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ABSTRACT 

This paper establish the various properties of solution of fourth order difference equation of the 
form 

∆ ∆ ∆ 0 

Where , &  are real sequences satisfying 0, 0& 0 for each n ≥ 0. 

Key words: Oscillation, Non-oscillation, Difference equation, Trivial and nontrivial solution, Generalized 
zero. 

INTRODUCTION 

Consider the fourth order difference equation of the  

 ∆ ∆ ∆ 0 …(1) 

Where , &  are real sequences satisfying 0, 0& 0  for each             
n ≥ 0 and the forward difference operator ∆ is defined by ∆   also . 

Definition 1: Let be a function defined on N, we say  is a generalized zero 
for  if one of following holds: 

i   0    

ii   1    0,  1 , and there exists an integer m, such that  1
. 
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 iii  1 0,  0   1, 1  

A generalized zero for  is said to be of order 0, 1, or 1, according to whether 
condition (i), (ii) or (iii), respectively, holds. In particular, a generalized zero of order 0 will 
simply be called a zero, and a generalized zero of order one will again be called a node. 

Obviously, if 1 2 3 0 for some  , then 
0 is the only solution of (1). Thus, a nontrivial solution of (1) can have zeros at no 

more than three consecutive values of k. In Definition 1 we shall show that a nontrivial 
solution of (1) cannot have a generalized zero of order 3. However, a solution of (1) 
can have arbitrarily many consecutive nodes, as it is clear from 1 , which is a 
solution of (1).  

The following properties of the solutions of (1) are fundamental and will be used 
subsequently. 

  If  is a nontrivial solution of (1) and if  

 0           ∆ 0           ∆  0         ∆ 0  

For some 2 , then , , &  holds for all , with strict 
inequality in (a) for all 2 , strict inequality in (b) for all 1 , and strict 
inequality in (c) and (d) for all 3 . Furthermore, 

 ∆ ∆ ∆ 0     …(2) 

With strict inequality for all 2 , and , ∆ , and ∆ all tend 
to ∞  ∞. 

      Nontrivial solution of (1) and if  

 0        ∆ 0        ∆  0         ∆ 0  

For some , then , ,  &  holds for all , with strict 
inequality in , ,  for all 3 , and in  for all 4 . 
Furthermore, 

 ∆ 0    …(3)  

With strictly inequality for all 2 , and , ∆ , &∆  all tend to ∞ k→∞. 
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   If  is a nontrivial solution of (1) and if  

0        ∆ 0        ∆  0         ∆ 0   

For some 3 ,  then (2) holds for all 2, ,  and  

 ∆ ∆ ∆ 0    2,  …(4)  

Furthermore, 0 1 0,  ∆ 0 0. Strict inequality holds in  and 
(3) for all 2, 2   4 , in  for all 2, 1 ,  and in  for all 

2, 3  if 5 .  

 Let 2 .   is a solution of (1) with 0, 1
0,  1 0, 1  and 1  not both zero, then at least one of the following 
conditions must be true. (i) Either 0   2 , or (ii) 0  for all 

0, 1 . In particular,   cannot have generalized zeros of any order at both α 
and  , where 0, 1   2 . An analogous statement holds for the 
hypotheses 1 0  1 0.  

RESULTS AND DISCUSSION 

Theorem 1.1. If  is a nontrivial solution of (1) with zeros at three consecutive 
values of k, say , 1& 2  then  has no other generalized zeros. If 3
0 0 , then ∆ 0 0  foe all k, and the inequality is strict if 2   

0, 1 . In particular, if  

0, 1  and 3 ,  then 0. 

Proof. Clearly ∆ ∆ 0.  Since the solution  is nontrivial, we may 
assume that 3 0.  Thus, ∆ 0  and by  ,   is positive and strictly 
increasing on 3 .  Next, let  . Then 1 0, ∆ 0, ∆
0  ∆ 0. If 2 , then   implies that  is positive and strictly decreasing 
on , 0 .  Thus  is negative and strictly increasing on , 0 .  If a=1, then we again 
assume that 3 4 0.  Then by (1) ∆ 0 2 2 0.  But, ∆ 0

4 0 , so 0 4 0  ∆ 0 1 0 0, as claimed. If a=0, then 
the part of the conclusion concerning 1 is empty. This completes the proof. 

Theorem 1.2. Let 1 , suppose that  is a solution of (1) with 0
0, 1 0, 2 0,  2 is a generalized zero for . Then  has no other 
generalized zeros. 
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If 2 0 0 , then ∆ 0 0  for all ,  with strict inequality               
for all 2  0, 1 .  In particular, if 0, 1  and 

2 ,  0.  

Proof. Since 2 0, we can assume that 2 0.  since 
1 0, 2 cannot be a generalized zero of order 1 or 2, and theorem (1) implies 

that the order cannot be greater than 3. Thus, a+2 is a generalized zero of order 3, which 
implies that 1 0, now since from (1), we have ∆ ∆ 0, it follows that  

∆ 0,  ∆ 0, ∆ 0 and 0, thus by , is 
positive and strictly increasing on 3 .  For 0, ,  . Then 
0, ∆ 1 0, ∆ 1 0 and ∆ 1 0.  If 3 , then as in equation 
(1),  yields the results. If a=2, then 2 3 0, 1 0, 4 0 and ∆ 1
0.  By (1) we have ∆ 0 0. But, ∆ 0 4 4 3 6 2 4 1 0

4 4 1 0 , and so 4 1 0 4 0.  Hence, 0 4 1 0,  and 
0 1 3 1 0. 

Therefore, 0 0 and ∆ 0 0,  as claimed. If a=1, then 1 2
0, 3 0, and 2 3  is a generalized zero. It follows from the definition of a 
generalized zero that this must be a generalized zero of order 3, so that if 3 0 then 

0 0. Hence ∆ 0 0, which complete the proof. 

Corollary 1.3.If  is a nontrivial solution of (1) with generalized zeros at  and  
and a zero at a, where 1 1,  then 1 1 0.  In particular,  
does not have a generalized zero at a+1. 

Proof. Since 1 1 , from theorem (1.1) it follows that 
1  and 1  both cannot be zero. If 1 1 0, then  implies that  
cannot have generalized zeros at both  and ,  which is a contradiction. Thus, 
1 1 0. 

Corollary 1.4. If  is a nontrivial solution of (1) with 0, 
where  

1, then 1 0. 

Corollary 1.5. If a nontrivial solution  of theorem (1.1) has a zero at  and a 
generalized zero at , where , then  cannot have consecutive zeros at , 1 where 

1. 
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Theorem 1.6.  If two nontrivial solutions  and    of (1.1) have three zeros in 
common, then  and  are linearly dependent, i.e. specifying any three zeros uniquely 
determines a nontrivial solution up to a multiplicative constant. 

Proof.  If  1 1 0, for some α 
and a, where 0 ,  then by theorem 1.1,  2 0  2 0.  Define 

2 2 . Since  is a linear combination of 
 , it is a solution of (1.1). However, 1 2

0,    must be the trivial solution of (1.1) by theorem (1.1). Since 
2   2  are nonzero,   must be constant multiples of each other. 

Next, if 0,  where 1, 
then by corollary 1.5, 1 0  1 0 . Define 1

1 . 

Clearly, 1 0,  which contradicts corollary 1.4 
unless 0.But this means    are constant multiples of each other. This 
completes the proof. 

Definition 1.7. A solution  of (1.1) is called recessive if there exists an  
such that for all . 

 0, ∆ 0,    ∆ 0    ∆ 0 …(5)  

Let  be the solution of (1.1) satisfying 1
2 0  0 1 and where 1 . For each m,  exists and is unique. The 
existence is clear from theorem 1.1 and a normalization. While the uniqueness follows from 
theorem 1.6.Note that by construction. 

 0 1       0, 2   …(6) 

Also, Theorem (1.1) implies that  

 1         …(7) 

We now consider m sequence 1 . By (5), 0 1 1  for all 1 , 
thus  

lim ∞ 1  exists, we call it 1 . Then, there exists a subsequence 
1  such that  
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   2 ∆ 1 ∆  …(8) 

Consider (8) with 2 and m replaced by .  we can conclude that 
lim ∞ 5 5 . Proceeding inductively, we conclude that lim ∞  
exists for any . 

Replacing m by  in (8) and letting ∞, we conclude that  is a solution of 
(1). Also,  

 1 0  …(9) 

This follows from (7) by replacing  by , fixing k, and letting ∞. From (9) 
we conclude that  

 lim ∞  exists, and we shall call it L …(10) 

We will now show that this  is a recessive solution of (1). 

Theorem 1.7. The solution  constructed above is a recessive solution of (1). In 
addition ∆ , ∆   ∆  all monotonically approach zero as ∞. 

Proof. We will first show that (5) is satisfied. By (7) and theorem 1.1,  
3 0.  

Choosing 3 and using  with 1, we can conclude that for any k 
such that 2 1, ∆ 1 0, ∆ 1 0 and ∆ 1 0. 

Letting ∞ implies that  satisfies (5) for a=1 and is recessive. We note that 
 also satisfies (5) for a=0. Concerning the monotonicity, we choose any 2  and 

any . 

Then, ∆ 1 0  which means ∆ ∆ 1 ,  and hence 
0 ∆ ∆ 1 .  Taking the limit as ∞  implies that ∆  is 
monotonically decreasing in absolute value. By (1.1), Since  monotonically approaches 
a finite limit, ∆ 0 as ∞.  The argument that ∆   ∆ . monotonically 
approach zero is similar. By theorem 1.7 this recessive solution  of (1.1) can be return 
as – 
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 ∆ ∆ ∆  ∑ 1 2∞   

 3  …(11) 

Corollary.1.8. If ∑ ∞,∞  then the recessive solution  of (1.1) 
constructed above approaches zero as ∞. 

Corollary 1.9. Suppose that    are two recessive solutions of (1.1) such 
that . If  for all ,  .  

Proof. Let lim ∞  and lim ∞ . By hypothesis, . Thus, if 
, than from (11) with 2  we have 

 0 ∑ 1 1 0∞   

From this we conclude that . 

CONCLUSION 

The oscillatory properties of Fourth order Difference Equation become Oscillate. 
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