

MASS AND IR SPECTRAL STUDIES OF THE REACTION PRODUCT OF L-LEUCINE AND Se₄N₃Br

SHIV GAURAV DIXIT and S. P. S. JADON^{*}

Department of Chemistry, S. V. College, ALIGARH - 202001 (U.P.) INDIA

ABSTRACT

The reaction product of Se_4N_3Br with L-Leucine, an amino acid was synthesized in dichloroethane. The structure of the product is assigned on the basis of quantitative estimations, mol. wt., mass and IR spectrometric analysis as –

$$\begin{array}{c} \text{NH-(Se}_4\text{N}_3)_2 \left(\begin{array}{c} H \\ I \\ \text{NH-C-CH}_2 - \text{HC} \\ I \\ \text{COOH} \end{array} \right)_3 \end{array}$$

Key words: Se₄N₃Br, L-leucine.

INTRODUCTION

The adducts of Se_4N_3Cl with phenylhydrazine, urea and thio-urea have been reported^{1,3}, but the adducts of Se_4N_3Br with amino acids have not been synthesized till now. Therefore, it is intended to prepare the adducts of Se_4N_3Br with L-leucine and to investigate the reaction product, by mass and IR spectrometrically.

EXPERIMENTAL

Se₄N₃Br was prepared by the reaction of HBr on Se₄N₄, which was synthesized as reported¹⁻⁷ by the reaction of ammonia on Se₂Cl₂ at 0°C. The adduct of Se₄N₃Br with L-Leucine was prepared by refluxing the equimular mixture of both in dichloroethane for 6-8 h. The product, obtained, was separated, washed with dichloro-ethane, alcohol and ether, dried and stored in a vacuum desiccator over fused calcium chloride. The mass and IR spectra of the product were recorded on Jeol SX-102 (FAB) and Perkin Elmer RX1 (450-4000 cm⁻¹) spectrometers, respectively.

^{*}Author for correspondence; E-mail: sps_jadon@yahoo.co.in

RESULTS AND DISCUSSION

The reaction product is yellowish orange solid, soluble in benzene. On the basis of quantitative estimation, % found (Cal.) Se 56.248 (56.348), N 12.456 (12.489), C 19.223 (19.269), O 8.543 (8.564), H 3.292 (3.301) and molecular weight 1120.6 (1121.0) g/mol. the adduct has been assigned as HN- (Se₄N₃)₂-(NH-CH-COOH-CH₂-CH (CH₃)₂)₃, which is supported by the prominent mass line at m/z 1123 (M+2) in its mass spectrum (Fig. 1).

The other mass lines in the mass pattern may be explained by FAB fragmentation process as follow:

From this mass spectrum, it is proved that Se_4N_3Br and L-Leucine has reacted in 1 : 3 ratio according the following reaction.

Scheme 1

The formation of the product is also confirmed by the vibration observed in its IR spectrum (Fig. 2, Table 1) compared to that of Se_4N_3Br .

S No	Vibrations cm ⁻¹		Bands assigned	Force constant
	Ligand (a)	Product (b)	(c)	$\mathbf{K} \times \mathbf{N}.$ (d)
1	670.2	543.3	Se-N	2.075
2	761.2	579.8	Se-N	2.363
3	929.8	647.5	Se-N	2.9471
4	1043.8	729.8	Se-N	3.744
5	1215.5	761.5	Se-N	4.077
6	1422.0	803.1 (s)	Se-N	4.534

Table 1: I.R. Spectral Data of the adduct

Cont...

S No	Vibrations cm ⁻¹		Bands assigned	Force constant
	Ligand (a)	Product (b)	(c)	$\mathbf{K} \times \mathbf{N}.$ (d)
7	1520.0	944.6 (s)	Se-N	6.2735
8	1652.1	940.7 (s)	Se-N	6.22182
9	2360.9	1105.6 (s)	C-O	4.955
10	3020.5	1212.1 (s)	CH ₃	0.8012
11	3417.8	1400.9 (s)	CH ₃	1.070
12	3620.8	1524.6	C-C	8.241
13	3684.9	1577.3 (b,d)	Se-N	17.49
14		1703.0 (b,d)	СООН	11.756
15		1956.0 (b,w)	Se-N	26.90
16		2339.5	Se=N	38.4823
17		2362.2	Se=N	39.2327
18		3160.9 (b)	N-H	5.449

Fig. 2(a): IR Spectrum of Ligand (Se₄N₃Br)

Fig. 2(b): IR Spectrum of Adduct

The appearance of other mass lines at m/z 1386, 1482, 1507 and 1629 in its mass pattern may be impounded on the basis of recombination of Leucine phosphazanide and other fragments formed as follows:

The vibrations appeared in I.R. spectrum (Fig. 2, Table 1) at 543.3 cm⁻¹, 579.8 cm⁻¹, 647.5 cm⁻¹, 729.8 cm⁻¹, 761.5 cm⁻¹, 803.1 cm⁻¹, 944.6 cm⁻¹, 940.7 cm⁻¹ are for the Se-N bands while the vibration 1105.6 cm⁻¹ for C-O band and 1212.1 cm⁻¹, 1400.9 cm⁻¹ for CH₃ group, 1524.6 cm⁻¹ for C-C band and 1703.0 cm⁻¹ for COOH group, 3160.9 cm⁻¹ for C-H band and 3354.5 cm⁻¹, 3408.1 cm⁻¹ for N-H band, of the L. Leucine amino acid, showing its presence and linkage in the adduct alongwith Se₄N₃⁻¹ion.

The results revealed that Se_4N_3Br has reacted with L-Leucine an amino acid with formation of adduct and eliminating HBr during their reaction as mentioned Scheme 1.

$$HN - (Se_4N_3)_2 \{HN - \stackrel{l}{C} - CH_2 - CH - (CH_3)_2\}_3 + HN - (Se_2N) - NH - \stackrel{l}{C} - CH_2 - CH(CH_3)_2 \\ \stackrel{l}{COOH} HO - \stackrel{l}{C} = O$$

$$\longrightarrow N - (Se_4N_3)_2 \{HN - \stackrel{H}{\underset{l}{\overset{\circ}{C}} - CH_2 - CH - (CH_3)_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - \stackrel{C}{\underset{l}{\overset{\circ}{C}} - CH = CH_2\}_3 \{N - (Se_2N) \quad HN - ($$

m/z 1386 (M - 2)

Scheme 1

The presence of Se – N and Se = N bands in Se₄N₃ ring is also inferred by the values of force constants (Table 1), calculated from the frequencies appear in its I.R. spectrum.

ACKNOWLEDGMENT

Authors thanks to the Director C.D.R.I., Lucknow to provide instrumental facilities.

REFERENCES

1. Harish Dixit and S. P. S. Jadon, Int. J. Chem. Sci., 3(4), 709 (2005).

- 2. Harish Dixit and S. P. S. Jadon, Asian J. Chem., **18(1)**, 295 (2006).
- 3. E. G. Awere, J. Passmore, P. S. White and T. M. Kalpotke, J. Chem. Soc. Chem. Commun., 1415 (1989).
- 4. P. K. Gowik and T. Klopolke, Spectrochim. Acta A, 46, 1371 (1990).
- 5. J. Siivari, T. Chivers and R. S. Laitinen, Inorg. Chem., **32**, 1519 (1993).
- 6. P. K. Gowik, T. Klapotke and Stancamerson, J. Chem. Dalton Trans., 1433 (1991).
- 7. A. I. Vogel, A Text Book of Quantitative Inorganic, Longmam, London (1961).

Revised : 15.01.2013

Accepted : 18.01.2013