OSCILLATORY AND NON OSCILLATORY PROPERTIES OF FOURTH ORDER DIFFERENCE EQUATION

V. ANANTHAN* ${ }^{*}$ and S. KANDASAMY ${ }^{\text {a }}$
Department of Mathematics, Aarupadai Veedu Institute of Technology, CHENNAI (T.N.) INDIA
${ }^{\text {a }}$ Department of Mathematics, Vinayaka Mission’s Kirupananda Variyar Engineering College, SALEM (T.N.) INDIA

Abstract

This paper establish the various properties of solution of fourth order difference equation of the form $$
\Delta^{2}\left(p_{n} \Delta^{2} y_{n}\right)+q_{n+1} \Delta^{2} y_{n+1}+r_{n+2} y_{n+2}=0
$$

Where $p_{n}, q_{n} \& r_{n}$ are real sequences satisfying $p_{n}>0, q_{n} \geq 0 \& r_{n}>0$ for each $\mathrm{n} \geq 0$.

Key words: Oscillation, Non-oscillation, Difference equation, Trivial and nontrivial solution, Generalized zero.

INTRODUCTION

Consider the fourth order difference equation of the

$$
\begin{equation*}
\Delta^{2}\left(p_{n} \Delta^{2} y_{n}\right)+q_{n+1} \Delta^{2} y_{n+1}+r_{n+2} y_{n+2}=0 \tag{1}
\end{equation*}
$$

Where $p_{n}, q_{n} \& r_{n}$ are real sequences satisfying $p_{n}>0, q_{n} \geq 0 \& r_{n}>0$ for each $\mathrm{n} \geq 0$ and the forward difference operator Δ is defined by $\Delta y_{n}=y_{n+1}-y_{n}$ also $y_{n}=y(n)$.

Definition 1: Let y_{n} be a function defined on N , we say $k \in N$ is a generalized zero for y_{n} if one of following holds:
(i) $y_{n}=0$
(ii) $k N(1)$ and $y_{n-1} y_{n} 0, k N(1)$, and there exists an integer m, such that $1<$ $m \leq k$.

[^0](iii) $(-1)^{m} y_{k-m} y_{n}>0$, and $y_{j}=0$ for all $j \in N(k-m+1, k-1)$

A generalized zero for y_{n} is said to be of order 0,1 , or $m>1$, according to whether condition (i), (ii) or (iii), respectively, holds. In particular, a generalized zero of order 0 will simply be called a zero, and a generalized zero of order one will again be called a node.

Obviously, if $y(a)=y(a+1)=y(a+2)=y(a+3)=0$ for some $a \in N$, then $y_{n} \equiv 0$ is the only solution of (1). Thus, a nontrivial solution of (1) can have zeros at no more than three consecutive values of k . In Definition 1 we shall show that a nontrivial solution of (1) cannot have a generalized zero of order $m>3$. However, a solution of (1) can have arbitrarily many consecutive nodes, as it is clear from $y_{n}=(-1)^{n}$, which is a solution of (1).

The following properties of the solutions of (1) are fundamental and will be used subsequently.
$\left(S_{1}\right)$ If y_{n} is a nontrivial solution of (1) and if
(a) $y_{n} \geq 0$
(b) $\Delta y_{n} \geq 0$
(c) $\Delta^{2} y_{n+1} \geq 0$
(d) $\Delta^{3} y_{n+2} \geq 0$

For some $k=a \in N(2)$, then $(a),(b),(c) \&(d)$ holds for all $k \in N(a)$, with strict inequality in (a) for all $k \in N(a+2)$, strict inequality in (b) for all $k \in N(a+1)$, and strict inequality in (c) and (d) for all $k \in N(a+3)$. Furthermore,

$$
\begin{equation*}
\Delta^{2}\left(p_{n} \Delta^{2} y_{n}\right)+q_{n+1} \Delta^{2} y_{n+1}+r_{n+2} y_{n+2} \geq 0 \text { for all } k \in N(a) \tag{2}
\end{equation*}
$$

With strict inequality for all $k \in N(a+2)$, and $y_{n}, \Delta y_{n}$, and $\Delta^{2} y_{n}$ all tend to ∞ as $k \rightarrow \infty$.
$\left(S_{2}\right)$ If y_{n} is a Nontrivial solution of (1) and if

$$
\begin{array}{llll}
\left(a_{1}\right) y_{n} \geq 0 & \left(b_{1}\right) \Delta y_{n} \geq 0 & \left(c_{1}\right) \Delta^{2} y_{n} \geq 0 & \left(d_{1}\right) \Delta^{3} y_{n} \geq 0
\end{array}
$$

For some $k=a \in N$, then $\left(a_{1}\right),\left(b_{1}\right),\left(c_{1}\right) \&\left(d_{1}\right)$ holds for all $k \in N(a)$, with strict inequality in $\left(a_{1}\right),\left(b_{1}\right),\left(d_{1}\right)$ for all $k \in N(a+3)$, and in $\left(c_{1}\right)$ for all $k \in N(a+4)$. Furthermore,

$$
\begin{equation*}
\Delta^{4} y_{n} \geq 0 \text { for all } k \in N(a) \tag{3}
\end{equation*}
$$

With strictly inequality for all $k \in N(a+2)$, and $y_{n}, \Delta y_{n}, \& \Delta^{2} y_{n}$ all tend to $\infty \mathrm{k} \rightarrow \infty$.
$\left(S_{3}\right)$ If y_{n} is a nontrivial solution of (1) and if

$$
\begin{array}{llll}
\left(a_{2}\right) y_{n} \geq 0 & \left(b_{2}\right) \Delta y_{n+1} \leq 0 & \left(c_{2}\right) \Delta^{2} y_{n+1} \geq 0 & \left(d_{2}\right) \Delta^{3} y_{n+1} \leq 0
\end{array}
$$

For some $k=a \in N(3)$, then (2) holds for all $k \in N(2, a)$, and

$$
\begin{equation*}
\Delta^{2}\left(p_{n} \Delta^{2} y_{n}\right)+q_{n+1} \Delta^{2} y_{n+1}+r_{n+2} y_{n+2} \geq 0 \text { for all } k \in N(2, a) \tag{4}
\end{equation*}
$$

Furthermore, $y(0)>y(1)>0$, and $\Delta y(0)<0$. Strict inequality holds in $\left(a_{2}\right)$ and (3) for all $k \in N(2, a-2)$ if $a \in N(4)$, in (b_{2}) for all $k \in N(2, a-1)$, and in (c_{2}) for all $k \in N(2, a-3)$ if $a \in N(5)$.
$\left(S_{4}\right)$ Let $a \in N(2)$.If y_{n} is a solution of (1) with $y(a)=0, y(a-1) \geq$ $0, y(a+1) \geq 0, y(a-1)$ and $y(a+1)$ not both zero, then at least one of the following conditions must be true. (i) Either $y_{n}>0$ for all $k \in N(a+2)$, or (ii) $y_{n}<0$ for all $k \in N(0, a-1)$. In particular, y_{n} cannot have generalized zeros of any order at both α and β, where $\alpha \in N(0, a-1)$ and $\beta \in N(a+2)$. An analogous statement holds for the hypotheses $y(a-1) \leq 0$ and $y(a+1) \leq 0$.

RESULTS AND DISCUSSION

Theorem 1.1. If y_{n} is a nontrivial solution of (1) with zeros at three consecutive values of k , say $a, a+1 \& a+2$ then y_{n} has no other generalized zeros. If $y(a+3)>$ $0(<0)$, then $\Delta y_{n} \geq 0(\leq 0)$ foe all k , and the inequality is strict if $k \in N(a+2)$ or $k \in$ $N(0, a-1)$. In particular, if

$$
\alpha \in N(0, a-1) \text { and } \beta \in N(a+3) \text {, then } y(\alpha) y(\beta)<0 .
$$

Proof. Clearly $\Delta y(a)=\Delta^{2} y(a)=0$. Since the solution y_{n} is nontrivial, we may assume that $y(a+3)>0$. Thus, $\Delta^{3} y(a)>0$ and by $\left(S_{2}\right), y_{n}$ is positive and strictly increasing on $N(a+3)$. Next, let $v_{n}=-y_{n}$. Then $v(a+1)=0, \Delta v(a)=0, \Delta^{2} v(a)=$ 0 and $\Delta^{3} v(a)<0$. If $a \in N(2)$, then $\left(S_{3}\right)$ implies that v_{n} is positive and strictly decreasing on $N(a, 0)$. Thus y_{n} is negative and strictly increasing on $N(a, 0)$. If $\mathrm{a}=1$, then we again assume that $y(a+3)=y(4)>0$. Then by (1) $\Delta^{4} y(0)=r(2) y(2)=0$. But, $\Delta^{4} y(0)=$ $y(4)+y(0)$, so $y(0)=-y(4)<0$ and $\Delta y(0)=y(1)-y(0)>0$, as claimed. If $a=0$, then the part of the conclusion concerning $k \leq a-1$ is empty. This completes the proof.

Theorem 1.2. Let $a \in N(1)$, suppose that y_{n} is a solution of (1) with $y(0)=$ $0, y(a+1)=0, y(a+2) \neq 0$, but $a+2$ is a generalized zero for y_{n}. Then y_{n} has no other generalized zeros.

If $y(a+2)>0(<0)$, then $\Delta y_{n} \geq 0(\leq 0)$ for all $k \in N$, with strict inequality for all $k \in N(a+2)$ or $k \in N(0, a-1)$. In particular, if $\alpha \in N(0, a-1)$ and $\beta \in$ $N(a+2)$, then $y(\alpha) y(\beta)<0$.

Proof. Since $y(a+2) \neq 0$, we can assume that $y(a+2)>0$. since $y(a)=$ $y(a+1)=0, a+2$ cannot be a generalized zero of order 1 or 2 , and theorem (1) implies that the order cannot be greater than 3 . Thus, $\mathrm{a}+2$ is a generalized zero of order 3 , which implies that $y(a-1)<0$, now since from (1), we have $\Delta\left(p_{n} \Delta^{2} y_{n}\right)>0$, it follows that
$\Delta^{3} y(a)>0$, clearly $\Delta^{2} y(a)>0, \Delta y(a)=0 \quad$ and $\quad y(a)=0$, thus by $\left(S_{2}\right), y_{n}$ is positive and strictly increasing on $N(a+3)$. For $k \in N(0, a)$, let $v_{n}=-y_{n}$. Then $v(a)=$ $0, \Delta v(a-1)<0, \Delta^{2} v(a-1)>0$ and $\Delta^{3} v(a-1)<0$. If $a \in N(3)$, then as in equation (1), $\left(S_{3}\right)$ yields the results. If $\mathrm{a}=2$, then $y(2)=y(3)=0, y(1)<0, y(4)>0$ and $\Delta y(1)>$ 0 . By (1) we have $\Delta^{4} y(0)=0$. But, $\Delta^{4} y(0)=y(4)-4 y(3)+6 y(2)-4 y(1)+y(0)=$ $y(4)-4 y(1)+y(0)$, and so $4 y(1)-y(0)=y(4)>0$. Hence, $y(0)<4 y(1)<0$, and $y(0)-y(1)<3 y(1)<0$.

Therefore, $y(0)<0$ and $\Delta y(0)>0$, as claimed. If $\mathrm{a}=1$, then $y(1)=y(2)=$ $0, y(3) \neq 0$, and $a+2=3$ is a generalized zero. It follows from the definition of a generalized zero that this must be a generalized zero of order 3 , so that if $y(3)>0$ then $y(0)<0$. Hence $\Delta y(0)>0$, which complete the proof.

Corollary 1.3.If y_{n} is a nontrivial solution of (1) with generalized zeros at α and β and a zero at a, where $\alpha+1<a<\beta-1$, then $y(a-1) y(a+1)<0$. In particular, y_{n} does not have a generalized zero at $\mathrm{a}+1$.

Proof. Since $\alpha+1<a<\beta-1$, from theorem (1.1) it follows that $y(a+$ 1) and $y(a-1)$ both cannot be zero. If $y(a+1) y(a-1) \geq 0$, then $\left(S_{4}\right)$ implies that y_{n} cannot have generalized zeros at both α and β, which is a contradiction. Thus, $y(a-$ 1) $y(a+1)<0$.

Corollary 1.4. If $\boldsymbol{y}_{\boldsymbol{n}}$ is a nontrivial solution of (1) with $y(\alpha)=y(a)=y(\beta)=0$, where

$$
\alpha<a<\beta-1 \text {, then } y(a+1) \neq 0 \text {. }
$$

Corollary 1.5. If a nontrivial solution y_{n} of theorem (1.1) has a zero at α and a generalized zero at β, where $\alpha<\beta$, then y_{n} cannot have consecutive zeros at a, $a+1$ where $\alpha<a<\beta-1$.

Theorem 1.6. If two nontrivial solutions y_{n} and v_{n} of (1.1) have three zeros in common, then y_{n} and v_{n} are linearly dependent, i.e. specifying any three zeros uniquely determines a nontrivial solution up to a multiplicative constant.

Proof. If $y(\alpha)=y(a)=y(a+1)=v(\alpha)=v(a)=v(a+1)=0$, for some α and a , where $0 \leq \alpha<a$, then by theorem $1.1, u(a+2) \neq 0$ and $v(a+2) \neq 0$. Define $w(n)=v(a+2) y(n)-y(a+2) v(n)$. Since $w(n)$ is a linear combination of $y(n)$ and $v(n)$, it is a solution of (1.1). However, $w(\alpha)=w(a)=w(a+1)=w(a+2)=$ 0 , and so $w(n)$ must be the trivial solution of (1.1) by theorem (1.1). Since $u(a+$ 2) and $v(a+2)$ are nonzero, $u(n)$ and $v(n)$ must be constant multiples of each other.

Next, if $y(\alpha)=y(a)=y(\beta)=v(\alpha)=v(a)=v(\beta)=0$, where $\alpha<a<\beta-1$, then by corollary $1.5, y(a+1) \neq 0$ and $v(a+1) \neq 0$. Define $w(n)=v(a+1) y(n)-$ $y(a+1) v(n)$.

Clearly, $w(\alpha)=w(a)=w(a+1)=w(\beta)=0$, which contradicts corollary 1.4 unlessw $(n) \equiv 0$.But this means $y(n)$ and $v(n)$ are constant multiples of each other. This completes the proof.

Definition 1.7. A solution $y(n)$ of (1.1) is called recessive if there exists an $a \in N$ such that for all $k \in N(a)$.

$$
\begin{equation*}
y(n)>0, \Delta y(n) \leq 0, \quad \Delta^{2} y(n) \geq 0 \text { and } \Delta^{3} y(n) \leq 0 \tag{5}
\end{equation*}
$$

Let $y^{m}(n)$ be the solution of (1.1) satisfying $y^{m}(m)=y^{m}(m+1)=y^{m}(m+$ $2)=0$ and $y^{m}(0)=1$ and where $m \in N(1)$. For each $m, y^{m}(n)$ exists and is unique. The existence is clear from theorem 1.1 and a normalization. While the uniqueness follows from theorem 1.6.Note that by construction.

$$
\begin{equation*}
0 \leq y^{m}(n) \leq 1 \text { for all } k \in N(0, m+2) \tag{6}
\end{equation*}
$$

Also, Theorem (1.1) implies that

$$
\begin{equation*}
y^{m}(n) \geq y^{m}(n+1) \quad \text { for all } k \in N \tag{7}
\end{equation*}
$$

We now consider m sequence $\left\{y^{m}(1)\right\}$. By (5), $0 \leq y^{m}(1) \leq 1$ for all $m \in N(1)$, thus
$\lim _{m \rightarrow \infty} \sup \left\{y^{m}(1)\right\}$ exists, we call it $y(1)$. Then, there exists a subsequence $\left\{m_{1 l}\right\} \subseteq N(1)$ such that

$$
\begin{equation*}
y^{m}(k+2)\left(p_{m+k} \Delta^{2} y_{m+k}\right)+y^{m}(k+1)\left(q_{m+k} \Delta^{2} y_{m+k}\right)=-r_{m+k} y_{m+k} \tag{8}
\end{equation*}
$$

Consider (8) with $k=2$ and m replaced by $m_{3 l}$. we can conclude that $\lim _{l \rightarrow \infty} y^{m_{3 l}}(5)=y(5)$. Proceeding inductively, we conclude that $\lim _{l \rightarrow \infty} y^{m_{3 l}}(k)=y(k)$ exists for any $k \in N$.

Replacing m by $m_{3 l}$ in (8) and letting $l \rightarrow \infty$, we conclude that $y(k)$ is a solution of (1). Also,

$$
\begin{equation*}
y(k) \geq y(k+1) \geq 0 \tag{9}
\end{equation*}
$$

This follows from (7) by replacing m by $m_{3 l}$, fixing k, and letting $l \rightarrow \infty$. From (9) we conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} y(k) \text { exists, and we shall call it } \mathrm{L} \tag{10}
\end{equation*}
$$

We will now show that this $y(k)$ is a recessive solution of (1).
Theorem 1.7. The solution $y(k)$ constructed above is a recessive solution of (1). In addition $\Delta y(k), \Delta^{2} y(k)$ and $\Delta^{3} y(k)$ all monotonically approach zero as $k \rightarrow \infty$.

Proof. We will first show that (5) is satisfied. By (7) and theorem 1.1, $y^{m_{3 l}}\left(m_{3 l}+\right.$ 3) <0.

Choosing $m_{3 l} \geq 3$ and using $\left(S_{3}\right)$ with $a=m_{3 l}+1$, we can conclude that for any k such that $2 \leq k \leq m_{3 l}+1, \Delta y^{m_{3 l}}(k-1) \leq 0, \Delta^{2} y^{m_{3 l}}(k-1) \geq 0$ and $\Delta^{3} y^{m_{3 l}}(k-1) \leq 0$.

Letting $l \rightarrow \infty$ implies that $y(k)$ satisfies (5) for $\mathrm{a}=1$ and is recessive. We note that $y(k)$ also satisfies (5) for $\mathrm{a}=0$. Concerning the monotonicity, we choose any $k \in N(2)$ and any $m_{3 l} \geq k$.

Then, $\Delta^{2} y^{m_{3 l}}(k-1) \geq 0$ which means $\Delta y^{m_{3 l}}(k) \geq \Delta y^{m_{3 l}}(k-1)$, and hence $0 \leq-\Delta y^{m_{3 l}}(k) \leq-\Delta y^{m_{3 l}}(k-1)$. Taking the limit as $l \rightarrow \infty$ implies that $\Delta y(k)$ is monotonically decreasing in absolute value. By (1.1), Since $y(k)$ monotonically approaches a finite limit, $\Delta y(k) \rightarrow 0$ as $k \rightarrow \infty$. The argument that $\Delta^{2} y(k)$ and $\Delta^{3} y(k)$. monotonically approach zero is similar. By theorem 1.7 this recessive solution $y(k)$ of (1.1) can be return as -

$$
\begin{gather*}
\Delta^{2}\left(p_{n} \Delta^{2} y_{n}\right)+q_{n+1} \Delta^{2} y_{n+1}=l+\frac{1}{6} \sum_{l=k}^{\infty}(l-k+1)(l-k+2) \\
(l-k+3) r(l) y(l) \tag{11}
\end{gather*}
$$

Corollary.1.8. If $\sum_{1}^{\infty} l^{3} r(l)=\infty$, then the recessive solution $y(k)$ of (1.1) constructed above approaches zero as $k \rightarrow \infty$.

Corollary 1.9. Suppose that $y(k)$ and $v(k)$ are two recessive solutions of (1.1) such that $y(a)=v(a)$. If $y(k) \geq v(k)$ for all $k \in N(a)$, then $y(k) \equiv v(k)$.

Proof. Let $l=\lim _{k \rightarrow \infty} y(k)$ and $h=\lim _{k \rightarrow \infty} v(k)$. By hypothesis, $l \geq h$. Thus, if $w(k)=y(k)-v(k)$, than from (11) with $k=a+2$ we have

$$
0 \geq l-m+\frac{1}{6} \sum_{l=a+2}^{\infty}(l-a-1)(l-a)(l-a+1) r(l) w(l) \geq 0
$$

From this we conclude that $y(k)=v(k)$.

CONCLUSION

The oscillatory properties of Fourth order Difference Equation become Oscillate.

REFRERENCES

1. R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applications, 2e, Marcel Dekker, New York (2000).
2. C. D. Ahlbrandt and C. Peterson, The (n,n)-Disconjugacy of a 2nth-Order Linear Difference Equation, Computers Math. Applic., 28, No 1-3 (1994), 1-9.
3. D. Anderson, A 2nth-Order Linear Difference Equation, Commun. Appl. Anal., 2(4), 521-529 (1998).
4. D. Anderson. A Fourth-Order Nonlinear Dynamic Equation on Time Scales, Preprint.
5. P. Hartman. Difference Equations: Disconjugacy, Principal Solutions, Green's Functions, Complete Monotonicity, Trans. Am. Math. Soc., 246, 1-30 (1978).
6. W. G. Kelley and A. C. Peterson, Difference Equation: An Introduction with Applications, 2e, Harcourt/Academic Press, San Diego (2001).
7. T. Peil and A. Peterson, Asymptotic Behavior of Solutions of a Two-Term Difference Equation, Rocky Mountain J. Math., 24(1), 233-251 (1994).
8. J. Popenda and E. Schmeidel, On the Solutions of Fourth Order Difference Equations. Rocky Mountain J. Math., 25(4), 1485-1499 (1995).
9. W. E. Taylor, Jr. Oscillation Properties of Fourth Order Difference Equations, Portugal Math., 45, 105-114 (1988).

[^0]: *Author for correspondence; E-mail: anandhanavit@gmail.com

