

MICROFABRICATION OF LiC₀O₂ THIN FILM CELL M. C. RAO^{*}

Department of Physics, Andhra Loyola College, VIJAYAWADA - 520008 (A.P.) INDIA

ABSTRACT

LiCoO₂ thin films were prepared by pulsed laser deposition technique on silicon substrates. The electrochemical measurements were carried out on Li//LiCoO₂ cells with a lithium metal foil as anode and LiCoO₂ film as cathode of 1.5 cm² active area using a Teflon home-made cell hardware. Cyclic voltammetry (CV) measurements have been carried out at sweep rate $\alpha = 1 \text{ mVs}^{-1}$. Two sets of well defined current peaks observed corresponding to the oxidation and reduction reaction located at 3.74 and 3.64 V for the LiCoO₂ film. Electrochemical titration was made by charging and discharging the cells in the potential range between 2.0 and 4.2 V. Quasi open circuit voltage profiles were recorded using current pulses of 5 μ A cm⁻². Electrochemical potential spectroscopy (ECPS) was performed using 5 mV potential steps. Specific capacity 180 mC/cm² μ m was measured for the film grown at 300 mTorr.

Key words: LiCoO₂, Thin films, PLD, Oxygen pressure, CV.

INTRODUCTION

Advances in science and engineering related to the emerging technologies of lithium-ion batteries (LIBs) have been so spectacular in the past decade that they have become the most popular power source for portable computing, battery cars, microelectronics, biomedical implantable devices and telecommunication¹. There is a growing interest in thin film batteries with smaller dimension. The cathode is one of the critical components of a lithium-ion battery and it determines the capacity, cyclic performance and thermal stability of the battery. In order to improve the electrochemical properties of the cathode material, researchers have attempted to modify the cathode surface by using stable materials². Lithiated transition metal oxides such as LiMO₂ (Where M = Co, Ni, Mn etc.) have received considerable attention in recent years as high voltage positive electrode materials for use in secondary lithium batteries. Among these, the high cycling stability and high cell potential against lithium makes LiCoO₂ an attractive cathode material in the fabrication of all solid state rechargeable microbatteries³. LiCoO₂ crystallizes in the

^{*}Author for correspondence; E-mail: raomc72@gmail.com; Ph.: 0866- 2453485

layered rock-salt α -NaFeO₂ type structure with hexagonal lattice parameters a = 2.815 Å and c = 14.049 Å. The rock salt LiCoO₂ lattice consists of a close packed network of oxygen ions with lithium and cobalt ions on alternating (111) planes of the cubic rock salt sublattice (Fig. 1). The Co and Li cations occupy the octahedral 3a and 3b sites, respectively, while oxygen anions are located on the 6c sites, The CoO₆ octahedra are shared edges to form CoO₂ sheets and Li ions can move in two dimensional (2-D) directions between the CoO₂ slabs.

Fig. 1: The hexagonal unit cell of the α-NaFeO₂ structure

Thin films of LiCoO₂ have been synthesized by a variety of techniques including sputtering, spray deposition, reaction of metals and pulsed laser deposition. Various aspects of LiCoO₂ thin films prepared by RF sputtering^{3,4}, pulsed laser deposition⁴⁻⁷, electrostatic spray deposition⁸ and chemical vapour deposition⁹ were employed for the growth of LiCoO₂ thin films. PLD has been widely recognized as a very promising, versatile and efficient method for the deposition of metal oxide thin films¹⁰. In particular, it has been successfully employed for the deposition of simple and complex metal oxide materials with desired composition, structure, physical and chemical properties. Iriyama et al.⁵ prepared thin films of LiCoO₂ by PLD and studied the electrochemical performance. However the investigations on the electrochemical properties of LiCoO₂ films that are essentially depend upon the

deposition parameters give a scope for effective utilization of these thin films in the fabrication of microbatteries. Hence in the present study the influence of oxygen pressure on the electrochemical properties of pulsed laser deposited $LiCoO_2$ thin films were reported.

EXPERIMENTAL

LiCoO₂ films were grown by pulsed laser deposition technique on silicon substrates. LiCoO₂ target was prepared by sintering a mixture of high purity LiCoO₂ and Li₂O powders (Cerac products) with excess of Li i.e. Li/Co > 1.0 by adding Li₂O. The mixture was crushed and pressed at 5 tonns.cm⁻² to make tablets of 3 mm thick and 13 mm diameter. To get quite robust targets, the tablets were sintered in air at 800°C. The typical substrates i.e. Si wafers were cleaned using HF solution. The target was rotated at 10 rotations per minute with an electric motor to avoid depletion of material at any given spot. The laser used in these experiments is the 248 nm line of a KrF excimer laser (Luminics PM 882) with 10 ns pulse with a repetition rate of 10 Hz. The rectangular spot size of the laser pulse was 1 x 3 mm and the energy 300 mJ. The target substrate distance was 4 cm. The deposition temperature was maintained with thermocouple and temperature controller. During the deposition pure oxygen was introduced into the deposition chamber and desired pressure was maintained with a flow controller¹¹.

The electrochemical measurements were carried out on Li//LiCoO₂ cells. Cyclic voltammetry measurements have been carried out at sweep rate $\alpha = 1 \text{ mVs}^{-1}$. Electrochemical titration was made by charging and discharging the cells using the galvanostatic mode of a Mac-Pile single 608 electrochemical analyzer system in the potential range between 2.0 and 4.2 V. Quasi open circuit voltage profiles were recorded using current pulses of 5 μ A cm⁻² supplied for 1 h followed by a relaxation period of 0.5 h. Electrochemical potential spectroscopy (ECPS) was performed using 5 mV potential steps¹².

RESULTS AND DISCUSSION

Pulsed laser deposited $LiCoO_2$ films are pin-hole free as revealed from optical microscopy and well adherent to the substrate surface. The thickness of $LiCoO_2$ films is 250 nm.

The electrochemical measurements were carried out on Li/LiCoO_2 cells with a lithium metal foil as anode and LiCoO_2 film as cathode of 1.5 cm² active area using a Teflon home-made cell hardware. The silicon substrate was mounted on Ag wire with silver paint

and covered by insulating epoxy leaving only the PLD film as active area. The electrolyte consisted of 1 M LiClO₄ dissolved in propylene carbonate. Fig. 2 shows the cyclic voltammogram for a Li//LiCoO₂ cell with a film grown at 400°C in an oxygen partial pressure of 300 mTorr. There are two sets of well defined current peaks observed in the CV diagram corresponding to the oxidation and reduction reaction: they are located at 3.74 and 3.64 V for the LiCoO₂ film. These CV features are associated with the redox process of Co³⁺ to Co⁴⁺ and vice-versa, when lithium is extracted from, and inserted into the Li_xCoO₂ phase. The redox couple with a mid-peak potential of about 3.69 V is considered to be a single-phase insertion/deinsertion reaction of lithium ions in LiCoO₂.

Fig. 2: Cyclic Voltammogram of Li//LiCoO₂ cells deposited at pO₂ = 300 mTorr

Typical charge discharge curves of Li//LiCoO₂ cells using pulsed laser deposited film grown at temperature 400°C in an oxygen pressure of 300 mTorr are shown in Fig. 3. Electrochemical measurements were carried out at a rate of C/100 in the potential range 2.0 -4.2 V; as such, the voltage profile should provide a close approximation to the open circuit voltage (OCV). From the electrochemical features, we may make some general remarks that are (1) an initial voltage about 2.15 V versus Li/Li⁺ was measured for LiCoO₂ thin film cathode cells, which is lower to that recorded in the galvanic cell using crystalline cathode^{13,14}, (2) the cell voltage profiles display the typical profile currently observed for Li_xCoO₂ cathodes. These potentials slightly decreased for films grown at higher oxygen pressures. The incremental capacity curve ($-\delta x / \delta V$) versus cell voltage for the Li//LiCoO₂ thin film cell that is derived from the charge curve (Fig. 3) exhibits only one well defined voltage, which displays a peak centered at 3.64 V. The electrochemical process seems to be a classical intercalation mechanism for the lithium ions into the Li_xCoO_2 matrix as indicated by the peak. These results suggest that about 0.5 Li can be removed at charge potential up to 4.2 V. In the high voltage region, such a cell delivers a specific capacity of 180 mC/cm² μm^{11-13} .

Fig. 3: Charge-discharge profile of Li//LiCoO₂ cells deposited at $pO_2 = 300$ mTorr

CONCLUSION

Thin films of LiCoO₂ were prepared by pulsed laser deposition. PLD films were found to be uniform with regard to the surface topography, thicknesses and well adherent to the substrate surface. Cyclic voltammetry measurements have been carried out at sweep rate $\alpha = 1 \text{ mVs}^{-1}$. The redox couple with a mid-peak potential of about 3.69 V is considered to be a single-phase insertion/deinsertion reaction of lithium ions in LiCoO₂. The Li//LiCoO₂ cells were tested in the potential range 2.6 – 4.2 V. Specific capacity 180 mC/cm² µm was measured for the film grown at 300 mTorr. These results suggest that the open and porous structured LiCoO₂ PLD films find potential applications as binder free electrode in the fabrication of all solid state microbatteries.

ACKNOWLEDGEMENT

The author (M. C. Rao) is thankful to UGC for providing the financial assistance through Major Research Project (Link No. F.No. 40-24/2011(SR))

REFERENCES

- 1. J. B. Goodenough and Y. Kim, Chem. Mater, 22, 587 (2010).
- 2. H. J. Lee, K. S. Park and Y. J. Park, J. Power Sources, 195, 6122 (2010).
- 3. B. J. Neudecker, N. J. Dudney and J. B. Bates, J. Electrochem. Soc., 147, 517 (2000).
- 4. P. J. Bouwman, B. A. Boukamp, H. J. M. Bouwmeester and P. H. L. Notten, Solid State Ionics, **152**, 181 (2002).
- 5. Y. Iriyama, T. Inabu, T. Abe and Z. Ogumi, J. Power Sources, 94, 175 (2001).
- 6. H. Xia, L. Lu and G. Ceder, J. Power Sources, **159**, 1422 (2006).
- 7. S. B. Tang, M. O. Lai and L. Lu, J. Alloys and Compounds, 449, 300 (2008).
- 8. C. H. Chen, A. A. J. Buysman, E. M. Kelder and J. Schoonman, Solid State Ionics, **80**, 1 (1995).
- 9. W.-G. Chai and S.-G. Yoon, J. Power Sources, 125, 236 (2004).
- 10. J. C. Miller and R. F. Haglmel, JR., Laser Ablation and Deposition, Academic Press, New York (1998).
- 11. M. C. Rao, J. Crys. Growth, **312**, 2799 (2010).
- 12. M. C. Rao, Optoelect. & Adv. Mater., (Rapid Commu.) 5, 85 (2011).
- 13. C. Julien, M. A. Camacho-Lopez, L. Escobar-Alarcon and E. Haro-Poniatowski, Mater. Chem. Phys., **68**, 210 (2001).
- 14. E. A. Davis and N. F. Mott, Philos. Mag., 22, 903 (1970).

Accepted : 12.05.2012