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ABSTRACT

Macromolecules therapeutic and curative efficiency are generally
subordinated to their ability to diffuse through tissues and mucus. Recently,
several mathematical models which describe diffusion profiles of
macromolecules in different organic tissues have been developed. Mucosal
tissues remain the most difficult to model. In fact, interaction between
macromolecules and mucosal epithelia structures are sophisticated as long
as both macromolecules and epithelia fibres are not easy to configure. In the
last two decades, many interpretations of macromolecules diffusion through
epithelia have been proposed, i. e. the elastic continuum, obstruction-scaling
and tubular medium models. In this study, we propose a mathematical model
which introduces conjointly macromolecules realistic geometrical
characteristics and epithelia behaviour in terms of physical obstruction.
 2011 Trade Science Inc. - INDIA
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INTRODUCTION

Synthetic and natural macromolecules as antibod-
ies, globular proteins, nucleic acids, drugs and flexible
linear polymers showed to have some promising po-
tential in applications, such[1-4]. In major of these appli-
cations, macromolecules have to be transported through
underlying epithelial cells layer and hence diffuse inside
the targeted tissues. Modeling this transport process
has been described as a very complex task. Lin et al.[1]

developed a macromolecules one-dimensional trans-
port model in a semi-infinite medium with realistic bound-
ary conditions, yielding accurate profiles of macromol-
ecules concentration versus penetration depth at spe-

cific time points. Radomsky et al.[2] proposed similarly
a particular model for macromolecules crossed epithe-
lial medium: the mucus-filled capillary tubes network.
This model was supported by appropriate imaging of
macromolecules concentration profiles along the tubes
along with other results. Des Rieux et al.[3] established
an in-vitro model of the human epithelium and suc-
ceeded to monitor the influence of macromolecules con-
centration at the apical side, temperature, size and sur-
face properties on diffusion dynamics. Weinstein[4] pro-
posed earlier a mathematical model of proximal tubule
epithelium. This model took into account cotransport,
and passive permeability properties of some macro-
molecules. The steady-state transport data yielded by
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the modeled epithelium was fitted by a three-param-
eter pump-leak model of transport so that the uncer-
tainty in extracting individual membrane properties from
epithelial has been underscored.

In this paper, the proposed mathematical model
introduces the notion of geometrical radius and outlines
epithelia behaviour in terms of columnar physical
obstruction.

PROBLEM FORMALIZATION

Model main governing parameters and pre-
sumptions

In order to model the transport of macromolecules
through mucosal epithelia, it is unavoidable to observe
separately two major entities: macromolecule (diffusing

entity) and epithelia (medium). For the medium,
geometry, quantifiable parameters, and defined
boundary conditions have to be accurately established
(Figure 1). Macromolecules were supposed to be
uniformly supplied at a high concentration in the lumen
of the epithelial tissue (Figure 1, x < 0).

In the majority of precedent studies, macromolecule
is generally dealt with as a hydrodynamic moving body.
It is subjected, according to the approach, either to a
hydrodynamic force (or drag) or a confinement to a
random path (Brownian motion). The first approach
states that the mean diffusion coefficient D

0
 of a

macromolecule is determined by a hydrodynamic
Stokes-Einstein model derived drag action, produced
by interactions with its surrounding medium:
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where k
B
 is Boltzmann�s constant, T is absolute

temperature,  is medium viscosity, 
C
 is a coefficient

that depends on macromolecule size and initial solution
ionic strength[5] and r

H
 is the hydrodynamic radius of

the diffusing macromolecule.
This approach has been deserving a particular

attention since the definition of r
H
, the hydrodynamic

radius, as the �radius of a hypothetical hard sphere
that diffuses with the same speed as the
macromolecule under study�[6], is rather statistical, with
a minor relevance to macromolecule geometry:
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where m is macromolecule�s molecular weight, N
A
 is

Avogadro�s number (N
A
 = 6.023x 1023 mol-1) and  is

macromolecules mean density.
Moreover, pure occlusion models were usually

based on the theory of steric inhibition due to physical
contact at the level of fibres, which occupy volume within
epithelia. The problem is hence reduced to that of a
stochastic random walk of a macromolecule with
hydrodynamic radius r

H
, through the available fractional

volume of straight cylindrical columnar cavities with
radius r

f
[6-10]. For a given macromolecule, i. e. Lysozyme,

a comparative scheme of some commonly defined radii
is given in Figure 2.

One of the causes of divergence and
contradictoriness between the proposed models[1-9] is

(a)

(b)

Figure 1 : Real (a) and schematized (b) view of the studied
system
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the assumption concerning macromolecule geometry.
Figure 2 illustrates this fact: for the given example, r

g
, r

R

and r
E
 are defined as gyration, rotational and equivalent

radii, respectively. Gyration radius r
g 
is defined through

the relation:






atoms All
i
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2
ii

g m

rm
r (3)

where m
i
 is the mass of the i th atom in the

macromolecule and r
i
 is the distance from the centre

of mass to the ith atom.
Rotational radius r

R
 is obtained by rotating the

macromolecule about the geometric centre while
equivalent radius r

E
 is the radius of a solid sphere with

the same mass and specific volume as the considered
macromolecule.

In the present model, a different approach has
been adopted. Intrinsic geometrical characteristics of
the macromolecule have been preferentially taken into
account through considering the geometrical radius
r

G
, which is calculated on the basis of macromolecule

real outer parallelepiped dimensions a, b and c
(Figure 3):

2
cba

r
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
 (4)

Values of the geometrical radii for some
macromolecules are gathered in TABLE 1 along with
other characteristics[11-16].

Governing equations and resolution protocol

According the summarized assumptions of the
model, namely:
 Diffusing macromolecules follow a random walk:

at each time unit, a given macromolecule either
achieves a full unit x-oriented motion step or not
at all,

 Fibre spatial distribution is independent of thickness
of the layer or macromolecules motion, as per
Ogston�s geometrical assumption[17],

 Each unit motion step is related to the mean radius
of spaces in fibre system,

 Each macromolecule has an effective forward
motion (x-oriented) once the condition r

G
 < r

f
 holds,

macromolecules diffusion through mucosal epithelia can
hence be described by the diffusion coefficient profile
D

m
(x) inside mucus (0 < x < L). Many studies

considered this profile as a characteristic constant of
the traversed medium. Accordingly, most of the models
shared the simplistic presumption of �interconnected
pores path� as presented by Deen[18], Anderson et
al.[19] and Pappenheimer et al.[20] in the earliest models.
In the actual model, spatial juxtaposing of mucus fibres
is taken into account through steric occlusion function
g(x), which traduces trajectory distortion along diffusion
path, in concordance with Ogston�s approximation[17]:

Figure 2 : Macromolecule different radii (case of Lysozyme)

Figure 3 : Geometrical radius r
G
 definition scheme (case of

Lysozyme)
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where  is the available fractional volume caused by
presence of straight cylindrical cavities radius r

f
.

Mucosal epithelium is presented as an L-thick
layer (Figure 1) containing an irregular network of
entangled flexible mucin fibres. The pores that exist
between the fibres are swollen with fluid.
Pappenheimer et al.[20] evoked additional dynamic
constraints due to eventual macromolecules-fibres
interaction which decreases mobility through the
medium. These constraints are not considered in the
actual model.

The resolution protocol is based on the Boubaker
Polynomials Expansion Scheme (BPES). According to
the definition[21-40], this scheme is performed by applying
the expression:
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where (x)D�  is the dimensionless diffusivity profile, B
4q

denotes the 4q-Boubaker polynomials, 
q
 is 4q-

Boubaker polynomial minimal root, N
0
 is a prefixed

integer and î
q
|
q=1,�,N0

 are unknown real coefficients.
We have here a pre-resolution verification of the

boundary conditions expressed by Eq.(7-8) due to the
BPES properties[23-35,40]:
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TABLE 1 : Geometrical radius of r some macromolecules along with relevant characteristics.

Dimension (nm) 
Macromolecule Scheme 

a b c 

Hydrodynamic 
radius rH* 

(nm) 

Geometrical 
radius rG* 

(nm) 
Ref. 

Cytochrome c 

 

2.5 2.5 3.5 1.87 2.48 [11] 

Myoglobin 

 

4.3 3.5 2.3 2.26 3.00 [12] 

Carboxypeptidase 

 

5.0 4.2 3.8 2.84 3.77 [13] 

Lysozyme 

 

4.5 2.6 3.0 2.24 3.09 [14] 

Ribonuclease 

 

3.8 2.8 2.2 1.96 2.60 [15] 

Haemoglobin 

 

6.4 5.5 5.0 3.69 4.90 [16] 

(*) using formula (2); (**) using formula (4)
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The final derivation step consists hence of calculating

the set coefficients 
0N1,...,q

qî


�  which minimize the
functional 


:
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The final solution is hence:
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The specific dimensionless diffusivity 
iD�  of a macro-

molecule (i) is thus evaluated as a mean value:
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RESULTS AND DISCUSSION

Calculations have been carried out for the macro-
molecules presented in TABLE 1. Obtained values of
the dimensionless diffusivity have been plotted versus
geometrical radius (Figure 4). In this figure, dotted line
corresponds to a fragment of the abacus developed by
Amsden et al.[41] fitted to the range of the actual study.

A primal comparison with the results published by
Radomsky et al.[2] Saltzman et al.[6] and Cu et al.[42]

led instantaneously to the evoked remark about �poor
estimates for smaller solutes�[2,6,42] and the non-
concordance of the experimental data with predicted
results for radii between 2.0 nm and 8.0 nm. The present
result shows that this problem is inexistent for the whole
range 1nm-10nm. This difference is favourable to the
use of the geometrical radius rather than the
hydrodynamic one. Moreover, the presumption of

constant diffusivity along the epithelial tissue makes the
expression of dimensionless diffusivity strictly
proportional to inverse radius. Indeed, this dependence
explains the sharp decrease of diffusivity for high size
macromolecules but raises problems for small values.
In the actual model, Eq. (9) and Eq. (11) monitor an
additional regulatory r

G
-dependence via the coefficients

0N1,...,q
qî



� . This dependence supports the uncontro-

versial and expected decreasing trend for high radii while
giving acuter results for small ones.

Figure 4 : Dimensionless diffusivity versus geometrical
radius r

G

The actual results have been in good agreement
with those of Olmsted et al.[43], except for the case
of biological molecules (so-called virus-like particles).
In fact the actual model doesn�t discuss the effects

of chemical or biological interaction between
macromolecules and fibers bodies. Nevertheless,
dimensionless diffusivity concordance with other
results presents a meaningful support to the adopted
presumption concerning cylindrical-pores epithelial
tissue modelling against the juxtaposed-rods
configuration proposed by Clague et al.[44] and
Perrins et al.[45].

CONCLUSION

Macromolecules diffusion through mucosal epithelia
has been modeled and results have been compared to
some results presented in the related literature. A major
motivation of this work was the divergence of the earlier
proposed models and the consistency of their assump-
tions. Adoption of a newly defined macromolecule ra-
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dius along with conserving the most adopted epithelial
medium conception yielded macromolecules diffusivity
values closer to those existing in the recent literature.

The mucosal epithelia have long been identified as
critical barriers in macromolecules diffusion toward
membrane tissues. Indeed many studies and models
have been proposed out for better understanding of
factors that affect diffusion dynamics of macromolecules
through this barrier. as mucus have been proposed for.
In the matter of globular and chain-like macromolecules,
models presented two major trends: macromolecule ge-
ometry versus hydrodynamic properties.

In this work we have tried to give a mathematical
model which better explains observed data for a given
dimension range. Further improvement of the signifi-
cance and performance of the model appears to be
possible. Among the governing factors to be studied
are the contribution of active transport, environment pH,
macromolecule-ligand specific binding effects, possible
ionic interactions and temperature-dependent epithelial
tissue permeability.

REFERENCES

[1] C.C.Lin, L.A.Segel; Mathematics Applied to De-
terministic Problems in the Natural Sciences, in:
G.H.Golub, (Ed); �Classics in Applied Mathemat-

ics�, Macmillan Publishing Co., New York, NY, 609

(1995).
[2] M.L.Radomsky, K.J.Whaley, R.A.Cone,

W.M.Saltzman; Biomaterials, 11, 619-624 (1990).
[3] A.Des Rieux, Eva G.E.Ragnarsson, E.Gullberg,

V.Préat, Y.-J.Schneider, P.Artursson; Eur.J.Pharm.

Sciences, 25(4-5), 455-465 (2005).
[4] A.M.Weinstein; Mathematical Biosciences, 76(1),

87-115 (1985).
[5] J.R.Anderson, F.A.Morales; J.Phys.Chem., 82,

608-611 (1978).
[6] W.M.Saltzman, M.L.Radomsky, K.J.Whaley,

R.A.Cone; Biophys.J., 66, 508-515 (1994).
[7] L.A.Sellers, A.Allen, E.R.Morris, S.B.Ross-Murphy;

Biorheology, 24, 615-623 (1987).
[8] A.W.Larhed, P.Artursson, E.Bjork; Pharm.Res., 15,

66-71 (1998).
[9] A.E.Bell, L.A.Sellers, A.Allen, W.J.Cunliffe,

E.R.Morris, S.B.Ross-Murphy; Gastroenterology,
88, 269-280 (1985).

[10] J.R.Pappenheimer, E.M.Renkin, L.M.Borrero;

Am.J.Physiol., 167, 13-46 (1951).
[11] R.Dickerson, I.Geiss; The Structure and Action of

Proteins. Benjamin, California, (1969).
[12] J.C.Kendrew, G.Bodo, H.M.Dintzis, W.G.Parrish,

H.Wycoff, D.C.Phillips; Nature, 181, 662-666
(1958).

[13] W.Lipscomb, W.Proc.Robert, A.Welch; Found.Conf.
Chem.Res., 15, 134-139 (1971).

[14] C.C.F.Blake, D.F.Loenig, G.A.Mair, A.C.T.North,
D.C.Phillips, V.R.Sarma; Nature, 206, 757-759
(1965).

[15] G.Kartha, J.Bellowand, D.Harker; Nature, 213,
862-865 (1967).

[16] M.F.Perutz, M.G.Rossmann, A.F.Cullis, H.Muirhead,
G.Will, A.C.T.North, Nature, 185, 416-422 (1960).

[17] A.Ogston, B.Preson, J.Wells; Proc.R.Soc.Lond.,
333, 297-316 (1973).

[18] W.M.Deen; AIChE J., 33, (1987).
[19] J.L.Anderson, J.A.Quinn; Biophys.J., 14, 130-150

(1974).
[20] J.R.Pappenheimer, E.M.Renkin, L.M.Borrero;

Am.J.Physiol., 167, 13-46 (1951).
[21] J.Ghanouchi, H.Labiadh, K.Boubaker; International

Journal of Heat and Technology, 26, 49-53 (2008).
[22] S.Slama, J.Bessrour, K.Boubaker, M.Bouhafs; Eur.

Phys.J.Appl.Phys., 44, 317-322 (2008).
[23] S.Slama, M.Bouhafs, K.B.Ben Mahmoud; Interna-

tional Journal of Heat and Technology, 26(2), 141-
146 (2008).

[24] S.Lazzez, K.B.Ben Mahmoud, S.Abroug,
F.Saadallah, M.Amlouk; Current Applied Physics,
9(5), 1129-1133 (2009).

[25] T.Ghrib, K.Boubaker, M.Bouhafs; Modern Phys-
ics Letters B, 22, 2893-2907 (2008).

[26] K.Boubaker; F.E.Journal of a Math., 31, 299-320
(2008).

[27] B.K.Ben Mahmoud; Cryogenics, 49(5), 217-220
(2009).

[28] S.Fridjine, K.B.Ben Mahmoud, M.Amlouk,
M.Bouhafs; Journal of Alloys and Compounds,
479(1-2), 457-461 (2009).

[29] C.Khélia, K.Boubaker, T.Ben Nasrallah, M.Amlouk,

S.Belgacem; Journal of Alloys and Compounds,
477(1-2), 461-467 (2009).

[30] K.B.Ben Mahmoud, M.Amlouk; Materials Letters,
63(12), 991-994 (2009).

[31] M.Dada, O.B.Awojoyogbe, K.Boubaker; Current
Applied Physics, 9(3), 622-624 (2009).

[32] S.Tabatabaei, T.Zhao, O.Awojoyogbe, F.Moses;
Int.J.Heat Mass Transfer, 45, 1247-1255 (2009).



K.M.Boubaker 111

Full Paper
MMAIJ, 7(3) 2011

An Indian Journal
MacromoleculesMacromolecules

[33] A.Belhadj, J.Bessrour, M.Bouhafs, L.Barrallier; J.of
Thermal Analysis and Calorimetry, 97, 911-920
(2009).

[34] A.Belhadj, O.Onyango, N.Rozibaeva; J.Thermophys.
Heat Transf., 23, 639-642 (2009).

[35] P.Barry, A.Hennessy; Journal of Integer Sequences,
13, 1-34 (2010).

[36] M.Agida, A.S.Kumar; El.Journal of Theoretical
Physics, 7, 319-326 (2010).

[37] A.Yildirim, S.T.Mohyud-Din, D.H.Zhang; Comput-
ers and Mathematics with Applications, 59, 2473-
2477 (2010).

[38] A.S.Kumar; Journal of the Franklin Institute, 347,
1755-1761 (2010).

[39] S.Fridjine, M.Amlouk; Modern Phys.Lett.B, 23,
2179-2182 (2009).

[40] A.Milgram; J.of Theoretical Biology, 271, 157-158
(2011).

[41] B.Amsden; Macromolecules, 32, 874-879 (1999).
[42] Y.Cu, W.M.Saltzman; Advanced Drug Delivery

Reviews, 61, 101-114 (2009).
[43] S.S.Olmsted, J.L.Padgett, A.I.Yudin, K.J.Whaley,

T.R.Moench, R.A.Cone; Biophys.J., 81, 1930-1937
(2001).

[44] D.Clague, R.Phillips; Phys.Fluids, 8, 1720-1731
(1996).

[45] W.Perrins, D.McKenzie, R.McPhedran; Proc.R.
Soc.Lond., 369, 207-225 (1979).


