

OSCILLATORY AND NON OSCILLATORY PROPERTIES OF FOURTH ORDER DIFFERENCE EQUATION

V. ANANTHAN^{*} and S. KANDASAMY^a

Department of Mathematics, Aarupadai Veedu Institute of Technology, CHENNAI (T.N.) INDIA ^aDepartment of Mathematics, Vinayaka Mission's Kirupananda Variyar Engineering College, SALEM (T.N.) INDIA

ABSTRACT

This paper establish the various properties of solution of fourth order difference equation of the form

$$\Delta^2(p_n \Delta^2 y_n) + q_{n+1} \Delta^2 y_{n+1} + r_{n+2} y_{n+2} = 0$$

Where p_n , $q_n \& r_n$ are real sequences satisfying $p_n > 0$, $q_n \ge 0 \& r_n > 0$ for each $n \ge 0$.

Key words: Oscillation, Non-oscillation, Difference equation, Trivial and nontrivial solution, Generalized zero.

INTRODUCTION

Consider the fourth order difference equation of the

$$\Delta^2(p_n \Delta^2 y_n) + q_{n+1} \Delta^2 y_{n+1} + r_{n+2} y_{n+2} = 0 \qquad \dots (1)$$

Where $p_n, q_n \& r_n$ are real sequences satisfying $p_n > 0, q_n \ge 0 \& r_n > 0$ for each $n \ge 0$ and the forward difference operator Δ is defined by $\Delta y_n = y_{n+1} - y_n$ also $y_n = y(n)$.

Definition 1: Let y_n be a function defined on N, we say $k \in N$ is a generalized zero for y_n if one of following holds:

(i) $y_n = 0$

(ii) k N(1) and $y_{n-1}y_n 0$, k N(1), and there exists an integer m, such that $1 < m \le k$.

^{*}Author for correspondence; E-mail: anandhanavit@gmail.com

V. Ananthan and S. Kandasamy: Oscillatory and Non....

(iii)
$$(-1)^m y_{k-m} y_n > 0$$
, and $y_j = 0$ for all $j \in N(k-m+1, k-1)$

A generalized zero for y_n is said to be of order 0, 1, or m > 1, according to whether condition (i), (ii) or (iii), respectively, holds. In particular, a generalized zero of order 0 will simply be called a zero, and a generalized zero of order one will again be called a node.

Obviously, if y(a) = y(a + 1) = y(a + 2) = y(a + 3) = 0 for some $a \in N$, then $y_n \equiv 0$ is the only solution of (1). Thus, a nontrivial solution of (1) can have zeros at no more than three consecutive values of k. In Definition 1 we shall show that a nontrivial solution of (1) cannot have a generalized zero of order m > 3. However, a solution of (1) can have arbitrarily many consecutive nodes, as it is clear from $y_n = (-1)^n$, which is a solution of (1).

The following properties of the solutions of (1) are fundamental and will be used subsequently.

 (S_1) If y_n is a nontrivial solution of (1) and if

(a)
$$y_n \ge 0$$
 (b) $\Delta y_n \ge 0$ (c) $\Delta^2 y_{n+1} \ge 0$ (d) $\Delta^3 y_{n+2} \ge 0$

For some $k = a \in N(2)$, then (a), (b), (c)&(d) holds for all $k \in N(a)$, with strict inequality in (a) for all $k \in N(a + 2)$, strict inequality in (b) for all $k \in N(a + 1)$, and strict inequality in (c) and (d) for all $k \in N(a + 3)$. Furthermore,

$$\Delta^{2}(p_{n}\Delta^{2}y_{n}) + q_{n+1}\Delta^{2}y_{n+1} + r_{n+2}y_{n+2} \ge 0 \text{ for all } k \in N(a) \qquad \dots (2)$$

With strict inequality for all $k \in N(a + 2)$, and y_n , Δy_n , and $\Delta^2 y_n$ all tend to ∞ as $k \to \infty$.

 (S_2) If y_n is a Nontrivial solution of (1) and if

$$(a_1) y_n \ge 0$$
 $(b_1) \Delta y_n \ge 0$ $(c_1) \Delta^2 y_n \ge 0$ $(d_1) \Delta^3 y_n \ge 0$

For some $k = a \in N$, then $(a_1), (b_1), (c_1) \& (d_1)$ holds for all $k \in N(a)$, with strict inequality in $(a_1), (b_1), (d_1)$ for all $k \in N(a + 3)$, and in (c_1) for all $k \in N(a + 4)$. Furthermore,

$$\Delta^4 y_n \ge 0 \text{ for all } k \in N(a) \qquad \dots (3)$$

With strictly inequality for all $k \in N(a + 2)$, and $y_n, \Delta y_n, \&\Delta^2 y_n$ all tend to $\infty k \rightarrow \infty$.

 (S_3) If y_n is a nontrivial solution of (1) and if

$$(a_2)y_n \ge 0 \qquad (b_2)\,\Delta y_{n+1} \le 0 \qquad (c_2)\,\Delta^2\,y_{n+1} \ge 0 \qquad (d_2)\,\Delta^3 y_{n+1} \le 0$$

For some $k = a \in N(3)$, then (2) holds for all $k \in N(2, a)$, and

$$\Delta^2(p_n \Delta^2 y_n) + q_{n+1} \Delta^2 y_{n+1} + r_{n+2} y_{n+2} \ge 0 \text{ for all } k \in N(2, a) \qquad \dots (4)$$

Furthermore, y(0) > y(1) > 0, and $\Delta y(0) < 0$. Strict inequality holds in (a_2) and (3) for all $k \in N(2, a - 2)$ if $a \in N(4)$, in (b_2) for all $k \in N(2, a - 1)$, and in (c_2) for all $k \in N(2, a - 3)$ if $a \in N(5)$.

 (S_4) Let $a \in N(2)$. If y_n is a solution of (1) with $y(a) = 0, y(a-1) \ge 0, y(a+1) \ge 0, y(a-1)$ and y(a+1) not both zero, then at least one of the following conditions must be true. (i) Either $y_n > 0$ for all $k \in N(a+2)$, or (ii) $y_n < 0$ for all $k \in N(0, a - 1)$. In particular, y_n cannot have generalized zeros of any order at both α and β , where $\alpha \in N(0, a - 1)$ and $\beta \in N(a + 2)$. An analogous statement holds for the hypotheses $y(a - 1) \le 0$ and $y(a + 1) \le 0$.

RESULTS AND DISCUSSION

Theorem 1.1. If y_n is a nontrivial solution of (1) with zeros at three consecutive values of k, say a, a + 1&a + 2 then y_n has no other generalized zeros. If y(a + 3) > 0(< 0), then $\Delta y_n \ge 0(\le 0)$ foe all k, and the inequality is strict if $k \in N(a + 2)$ or $k \in N(0, a - 1)$. In particular, if

$$\alpha \in N(0, \alpha - 1)$$
 and $\beta \in N(\alpha + 3)$, then $y(\alpha)y(\beta) < 0$.

Proof. Clearly $\Delta y(a) = \Delta^2 y(a) = 0$. Since the solution y_n is nontrivial, we may assume that y(a + 3) > 0. Thus, $\Delta^3 y(a) > 0$ and by (S_2) , y_n is positive and strictly increasing on N(a + 3). Next, let $v_n = -y_n$. Then v(a + 1) = 0, $\Delta v(a) = 0$, $\Delta^2 v(a) = 0$ and $\Delta^3 v(a) < 0$. If $a \in N(2)$, then (S_3) implies that v_n is positive and strictly decreasing on N(a, 0). Thus y_n is negative and strictly increasing on N(a, 0). If a=1, then we again assume that y(a + 3) = y(4) > 0. Then by (1) $\Delta^4 y(0) = r(2)y(2) = 0$. But, $\Delta^4 y(0) = y(4) + y(0)$, so y(0) = -y(4) < 0 and $\Delta y(0) = y(1) - y(0) > 0$, as claimed. If a=0, then the part of the conclusion concerning $k \le a - 1$ is empty. This completes the proof.

Theorem 1.2. Let $a \in N(1)$, suppose that y_n is a solution of (1) with y(0) = 0, y(a + 1) = 0, $y(a + 2) \neq 0$, but a + 2 is a generalized zero for y_n . Then y_n has no other generalized zeros.

If y(a + 2) > 0 < 0, then $\Delta y_n \ge 0 \le 0$ for all $k \in N$, with strict inequality for all $k \in N(a + 2)$ or $k \in N(0, a - 1)$. In particular, if $\alpha \in N(0, a - 1)$ and $\beta \in N(a + 2)$, then $y(\alpha)y(\beta) < 0$.

Proof. Since $y(a + 2) \neq 0$, we can assume that y(a + 2) > 0. since y(a) = y(a + 1) = 0, a + 2 cannot be a generalized zero of order 1 or 2, and theorem (1) implies that the order cannot be greater than 3. Thus, a+2 is a generalized zero of order 3, which implies that y(a - 1) < 0, now since from (1), we have $\Delta(p_n \Delta^2 y_n) > 0$, it follows that

 $\Delta^3 y(a) > 0$, clearly $\Delta^2 y(a) > 0$, $\Delta y(a) = 0$ and y(a) = 0, thus by (S_2) , y_n is positive and strictly increasing on N(a + 3). For $k \in N(0, a)$, let $v_n = -y_n$. Then v(a) = 0, $\Delta v(a - 1) < 0$, $\Delta^2 v(a - 1) > 0$ and $\Delta^3 v(a - 1) < 0$. If $a \in N(3)$, then as in equation (1), (S_3) yields the results. If a=2, then y(2) = y(3) = 0, y(1) < 0, y(4) > 0 and $\Delta y(1) > 0$. By (1) we have $\Delta^4 y(0) = 0$. But, $\Delta^4 y(0) = y(4) - 4y(3) + 6y(2) - 4y(1) + y(0) = y(4) - 4y(1) + y(0)$, and so 4y(1) - y(0) = y(4) > 0. Hence, y(0) < 4y(1) < 0, and y(0) - y(1) < 3y(1) < 0.

Therefore, y(0) < 0 and $\Delta y(0) > 0$, as claimed. If a=1, then y(1) = y(2) = 0, $y(3) \neq 0$, and a + 2 = 3 is a generalized zero. It follows from the definition of a generalized zero that this must be a generalized zero of order 3, so that if y(3) > 0 then y(0) < 0. Hence $\Delta y(0) > 0$, which complete the proof.

Corollary 1.3. If y_n is a nontrivial solution of (1) with generalized zeros at α and β and a zero at a, where $\alpha + 1 < \alpha < \beta - 1$, then $y(\alpha - 1)y(\alpha + 1) < 0$. In particular, y_n does not have a generalized zero at a+1.

Proof. Since $\alpha + 1 < a < \beta - 1$, from theorem (1.1) it follows that y(a + 1) and y(a - 1) both cannot be zero. If $y(a + 1)y(a - 1) \ge 0$, then (S_4) implies that y_n cannot have generalized zeros at both α and β , which is a contradiction. Thus, y(a - 1)y(a + 1) < 0.

Corollary 1.4. If y_n is a nontrivial solution of (1) with $y(\alpha) = y(\alpha) = y(\beta) = 0$, where

$$\alpha < a < \beta - 1$$
, then $y(a + 1) \neq 0$.

Corollary 1.5. If a nontrivial solution y_n of theorem (1.1) has a zero at α and a generalized zero at β , where $\alpha < \beta$, then y_n cannot have consecutive zeros at a, a + 1 where $\alpha < a < \beta - 1$.

Theorem 1.6. If two nontrivial solutions y_n and v_n of (1.1) have three zeros in common, then y_n and v_n are linearly dependent, i.e. specifying any three zeros uniquely determines a nontrivial solution up to a multiplicative constant.

Proof. If $y(\alpha) = y(a) = y(a + 1) = v(\alpha) = v(a) = v(a + 1) = 0$, for some α and a, where $0 \le \alpha < a$, then by theorem 1.1, $u(a + 2) \ne 0$ and $v(a + 2) \ne 0$. Define w(n) = v(a + 2)y(n) - y(a + 2)v(n). Since w(n) is a linear combination of y(n) and v(n), it is a solution of (1.1). However, $w(\alpha) = w(a) = w(a + 1) = w(a + 2) = 0$, and so w(n) must be the trivial solution of (1.1) by theorem (1.1). Since u(a + 2) and v(a + 2) are nonzero, u(n) and v(n) must be constant multiples of each other.

Next, if $y(\alpha) = y(\alpha) = y(\beta) = v(\alpha) = v(\beta) = 0$, where $\alpha < \alpha < \beta - 1$, then by corollary $1.5, y(\alpha + 1) \neq 0$ and $v(\alpha + 1) \neq 0$. Define $w(n) = v(\alpha + 1)y(n) - y(\alpha + 1)v(n)$.

Clearly, $w(\alpha) = w(\alpha) = w(\alpha + 1) = w(\beta) = 0$, which contradicts corollary 1.4 unless $w(n) \equiv 0$. But this means y(n) and v(n) are constant multiples of each other. This completes the proof.

Definition 1.7. A solution y(n) of (1.1) is called recessive if there exists an $a \in N$ such that for all $k \in N(a)$.

$$y(n) > 0, \ \Delta y(n) \le 0, \ \Delta^2 y(n) \ge 0 \ and \ \Delta^3 y(n) \le 0 \ \dots(5)$$

Let $y^m(n)$ be the solution of (1.1) satisfying $y^m(m) = y^m(m+1) = y^m(m+2) = 0$ and $y^m(0) = 1$ and where $m \in N(1)$. For each $m, y^m(n)$ exists and is unique. The existence is clear from theorem 1.1 and a normalization. While the uniqueness follows from theorem 1.6.Note that by construction.

$$0 \le y^m(n) \le 1$$
 for all $k \in N(0, m+2)$...(6)

Also, Theorem (1.1) implies that

$$y^{m}(n) \ge y^{m}(n+1) \quad for \ all \ k \in \mathbb{N} \qquad \dots (7)$$

We now consider m sequence $\{y^m(1)\}$. By (5), $0 \le y^m(1) \le 1$ for all $m \in N(1)$, thus

 $\lim_{m\to\infty} sup\{y^m(1)\}$ exists, we call it y(1). Then, there exists a subsequence $\{m_{1l}\}\subseteq N(1)$ such that

V. Ananthan and S. Kandasamy: Oscillatory and Non....

$$y^{m}(k+2)(p_{m+k}\Delta^{2}y_{m+k}) + y^{m}(k+1)(q_{m+k}\Delta^{2}y_{m+k}) = -r_{m+k}y_{m+k} \qquad \dots (8)$$

Consider (8) with k = 2 and m replaced by m_{3l} . we can conclude that $\lim_{l\to\infty} y^{m_{3l}}(5) = y(5)$. Proceeding inductively, we conclude that $\lim_{l\to\infty} y^{m_{3l}}(k) = y(k)$ exists for any $k \in N$.

Replacing m by m_{3l} in (8) and letting $l \to \infty$, we conclude that y(k) is a solution of (1). Also,

$$y(k) \ge y(k+1) \ge 0 \qquad \dots(9)$$

This follows from (7) by replacing *m* by m_{3l} , fixing k, and letting $l \to \infty$. From (9) we conclude that

$$\lim_{k\to\infty} y(k)$$
 exists, and we shall call it L ...(10)

We will now show that this y(k) is a recessive solution of (1).

Theorem 1.7. The solution y(k) constructed above is a recessive solution of (1). In addition $\Delta y(k)$, $\Delta^2 y(k)$ and $\Delta^3 y(k)$ all monotonically approach zero as $k \to \infty$.

Proof. We will first show that (5) is satisfied. By (7) and theorem 1.1, $y^{m_{3l}}(m_{3l} + 3) < 0$.

Choosing $m_{3l} \ge 3$ and using (S_3) with $a = m_{3l} + 1$, we can conclude that for any k such that $2 \le k \le m_{3l} + 1$, $\Delta y^{m_{3l}}(k-1) \le 0$, $\Delta^2 y^{m_{3l}}(k-1) \ge 0$ and $\Delta^3 y^{m_{3l}}(k-1) \le 0$.

Letting $l \to \infty$ implies that y(k) satisfies (5) for a=1 and is recessive. We note that y(k) also satisfies (5) for a=0. Concerning the monotonicity, we choose any $k \in N(2)$ and any $m_{3l} \ge k$.

Then, $\Delta^2 y^{m_{3l}}(k-1) \ge 0$ which means $\Delta y^{m_{3l}}(k) \ge \Delta y^{m_{3l}}(k-1)$, and hence $0 \le -\Delta y^{m_{3l}}(k) \le -\Delta y^{m_{3l}}(k-1)$. Taking the limit as $l \to \infty$ implies that $\Delta y(k)$ is monotonically decreasing in absolute value. By (1.1), Since y(k) monotonically approaches a finite limit, $\Delta y(k) \to 0$ as $k \to \infty$. The argument that $\Delta^2 y(k)$ and $\Delta^3 y(k)$. monotonically approach zero is similar. By theorem 1.7 this recessive solution y(k) of (1.1) can be return as –

3010

$$\Delta^{2}(p_{n}\Delta^{2}y_{n}) + q_{n+1}\Delta^{2}y_{n+1} = l + \frac{1}{6}\sum_{l=k}^{\infty}(l-k+1)(l-k+2)$$
$$(l-k+3)r(l)y(l) \qquad \dots(11)$$

Corollary.1.8. If $\sum_{1}^{\infty} l^3 r(l) = \infty$, then the recessive solution y(k) of (1.1) constructed above approaches zero as $k \to \infty$.

Corollary 1.9. Suppose that y(k) and v(k) are two recessive solutions of (1.1) such that y(a) = v(a). If $y(k) \ge v(k)$ for all $k \in N(a)$, then $y(k) \equiv v(k)$.

Proof. Let $l = \lim_{k\to\infty} y(k)$ and $h = \lim_{k\to\infty} v(k)$. By hypothesis, $l \ge h$. Thus, if w(k) = y(k) - v(k), than from (11) with k = a + 2 we have

$$0 \ge l - m + \frac{1}{6} \sum_{l=a+2}^{\infty} (l - a - 1)(l - a)(l - a + 1)r(l)w(l) \ge 0$$

From this we conclude that y(k) = v(k).

CONCLUSION

The oscillatory properties of Fourth order Difference Equation become Oscillate.

REFRERENCES

- 1. R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applications, 2e, Marcel Dekker, New York (2000).
- 2. C. D. Ahlbrandt and C. Peterson, The (n,n)-Disconjugacy of a 2nth-Order Linear Difference Equation, Computers Math. Applic., **28**, No 1-3 (1994), 1-9.
- 3. D. Anderson, A 2nth-Order Linear Difference Equation, Commun. Appl. Anal., 2(4), 521-529 (1998).
- 4. D. Anderson. A Fourth-Order Nonlinear Dynamic Equation on Time Scales, Preprint.
- 5. P. Hartman. Difference Equations: Disconjugacy, Principal Solutions, Green's Functions, Complete Monotonicity, Trans. Am. Math. Soc., **246**, 1-30 (1978).
- 6. W. G. Kelley and A. C. Peterson, Difference Equation: An Introduction with Applications, 2e, Harcourt/Academic Press, San Diego (2001).
- 7. T. Peil and A. Peterson, Asymptotic Behavior of Solutions of a Two-Term Difference Equation, Rocky Mountain J. Math., **24(1)**, 233-251 (1994).

- 8. J. Popenda and E. Schmeidel, On the Solutions of Fourth Order Difference Equations. Rocky Mountain J. Math., **25(4)**, 1485-1499 (1995).
- 9. W. E. Taylor, Jr. Oscillation Properties of Fourth Order Difference Equations, Portugal Math., **45**, 105-114 (1988).

Accepted : 31.10.2016