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ABSTRACT 
 
The article aim is, within a simple mechanical model of the erythrocyte morphology, to
carry out the calculation and comparison of the calculated data to the experimental data
obtained using atomic force microscopy of blood cells after femtosecond laser irradiation.
The paper proposes a model of the erythrocyte representing the erythrocyte as a
homogeneous elastic body with the elasticity depending on the distance to the center of
the erythrocyte. The model is based on data from atomic force microscopy obtained by
various authors, in particular the data on rigidity of the membrane, which depends on the
position of the measuring point on the surface. In the developed model the elasticity of the
membrane changes depending on the distance to the center within 1-1.6 kPa. The
calculation of the elastic properties is made by the finite element method, which allowed
us to determine the dependence of the erythrocyte morphology on pressure on the
membrane, which varied within the range of 0.5-2 kPa. The good agreement between
calculated and experimental data confirms the consistency of the model and allows us to
conclude that the morphology of the erythrocyte is largely determined by the elastic
properties of the membrane and intercellular pressure. 
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and, therefore, having low pressure difference inside and outside of the membrane. In the previous 
paper[13] the author solved an optimization problem for elastic energy minimum and area to volume ratio 
maximum. The results of computations of the optimization model were similar to results in the context 
of a simple mechanical model[12,13]. 
 

EXPERIMENTAL AND CALCULATED DATA COMPARISON 
 
 To compare experimental and calculated data we take the atomic force microscopy data for the 
blood film of a bronchial asthma female patient[10,12]. The scan displays both normal erythrocytes and 
the deformed ones, which allows comparing form and size of erythrocytes in health and disease. To 
determine morphological features of erythrocytes, a central cross section of the erythrocyte scan has 
been made along the symmetry axes (Figure 2). Sections of erythrocytes with deformed morphology are 
presented on Figures 2b and 2c. While determining the geometrical features of erythrocyte sections we 
noticed that the height and the width of normally formed biconcave erythrocytes are respectively 0.6-0.8 
μm and 8 μm. The same parameters of morphologically deformed erythrocytes are respectively 0.8-1.1 
μm and 8-10 μm. Therefore, these erythrocytes have changed their form and have increased the size. 
 

 
 

(a) 
 

(b) (c) 
 

Figure 2: Erythrocytes in an atomic force microscope: a - three-dimensional image of an erythrocyte is normal, b and 
c - cross sectionsof erythrocytes with normal and the changed morphology. Lines signify experimental AFM data, dots 
signify the calculation results for different pressures: b – P=2000Pa, c – P=500Pa. The line below the plot indicates the 
slope angle of the measured sample 
 These data well conform to results obtained with the Coulter method. The aforementioned 
patient had the average volume of erythrocytes measured by Coulter counter equal to 97 femtoliters or 
97 μm3[10,12]. Using the atomic force microscopy the amount of erythrocytes in the air was calculated. 
The volume of the erythrocyte shown on the Figure 2a was 34 μm3, and the ones shown on Figures 2b 
and 2c – 38 and 46 μm3 respectively. The volume of morphologically deformed erythrocytes was 
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approximately 12-35% higher than the volume of biconcave erythrocytes of the normal form, because 
the latter have a cavity. Therefore, drying has reduced the volume of erythrocytes 2-3 times but retained 
the original geometrical characteristics ratios, which according to some authors renders use of atomic 
force microscopy to estimate red blood cell morphology possible[9]. 
 Comparison of the morphology calculation results with atomic force microscopy data for суды 
in various states is of our main interest. Comparison of various forms of erythrocytes using atomic force 
microscopy data and models presented on Figures 1 and 2 should be done taking into account the change 
of the form caused by sedimentation of the erythrocyte. Indeed, the erythrocyte in the model and in 
physical solution is a symmetrical object. However, sedimentation affects the form of the erythrocyte. 
At first, the erythrocyte membrane sticks to the base and therefore spreads causing elongation of the 
form. Second, due to sticking of the membrane to the base, the upper and the lower cavities of the 
erythrocyte turn to a single cavity with an overall depth equal to the sum of both initial cavities’ depths. 
Third, the swab test causes drying of the erythrocyte, which leads to reduction of the volume of the 
erythrocyte and its thickness 2-3 times. 
 Taking into account all said above, comparison of erythrocyte morphology was performed using 
the AFM methods and calculations. The Figure 2b displays a normal erythrocyte having cavity depth of 
0.3-0.4 μm, diameter of 7-8 μm and width of 0.7 μm. This form corresponds to the erythrocyte model 
presented on the Figure 1c having cavity depth of 0.52 μm, diameter of 4 μm, width of 1.05 μm. Since 
the model doesn’t take adhesion and sticking processes accompanying AFM investigation into account, 
the calculation data are different from the AFM data. Presuming that if the erythrocyte sticks and retains 
its volume constant, it stretches, therefore the depth and the thickness of its cavity should proportionally 
decrease. 
 The model cannot factor in all process of volume changes caused by drying, therefore we 
perform data normalization and only then we compare them. We reduce the width and the thickness of 
erythrocytes to the same units and then we recalculate the data with regard to the change in the height 
caused by summing up of two cavities (multiplication by 2). Then we apply these data to the 
experimental values obtained from AFM (Figures 2b and 2c). The calculations took into account the 
slope angle of the sample during the measurement as an addition of the slope line values to theoretical 
values. The normal form of the erythrocyte in the model implies the difference between inner and outer 
pressure equal to 2000 Pa (Figure 1a), while the deformed erythrocyte has this value equal to 500 Pa 
(Figure 2c). We can see that the normalized calculation well fits the experimental data. 
 We have to make few remarks regarding the model and the process of comparison of the 
obtained data. The erythrocyte model assumes only the elasticity of the membrane depends on the 
distance from the center of the cell. The erythrocyte membrane functions as a regulator for ion channels 
and sodium ion and other agent contents in the erythrocyte, therefore affecting the osmotic pressure 
inside. Hemoglobin contents in the erythrocyte also impacts the oncotic pressure and the conditions of 
the membrane of the erythrocyte and its morphology. Therefore, the pressure difference in the 
erythrocyte model reflects these values as a whole. However, erythrocytes in the air should have their 
osmotic pressure significantly decreased when measured by AFM methods, while the oncotic pressure 
should remain the same. That is why the value of the pressure difference inside and outside of the 
membrane in the erythrocyte model is equal to 2kPa, which is close to the oncotic pressure (0.03-0.04 
atm or 3-4kPa) of blood. 
 

CONCLUSION 
 

 The present paper offers a model of the erythrocyte taking into account its elastic characteristics 
and estimating its morphology. The model represents the erythrocyte as a homogenous elastic body with 
the elasticity depending on the distance to the symmetry center of the erythrocyte. The computation of the 
elastic properties is made by the finite element method. Within a simple mechanical model a dependence 
of the erythrocyte morphology on pressure difference on the membrane, which varied within the range of 
500-2000 Pa was built. This allowed to estimate the factors impacting the form of erythrocytes. A 
comparison of the calculated data with the data obtained with atomic force microscopy allowed 
concluding the consistency of the model. The model also allows to perform indirect estimation of the 
pressure difference inside and outside of the erythrocyte membrane by linking it to the oncotic pressure. 
 The assumption about dependence of rigidity of the membrane on the distance from the center 
that’s took as a basis of the model on one hand is experimentally confirmed in certain papers on atomic 
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force microscopy[2,6], and on the other hand has an important conclusion. Since the model indirectly 
confirms changes in elasticity of the membrane surface, an apparent question arises: what does cause 
this elasticity dependence? Taking into account that the cytoskeleton of the erythrocyte membrane 
consists of the filament network produced by the spectrin protein and also the fact that elastic properties 
of the membranes are mostly produced by binding protein band 3, we can conclude that the simulation 
data argue for the following assumption. 
 In the center of the erythrocyte membrane elastic characteristics of the erythrocyte are 1.5 times 
less than on the edge, which could be caused by lower concentration of the protein band 3 and by sparser 
mesh of the cytoskeleton in comparison with that of the edge. Atomic force microscopy allows 
determining the fine structure of the membrane cytoskeleton[7]. And according to these data the structure 
consists of mesh cells of 50-70 nm. Characterizing landscape on such a scale is a task of high 
complexity that still prevents to determine the degree of changes in the fine structure on the membrane 
surface. Therefore, within further development of the model, a problem of determining changes in the 
fine structure of the membrane across the erythrocyte surface as the distance from the center increases. 
On the other hand, there is a problem of determining changes of the protein band 3 concentration. 
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