XXKZD1301),
Computer Application Technology (XXKPY1301), in
part by a grant from Natural Science Foundation of
Guangdong Province, China (S2011040000672),
Guangdong Provincial Education and Science Project
of the 11th �five-year plan�(2010tjk411).

REFERENCES

[1] M.P.E.Heimdahl, S.Rayadurgam etc.; Auto-gener-
ating Test Sequences Using Model Checkers: A
Case Study, Third International Workshop on For-
mal Approaches to Testing of Software (FATES
2003), Spinger, Montreal, Quebec, Canada, Octo-
ber, 2003, 42-59 (2003).

[2] J.Offutt, S.Liu, A.Abdurazik, P.Ammann; Generat-
ing test data from state-based specifications, Soft-
ware Test Verification and Reliability, 13, 25-53
(2003).

[3] Peter M.Maurer; Generating testing data with en-
hanced context-free grammars, IEEE Soft-ware,
7(4), July (1990).

[4] L.P.Sobotkiewicz; A New Tool for Grammar-based
Test Case generation, Master Thesis. University of
Victoria, (2004).

[5] A.G.Duncan, J.S.Hutchison; Using attributed gram-
mars to test designs and implementations, In: Inter-
national Conference on Software Engineering
(ICSE�81), 170-178 (1981).

[6] H.Miao, H.Zeng; Model Checking-based Verifica-
tion of Web Application. In Proceedings of the 12th
IEEE international Conference on Engineering Com-
plex Computer Systems (ICECCS 2007), July 2007,
IEEE Computer Society, Washington, DC, 47-55
(2007).

[7] S.Kansomkeat, W.Rivepiboon; Automated-gener-
ating test case using UML statechart diagrams, In
In Proceedings of SAICSIT, ACM, 296-300
(2003).

[8] Y.G.Kim, H.S.Hong, D.H.Bae, S.D.Cha; Test cases
generation from UML state diagram, Software Test-
ing Verification and Reliability, 187�192 (1999).

822 Model-based testing for uml statechart diagram via extended context-free grammar

FULL PAPER

BTAIJ, 8(6) 2013

BioTechnology
An Indian Journal

BioTechnology

[9] R.Swain, V.Panthi, P.K.Behera, D.P.Mohapatra;
Automatic Test case Generation From UML State
Chart Diagram, International Journal of Computer
Applications (0975-8887), 42(7), 26-36 March
(2012).

[10] A.Andrews, J.Offut, R.Alexander; Testing web
applications by modeling with FSMs, Systems and
Modeling, 4(3), 326-345 July (2005).

[11] P.V.R.Murthy, P.C.Anitha, M.Manish,
R.Subramanyan; Test ready UML state chart mod-
els�, In Proceedings of international workshop on

Scenarios and state machines: models, algorithms,
and tools (SCESM �06). ACM, New York, USA,

75-82 (2006).
[12] Zs.Pap, I.Majzik, A.Pataricza, A.Szegi; Complete-

ness and Consistency Analysis of UML Statechart
Specifications, Proc. Of IEEE Design and Diag-
nostics of Electronic Circuits and Systems Work-
shop, 83-90 (2001).

[13] J.Rumbaugh, I.Jacobson, G.Booch; The Unified
Modeling Language Reference Manual. Addison-
Wesley, (1999).

[14] Grady Booch, James Rumbaugh, Ivar Jacobson,
Unified Modeling Language User Guide, (2nd Edi-
tion). Addison-Wesley, (2005).

[15] Graphviz-Graph Visualization Software. http://
www.graphviz.org.

[16] H.F.Guo, W.Zheng, M.Subramaniam; L2c2: Logic-
based lsc consistency checking, In 11th International
ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming (PPDP), 183-
194 September (2009).

[17] H.F.Guo, W.Zheng, M.Subramaniam; Consistency
checking for lsc specification�, In 3rd IEEE Inter-

national Symposium on Theoretical Aspects of Soft-
ware Engineering (TASE 2009), 119-126 July
(2009).

[18] Songqi Liu, Liping Li, Hai-Feng Guo; Generating

Test Cases via Model-based Simulation, In 13th
IEEE International Conference on Information Re-
use and Integration (IRI2012), in press, (2012).

[19] K.L.McMillan; The SMV System for SMV ver-
sion 2.5.4, http://www.cs.cmu.edu/~modelcheck/
smv/ smvmanual.ps.

http://
http://www.graphviz.org.
http://www.cs.cmu.edu/~modelcheck/

