ISSN : 0974 - 7435 Volume 8 | ssue 6

LioSechn o/oyy

A Indian Yournal

—====> FyLL PAPER

BTAIJ, 8(6), 2013 [815-822]

Model-based testing for UML statechart diagram via extended
context-free grammar

Liping Li**,Tao He?, Xiaolin Cao!
1Computer and Information I ngtitute, Shanghai Second Polytechnic Univer sity, Shanghai, (CHINA)
2Softwar e Engineering Depar tment, Shenzhen I nstitute of I nfor mation Technology, Shenzhen, (CHINA)
E-mail: liliping@sspu.edu.cn; he tao@foxmail.com; xlcao@sspu.edu.cn

ABSTRACT

This paper proposes an approach to checking the consistency and
generating test casesfrom UML statechart specification through extended
context-free grammar (ECFG) and model checking. UML statechart, test
coverage criteria and ECFG are input to the system, to perform an
automated consistency simulation and property verification for UML

KEYWORDS

Model checking;
Consistency checking;
Context-Freegrammar;

UML statechart diagram;
Test cases.

specification. ECFG is considered as external events and test coverage
criteria are expressed as trap properties in CTL. A Simulation-Tree is
introduced to simul ate the execution of the system with thetrigger events.
The result of the simulation is the refined FSM consistent with the
specification. Finally, test cases which satisfied with the specified test
coverage are generated based on the refined FSM for UML statechart.

© 2013 Trade Sciencelnc. - INDIA

INTRODUCTION

Mode checkingisamodel-based, property verifi-
cation, automatic method to verify asystem model with
respect toitsspecification™. Unified Modding Language
(UML) isthe current industrial de-facto standard to
modeling the object-oriented system. UML statechart
diagram can be used to construct software specifica-
tion of object-oriented systems, embedded sysemsand
reactivesystemsetc. Asthey arethemost formalizable
aspectsof UML, statecharts provideanatura basisfor
test cases generation(.

A test caseisaset of conditionsor variableswhich
satisfied with certaintest coveragecriteria Withthehelp
of test cases, atester will determinewhether asoftware

systemiswaorking correctly or not. Test casescan be
generated automatically fromaforma system model.
Thispaper presents an approach to checking the con-
sistency of UML statechart specification by extended
context-freegrammar (ECFG) and generatestest cases
based onmodel checking. Our cons stency testing sys-
teminput UML statechart diagram and extended con-
text-freegrammarsto perform an automated scenario
simulation for cons stency checking. First, wedesign
andgorithmto transform statechart diagramtoaFSM.
Then, theconsistency smulationisdefined intheform
of aderivationtree, called Smulation-tree, where each
branch from the root to aleaf correspondsto apos-
siblestatechart run on asequence of externa eventin-
puts, expressed by ECFG (Extended Context-free

mailto:liliping@sspu.edu.cn;
mailto:he_tao@foxmail.com;
mailto:xlcao@sspu.edu.cn

816

Model-based testing for uml statechart diagram via extended context-free grammar

BTAIJ, 8(6) 2013

FULL PAPER o

Grammar). Theresult of thesmulation generatesare-
fined FSM which cons stent with the specification. Fi-
nally, we generate test casesfrom the FSM according
to the specified test coverage criteriaexpressed by the
CTL (Computation TreeLogic).

Theremainder of this paper isorganized asfol-
lows: Section 2 presents abrief introduction to con-
text-free grammar, model checking and UML
statechart diagram. Section 3introduceshow to trans-
form UML statechart diagram to FSM. Section 4
shows our approach of UML statechart consistency
testingwith ECFG. Section 5 generatestest casesac-
cording to test coverage criteriaand FSM. Section 6
discusses someredated worksfor UML statechart dia-
gram. Section 7 concludesthis paper and discusses
thefuturework.

THE PRELIMINARIES

Context-freegrammar

Context-free grammar (CFG) isaset of recursive
rewriting rules(or productions) employed to generate
patterns of strings. CFGs can be used to describethe
syntax of theinput of the SUT (System Under Test).
And, test cases can be generated conforming to the
grammar of the context-free grammar.

A context-freegrammar G isaquarter-tuple(V, Z,
W, P), where
e Visafiniteset of nonterminds, eechelementveV

iscalled anon-terminal or avariable.

e XYisafinitesat of terminas, which corresponding
toaset of externa events,V n X =.
e Wi isthesart variableused to represent thewhole

program. It must be an element of V.

e PisafiniterdationV—(V U X)*. Themembers
of Parecalled the production rulesof thegrammar.

A languageL isacontext-freelanguageif and only
if thereexigtsacontext-freegrammar G suchthat L =L
(G). Set Z* denotestheset of dl stringsover X includ-
ing A—the empty string.

Context-free grammars are an effective tool that
can be used to generate test cases®*®. For example,
Maurer® devel oped adatageneration generator “dgl”
which trand ates CFG into test generator and showed
CFGisaremarkably effectivetool that canbeusedto
debug any program.

BioTechnology — ammm—

M odel checking

Model checking startswith amodel described by
users, and discovers whether properties asserted by
usersarevalid or not on themodel™. In general, the
mode isfinite statetransition systemsand the proper-
tiesaretemporal logic formulas, both of them can be
mode ed by thedescriptionlanguage of amode checker
[6]. Modd checkersbuild afinite state system and ex-
haustively expl ore the reachabl e state space searching
for violationsof the propertiesbeing checked. If the
property fals, acounterexampleisgeneratedintheform
of asequence of statesfromitsinitia stateto astate
wheretheviolation occurs.

Model checkingisbased ontemporal logic. CTL
(Computation TreeLogic) isabranching-timelogic,
meaning that itsmodd of timeisatree-likestructurein
which thefutureisnot determined®. Theverified
propertieson model can beformulizedby CTL. The
syntax of CTL formulas can be defined by Backus-
Naur form:

p=T|L|p|-¢lprolpve|¢—p|AXS]
EX¢IAF¢|EF$|AGH|EGoIA[4U ¢l |E[4U g,
where
e Tand L istrueandfalse theatomic propositionp

iIsaCTL formula
o If ¢,pisCTL formula then —¢,¢ Ap,d vo,¢

—>,AXEXAF$EFAGHEGHA[U ¢]

andE[¢U ¢]isCTL formulas.

Pay attention to each of the CTL temporal
connectivesisapair of symbols. Thefirst of thepairis
oneof A or E. A means ‘along All paths from the cur-
rent sate’ and E means ‘There Exists one path from the
current state’. The second one of the pair is the tempo-
ra operator X, F, G or U, meaning ‘neXt state’, ‘some
Futurestate’, “all future states (Globally)’, and ‘Until’.

For example, EFgdenotesthereisareach-
able state satisfying g. AF—q denotesaongdl paths, q
isviolated sometimeinthefuture. If AF—qisviolated,
then denotesthereexisting aninfinite pathwhereqd-
ways holds. Thispathis called acounterexample of
AF—q.

UML statechart diagram

UML gatechart diagram showsastatemachinewith
states, transitions, eventsand actions. Statechart dia-
gramsmainly expresstheinformation of the statetran-

Hn Tudian Jounual

BTAIJ, 8(6) 2013

Liping Li et al.

817

————, FyurL PAPER

sitionsand actionsresponsefor afinite state system
according to external eventsinspires®d. A transitionis
arelationship between two states, indicatingapossible
changefrom one stateto another. Transitionsallowed
a each state, theeventscan trigger transitionsto occur
and theactionsmay performinresponseto events.

A typica Web application, Online Flight Reserva
tion System (OFRYS), isused tointroducethe statechart
diagram briefly. The statechart diagram for OFRSis
shown asFigure 1. Therearefour states except start
and end states, NoReserve, PartlyReserve,
ReserveComplete, ReserveClosed. State start isthe
onlyinitia stateinthestatechart diagram. But theremay
exist more than one end states. And these states are
changed by events. For example, when system staysat
the NoReserve state and at thispoint the event reserve
istriggered, thesysemwill trangt from state NoReserve
to state PartlyReserve, and the action
reservedNunt=reserveNumwill beperformed. Inthe
model, reservedNumisavariable, meansthe number
of reserved flight tickets, it isupdated when the event
reserve() and return() are performed. Theguard con-
ditions are in solid brackets “[]”, such as
[reservedNum=vacancyNum]. If event reserve be
triggered and at the same time the guard condition
[reservedNum=vacancyNum] is true, the state
PartlyReservewill transfer to state ReserveCompl ete.
When cancelFlight() event triggered, state NoReserve
will transfer directly to end state. The more detailed
introduction of UML statechart diagram can befound

in1314

resene | resenedhum+=rezenshum

—_—
NoReserve

ReserveComplete J

Figurel:An Onlineflight reservation system

CONVERTING STATECHART TO FSM

System specification ismodel ed by the statechart
diagramsusing IBM Rationd Rose. Through analyzing,
weknow theUML diagramsarestored asatree struc-
tureinthe.mdl file. But thefileismorethan complex

and redundant for read and test cases generation. So,
wedesign an algorithmto draw thekey information of
statechart diagrams. Wefound avery simplerulein
dsatechart diagram, dl rlevant statechart informationis
included inthedirectory of corresponding label, such
as“‘(object State”, and organizes in the “()”” block, and
so on. Therefore, we use adynamic matching extrac-
tion method to draw the useful information, and stored
ingtrings. Thenwewritethesestringsto XML filecon-
forming to statelabel andtransition label.

For the hierarchica and concurrent statechart dia-
grams, weneed to flatten them. All useful information
for thestatechart diagram are stored in label s<State>
</State> and <Trangtion> </Trangtion>, respectively.

A FSM is defined as quarter-tuple T= (Q, X, 6,
q,). Where,

e Qisafiniteset of sates;
e X denotedasafiniteset of input aiphabet;
e Jisatransition function, ifq,q’ € Qand ¢ I

theng’ =4 (q, 0);

e (, < Qistheinitia state.

From the definition of the FSM, we can convert
UML statechart diagramsto FSMsasfollows:

e Thestatesof UML statechart diagram are corre-
sponding to thestates Q of FSM;

e All theinput symbolsand transitionsinthe UML
statechart diagram are converted to the al phabet

X, and s in FSM, respectively.

e Theinitid stateof the UML statechart diagramis
correspondingtoq,,.

Inthe FSM, nodes represent statesand edgesde-
notetrangtionsbetween states. According tothechar-
acteristic of statechart diagram, thereisaunique start

kancelFlighi()

Figure2: TheDirect diagramfor OFRS

s LBioTechnology

An Tudian Yourual

818

Model-based testing for uml statechart diagram via extended context-free grammar

BTAIJ, 8(6) 2013

FULL PAPER o

node that correspondsto theinitial state and one or
more end nodes represent the final states. We use
Graphviz® tovisudizethe FSM. Figure2isthe FSM
autometically converted from statechart diagramfor the
OnlineHight Reserve System based onour refined XML
file TheFSM explicitly expressed flowsof thestatechart
diagram.

CONSISTENCY TESTING FOR
STATECHART USING ECFG

TheECFG for OFRSExample

Inthis paper, context-free grammar simulatesthe
moves of the FSM. We extended CFG by “ represents
aset of external eventswith guarded conditions. CFG
describes the syntax of the input of the SUT and test
cases can begenerated conforming to the syntax of the
CFG Referred to“'9, weextend context-free grammar
with guard conditionsa ong Satetrangtions, actionsand
scriptsdongtrangtionsor dternate productions, caledit
extended context-free grammar (ECFG). Our works
focus on the congi stency checking and test casesgen-
eration from UML statechartsbased on ECFG Events
of UML datechart diagramsareconsdered astermind's
iInECFG andthestatesareassumedto benon-terminds
of ECFG wheretheinitid stateof the UML statechart
diagramsisthestart variablein ECFG

For the OFRS example, the ECFG is shown as
follows
e dtartvariableW=NoReserve,

e non-terminal set V={NoReserve, PartlyReserve,

ReserveCompl ete, ReserveClosed, end} ;

e terminal set T = {reserve(), return(), close(),
cancelFlight(), exit()},

e andPisaset of production rules defined asfol-
lows

W — ¢ | close() A | reserve () B | cancelFlight()

B—reserve () [reservedNum=vacancyNum] Y

B—return()[retur nedNum~=reservedNum] W

B—close() A

Y —return() | close() A

A —exit()

TheSimulation-tree
Our smulation system, inputsan UML statechart

BioTechnology —

diagram specification Sand aECFG G, mainly check
whether thetrangitionsof statechart diagramwill react
consistently to any externa event sequenceweL(G).
In our system, each state of the FSM correspondsto
onenon-termina symbol of the ECFG G and eechtran-
sition of the FSM correspondsto one production rule
of the ECFG. Refer to paper!’®8, wea sointroducesa
derivationtree, called aSimulation-tree, to systemati-
cdly smulated| possiblemovesof FSM runningwith
the ECFG Given an externa event e, continuously ex-
ecutesthe stepsassociated with enabled internal events
until the simulation system reaches astate whereno
further internal or hidden eventscan becarried out. If
there existsacorresponding Simulation-treewith all
success branches, then the specification of UML
statechart diagramsisconsistency. A triplet

(Q'W, B),

Where Q isthe state of the FSM, Wisthe unread
part of theinput string of ECFG and B denotesby True
or Falsewhether thestateisaviolating one, iscalled
aninstantaneousdescription (ID) of thesimulator.

A movefromonelD to another will be denoted by
the symbol |-, there aretwo kinds of moveinthe sys-
tem.

(1)Terminal move

If eisanexternd/termina event, thatis,e e ¥ and
We{ZuV},

(Q.eWB) |- (Q,W B, ispossibleif and only if
(Q, B,) €4((Q,, By, €).
(2 Nonterminal move

If Eisanon-terminal variableinV, (Q, EW, B) |-
(Q,D,...DW B)ispossbleifandonlyif E’!D....D, is
an ECFG productioninP.

A same|D can moveto different terminalsor non-
terminal s because of multiple CFG productionsfrom
the samevariableto represent different trandtions.

Definition 1 (Smulation-tree). Let TheaFSM and
G an extended context-free grammar, the Simulation-
treefor (T, G) isdefined asfollows:

e Eachnodeof thetreeisaninstantaneous descrip-
tion(ID).

e Theroot nodeis(Q,, V,, False), whereQ,isaset
of initid states, V, isthegtart variableinthe ECFG

G
e Let(Q, W B)beanodeinthetree. Thisnodehas

Hn Tudian Jounual

BTAIJ, 8(6) 2013

Liping Li et al.

819

anarctooneof hischildren(Q,, W, B)) for each
possiblemove (Q, W, B) |- (Q,, W,, B)). Wisthe
unprocessed part of thegrammars of ECFG
e Thefollowingnodeshaveno children:
[. (Q, W True) denotesasaviolating leaf node,
1. (Q, ¢, False) denotes asasuccess|eaf node.

Consistency checking of the statechart

Cons gtency of thestatechart specification requires
that ineach state, only asingletrangtionistriggered by
agiven event!®, The Simulation-treecan simulatethe
running of UML statechart diagram with theinput of
extended context-freegrammar. The Smulaion-treefor
testing the Online Flight Reserve systemisshown as
Fgure3. Figure3 usesaderivationtreeillustrating how
therunning states move during thesimulation, where
the bold solid box and the dashed one denote a | eaf
node and avariant node, respectively. A nodeiscalled
avariant of another if both nodesinthe Simulation-tree
havethe sametriplet running state 617,

Theabbreviationsfrom SO to $4 represent fivedif-
ferent object statesduring thesmulation, where,

S0: NoReserve, S1: PartlyReserve, S2:
ReserveComplete, S3: ReserveClosed, $4: end

Inthe Simulation-tree, anon-termina moveisla
beled with an applied productionrule, suchasW ’!re-
serve() B, whileaterminal moveislabeled with the
corresponding leftmost termina, such asreserve(). The
UML statechart diagramisconsistent if all thefinite
branchesin the Simulation-tree are success branches.
S0, the cong stency testing of statechart specificationis
atraversa of its Simul ation-treeto check whether there
have any nodes which B equalsto True. Due to the
recursion natureof the context-freegrammar, theremay
exist many infinite branchesinthe Simulation-tree, or
thefinite branch could be any longi*4. Inthispaper, we
usethedepth-first search to traversethe Simulation-
tree. When traversing, weadd aflag to remember if an
ID isvisited; any repeated IDsvisit later during thetra-
versal will not be explored again. From Figure 3, we
candraw aconclusion: the UML statechart diagram of
WFRS exampleisconsistency for the corresponding
Simulation-treehasall successbranches.

Theresult of thesmulationwill generatearefined
FSM which cons stent with the specification. Thenwe
generatetest case automatically based ontherefined

————, FyurL PAPER

FSM. Test case generated in our system will be the
effective becausethisFSM istheresult of consistency
amulaion.

O
C5 N al
J -
P
"

-

|\»_.—_)
e
L O
b s
C.____ = !—<___|__, —l
N L a . (F _“j
(P S) -
A . P 5

{0
1
O Y A
\ /
i \ /
"

Figure3: TheSimulation-treefor OFRS

TEST CASESGENERATION]

A test caseisaset of external event sequenceswhich
satisfied with certain test coverage criteria. Test cases
can be generated automatically from aformal system
model. And test cases generated can be fed into the
SUT for conformancetesting!*®. Our work focuseson
generating test caseswhilethe UML statechart consis-
tency checking.

A test criterionisaruleor collection of rulesthat
impose test requirements on aset of test cases. Test
criteriamainly answer these questions: what should be
tested, how the testing goal s could be achieved and
when to stop. In thispaper, we only concentrate on the
transition coveragecriterion and state coveragecri-
terionfor statechart diagrams.

Themode checker SMV1 takesamodel and the
propertiesto beverified asinput, acounterexamplewill
be generated when the property is discovered to be
false. A counterexampleisasequenceof stateswhich
gart frominitid pageto the statethat violatesthe prop-

erty.
Sate coverage

Test cases TSsatisfy the state coverageiff all sates
of the system must be covered at least once, i.e., TS

s LBioTechnology

An Tudian Yourual

820

Model-based testing for uml statechart diagram via extended context-free grammar

BTAIJ, 8(6) 2013

FULL PAPER o

enable each variable of themodd totakeall possible
valuesinitsdomain at least once. State coverage can
be considered asareachability property. Reachability
property for astate sisdefinedin CTL formulawith EF
operator: EF s, The trap property is defined by AG
operator: AG—s. All trap reachability properties of
OFRSinFigurelarelistedin TABLE 1. Weomit the
start and end statesin TABLE 1.

TABLE 1: Reachability propertiesfor OFRS

No. State Trap property
AG— NoReserve

AG— PartlyReserve
AG— ReserveComplete

AG— ReserveClosed

Thedetail of themodel checker SMV to generate
the counterexamples can be found in paper®9. The
test sequenceswhich satisfied state coverage criterion
for OnlineHight Reservation Systemisshown asfol-
lows

NoReserve—reserve 0O /
reser vedNum+=reserveNum PartlyReserve —re-
serve() [reservedNum=vacancy-Num]
ReserveComplete— close() ReserveClosed—exit()
end;

Transition coverage

Test cases TS satisfy the transition coverage iff
al transitions of the system must be covered at | east
once. Ingenerd, behaviora clamsincudesafety clams
and livenessclaims. A notion of liveness meansthat,
under certain conditions, something will ultimately oc-
cur. Trangition coverage propertiesdenotestheliveness
of themoded, i.e., the systemimplementsall thelega
trangtions. Thelivelessproperty is

EF(state-s— (transition-s’ A EX state-s”))

The corresponding trap property can be repre-
sented as

AG (state-s—— (transition -s* EX page-s’))

For example, oneof theliveness propertiesfor the
OFRSexampleis

AG (NoReserve—» —
ReserveClosed))

The other liveness properties for the OFRS ex-
amplearesimilar with above; wedo not list dl of them

S NoReserve

S, PartlyReserve

S; ReserveComplete
Sy ReserveClosed

(close A EX

inthispaper. Thetest sequencesgenerated satisfying

thetrangition coveragecriterionsfor OnlineFight Res-

ervation System areshown asfollows:

e NoOReserve—reserve 0O /
reservedNumt+=reserveNum PartlyReserve —re-
serve() [reservedNum=vacancy- Num]
ReserveComplete —close() ReserveClosed—
exit() end;

e NoOReserve — reserve 0O /
reservedNum+=reserveNum PartlyReserve —
return()[returnedNum=reservedNum]
NoReserve — close() ReserveClosed — exit()
end;

e NoOReserve — reserve 0O /
reser vedNum+=reserveNum PartlyReserve’Ire-
serve() [reservedNum=vacancy- Num]
ReserveComplete — return() / reservedNum-
=returnedNum PartlyReserve — close()
ReserveClosed — exit() end;

o NoOReserve — cancelFlight() end;

RELATEDWORKS

A lot of works?™*2 havefocused onthe automatic
testing of UML statechart diagram. Offutt et d(? gener-
atestest casesautomaticaly from UML statechart dia
gram at the system leve testing. They developed sev-
erd useful coveragecriteriabased on UML statecharts,
liketrangtion coverage, full predicate coverageandtran-
sition-pair coverage. Kansomkeat et al” proposed a
method for generating test sequences using UML
statechart diagrams. They transform the statechart dia-
graminto aflattened hierarchical structure of states
called Testing Flow Graph (TFG). Test casesaregen-
erated by traversing the TFG from theroot nodeto the
leaf nodes. Kim et d® introduced amethod to gener-
ating test casesfor classtesting usng UML statechart
diagrams. They first transformed statechart diagrams
to extended finite state machines (EFSM s) to generate
test casesbased on control flow. Then, they transformed
the EFSMsinto dataflow graphs, to which conven-
tiona dataflow analysistechniquescanbeapplied. R
Swain et ad also proposed an approach to generate
test casesfrom UML statechart diagrams. First, they
constructed the statechart diagram for agiven object.
Thenthestatechart diagramistraversed usng DFSd-

BioTechnology —

Hn Tudian Jounual

BTAIJ, 8(6) 2013

Liping Li et al.

821

————, FyurL PAPER

gorithm, conditional predicatesare sel ected and these
conditiona predicatesaretransformed to source code.
Then, thetest cases are generated and stored by using
function minimization technique. Andrewset d* used
FSM with constraintsto model and test web applica-
tions. They model systemwith hierarchica aggregate
FSM inwhichthe FSM transitionsare compressed by
selecting areduced set of inputsin aninput constraint
language. Murthy et al™ proposed atest ready UML
statechart model. Varioustest cases can be generated
autométicaly fromthistest ready mode by determining
al thesententia formsderivablefroman equivaent ex-
tended context free grammar modd.

Some of abovework do much helptothetest case
generationfromUML satechart diagrams. But they all
first assume the specification modeled by UML
statechartsiscorrectness. Unfortunately, the specifica
tionisoftenincomplete, incons stent and ambiguous
becauseit isusually constructed by the cooperation of
users, domain expertsand system engineers'd. There
exist congstency problemsin UML behavioural mod-
els for the hierarchy and concurrency features of
datechart diagrams. Errorsof the specificationwill cost
much more expensiveto amend in thelater phases of
the development life cycle. So, the early consistency
checking of theUML specificationissignificant.

CONCLUSIONSAND FUTUREWORKS

Thispaper presentsamethod of consistency check-
ing and test casesgenerationfor UML statechart speci-
fications based on extended context-free grammar
(ECFG) and mode checking. Our goalsare checking
the cons stency of statechart diagram and generatetest
caseswhilethe cons stency simulation going on. Our
consi stency testing system input UML statechart dia-
gram and ECFG to perform an automated scenario
smulation for cons stency checking. Theresult of the
simulation generates arefined FSM which consistent
with the specification. Then test cases are generated
automatically based on therefined FSM and the cov-
eragecriteriaexpressed by the CTL. Test casesgener-
ated in our system will bethe effectivetest cases be-
causethey aretheresult of consistency smulation.

Our futureworksincludeimproving our sysem pro-
totype and generating test cases using symbolic gram-

marsand modd checking.
ACKNOWLEDGMENT

Thiswork was supported by agrant from Shang-
ha Second Polytechnic University Key Discipline De-
velopment, Software Engineering (XXKZD1301),
Computer Application Technology (XXKPY 1301), in
part by agrant from Natural Science Foundation of
Guangdong Province, China (S2011040000672),
Guangdong Provincia Education and Science Project
of the 11th “five-year plan”(2010tjk411).

REFERENCES

[1] M.PE.Heimdahl, S.Rayadurgam etc.; Auto-gener-
ating Test Sequences Using Model Checkers: A
Case Study, Third International Workshop on For-
mal Approaches to Testing of Software (FATES
2003), Spinger, Montreal, Quebec, Canada, Octo-
ber, 2003, 42-59 (2003).

[2] J.Offutt, S.Liu, A.Abdurazik, PAmmann; Generat-
ing test data from state-based specifications, Soft-
ware Test Verification and Reliability, 13, 25-53
(2003).

[3] Peter M.Maurer; Generating testing data with en-
hanced context-free grammars, IEEE Soft-ware,
7(4), July (1990).

[4] L.PSobotkiewicz; A New Tool for Grammar-based
Test Case generation, Master Thesis. University of
Victoria, (2004).

[5] A.GDuncan, J.S.Hutchison; Using attributed gram-
marsto test designsand implementations, In: Inter-
national Conference on Software Engineering
(ICSE’81), 170-178 (1981).

[6] H.Miao, H.Zeng; Model Checking-based Verifica-
tion of Web Application. In Proceedingsof the 12th
|EEE international Conference on Engineering Com-
plex Computer Systems (ICECCS 2007), July 2007,
IEEE Computer Society, Washington, DC, 47-55
(2007).

[7] S.Kansomkeat, W.Rivepiboon; Automated-gener-
ating test case using UML statechart diagrams, In
In Proceedings of SAICSIT, ACM, 296-300
(2003).

[8] Y.GKim,H.S.Hong, D.H.Bae, S.D.Cha; Test cases
generation from UML state diagram, Software Test-
ing Verification and Reliability, 187-192 (1999).

s LBioTechnology

An Tudian Yourual

822 Model-based testing for uml statechart diagram via extended context-free grammar

BTAIJ, 8(6) 2013

FULL PAPER o

[9] R.Swain, V.Panthi, PK.Behera, D.P.Mohapatra;
Automatic Test case Generation From UML State
Chart Diagram, International Journal of Computer
Applications (0975-8887), 42(7), 26-36 March
(2012).

[10] A.Andrews, J.Offut, R.Alexander; Testing web
applicationsby modeling with FSM s, Systemsand
Modeling, 4(3), 326-345 July (2005).

[11] P.V.R.Murthy, P.C.Anitha, @ M.Manish,
R.Subramanyan; Test ready UML state chart mod-
€ls”, In Proceedings of international workshop on
Scenarios and state machines: models, algorithms,
and tools (SCESM ’06). ACM, New York, USA,
75-82 (2006).

[12] Zs.Pap, |.Majzik, A.Pataricza, A.Szegi; Complete-
ness and Consistency Analysis of UML Statechart
Specifications, Proc. Of IEEE Design and Diag-
nostics of Electronic Circuits and Systems Work-
shop, 83-90 (2001).

[13] J.Rumbaugh, 1.Jacobson, G.Booch; The Unified
Modeling Language Reference Manual. Addison-
Wesley, (1999).

[14] Grady Booch, James Rumbaugh, Ivar Jacobson,
Unified Modeling Language User Guide, (2nd Edi-
tion). Addison-Wesley, (2005).

[15] Graphviz-Graph Visualization Software. http://
www.graphviz.org.

[16] H.F.Guo, W.Zheng, M .Subramaniam; L 2c2: L ogic-
based | sc consi stency checking, In 11th International
ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming (PPDP), 183-
194 September (2009).

[17] H.F.Guo, W.Zheng, M.Subramaniam; Consistency
checking for Isc specification”, In 3rd IEEE Inter-
national Symposium on Theoretical Aspects of Soft-
ware Engineering (TASE 2009), 119-126 July
(2009).

[18] Songqi Liu, Liping Li, Hai-Feng Guo; Generating
Test Cases via Model-based Simulation, In 13th
|EEE International Conference on Information Re-
use and Integration (IR12012), in press, (2012).

[19] K.L.McMillan; The SMV System for SMV ver-
sion 2.5.4, http://www.cs.cmu.edu/~model check/
smv/ smvmanual.ps.

BioTechnologqy —

Hn Tudian Jounual

http://
http://www.graphviz.org.
http://www.cs.cmu.edu/~modelcheck/

