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ABSTRACT

LDPC codes are one of the current topics in information coding theory
these days. Invented in the early 1960’s, these codes have experienced
impressive comeback in the almost last twenty years. These codes are
similar to other linear block codes except the sparse parity check matrix
and the decoding algorithms. These are giving good performance in the
presence of noise. The purpose of writing this review paper isto summa-
rize the study about these codes. This paper would sum up coding and
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decoding techniques of these codes along with various strategies of code
design. LDPC codes are not only attractive from a theoretical point of
view, but also perfect for practical applications in the field.
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INTRODUCTION

Low-density parity-check (LDPC) codes are ba-
sically from linear block codes family. The name
“Low Density” comes from the characteristic of their
parity-check matrix that contains small number of
1’s in comparison to the amount of 0’s in them. This
sparseness of parity check matrix guarantees two
features: First, ‘a decoding complexity’ which in-
creases only linearly with the code length and sec-
ond, ‘a minimum distance’ which also increases lin-
early with the code length. These codes are practi-
cal implementation of Shannon noisy coding theo-
rem(y,

LDPC codes are similar to other linear block
codes. Actually, every existing code can be success-
fully implemented with the LDPC iterative decod-

ing algorithmsif they can berepresented by asparse
parity-check matrix. However, thisimplementation
iSnot so common.

Thesecodesdifferentiatefrom other codesin fol-
lowing aspects

a) Thesecodesare categorized by parity check ma-
trix. Firstly, parity check matrix is constructed
and then generator matrix is determined.

b) Theother major point of distinctionisthe sparse-
ness of parity check matrix.

c) Apart from sparseness, the other difference be-
tween LDPC codes and classical block codesis
the methodology of decoding. Classical block
codes are generally decoded with Maximum
likelihood (ML) decoding algorithmsand so are
generally short and designed algebraically to
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reduce the complexity. LDPC codes are decoded

iteratively using a graphical representation of

their parity-check matrix and so are designed
with the properties of H asafocus.

The main advantage of LDPC codesisthat they
provide a performance which is very close to the
capacity for a lot of different channels and linear
time complex algorithmsfor decoding. LDPC codes
offer both better performance and lower decoding
complexity. Infact, itisanirregular LDPC code (with
block length 10 that currently holds the distinction
of being theworld’s best performing rate- 0.5 code,
outperforming al other known codes, and falling
only 0.04 dB short of the Shannon limit.

But dueto the computational effort inimplement-
ing encoder and decoder for such codes, less pow-
erful computers and the introduction of Reed-
Solomon codes, they weremostly ignored until about
ten years ago. But due to research in last two de-
cades, the value of LDPC codes is widely recog-
nized.

HISTORICAL DEVELOPMENTS

Low Density Parity Check (LDPC) codes are
forward error-correction codes, firstly proposed in
doctoral dissertation of Robert G. Gallager at Mas-
sachusetts Institute of Technology in 196214, LDPC
codes are sometimes called Gallager Codes.

Theincredible potential of these codesremained

undiscovered for almost 35 years. The mgor rea
son for this avoi dance was the complexity and com-
putational demands of simulation in an era of tran-
sistors, theimplementation issueswith limited tech-
nology availableat that time and theintroduction of
more easy Reed-Solomon codes & convolutional
codes. Despite the initial practical success of these
codes, the performance of these codesfell well short
of the theoretically achievable limits set down by
Shannonin hissemina 1948 paper. By thelate 1980s,
despite decades of attempits, researcherswerelargely
resigned to this seemingly in surmountabl e theory—
practice gap.

Then a new era began in field of coding when
‘turbo codes’ were proposed by Berrou, Glavieux
and Thitimagjshimain 1993. These codes offer nu-
merous features like very little algebra, employ it-
erative, distributed algorithms, focus on average
(rather than worst-case) performance and rely on
soft (or probabilistic) information extracted from the
channel. These codes almost approached the Shan-
non limit. This discovery paved the path of re-birth
of LDPC codes. Now researchers started thinking
about why turbo codes are so much efficient.

In 1993, two researchers, D. McKay and R. Nea
at Cambridge University, introduced a new class of
block codes designed to possess many of the fea
tures of the new turbo codes. It was soon found that
these block codes were in fact arediscovery of the
LDPC codes developed years earlier by Gallager.
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Figure 1 : Evolution of different coding techniques [from trellis and turbo coding, Schlegel and perez, IEEE press,
2004]
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Indeed, the decoding algorithm of turbo codes was
subsequently shown to be a specia case of that for
LDPC codes presented by Gallager so many years
before.

Afterwards, many researchers including Luby,
Mitzenmacher, Shokrollahi, Spielman, Richardson
and Urbanke, produced new irregular LDPC codes
whose performance was better than the best turbo
codes. Today, design techniques for LDPC codes
exist which enable the construction of codeswhich
approach the Shannon’s capacity to within hundredths
of adecibel. So rapid has progress been in thisarea
that coding theory today isin many ways unrecog-
nizablefrom its state just a decade ago.

DEFINITION OF LDPC CODES

Firstly, let us see what parity check codes are?
A binary parity check code is a block code i.e. a
collection of binary vectors of fixed length ‘n’. A
Linear Code can be described by agenerator matrix
G or aparity check matrix H.

In field of coding, low-density parity-check
(LDPC) codeisalinear error correcting codes that
transmits message over a noisy transmission chan-
nel reliably. LDPC codes are arguably the best er-
ror correction codes in existence at present. LDPC
codes refer to the class of block codes where the
percentage of 1’s in the parity check matrix is low.
One major important feature of LDPC codesisthat
these are capacity-approaching codes that they try
to achieve datarate governed by Shannon theorem
for asymmetric memory-lesschannel.

These codes are defined by their parity check
matrix only. These are characterized by the sparse
meatrix.

H =|1100010

1001001

lllOOOO]

A LDPC codeissaid to beregular if number of
1’s in row (w,) and column (w ) are fixed and are
related by relation: w =w - (n/m). Example of par-
ity check matrix of regular LDPC codes:

00110011
10010101
~ | 01201100
11001010

—— Rev/iew

A regular LDPC code hastwo mgjor properties:
a) every code digit is contained in the same number
of equations; b) each equation containsthe same num-
ber of code symbols.

Irregular LDPC codes aretheoneinwhichH is
low density but the numbers of 1’s in each row or
column aren’t constant. An irregular LDPC code re-
laxesthe conditions of constant 1’s. Example of par-
ity check matrix of irregular LDPC codes:

00010011
10000101
~ | 01101000
01101010

REPRESENTATION OFLDPC CODES

There are two basic different possibilities to
represent LDPC codes:

Matrix representation

Like al linear block codes, they can be de-
scribed via matrices.

Here, a matrix is defined in which ‘1’ repre-
sents the connection between variable node and
check node. If 1iswritten at g that means variable
node and check node are connected, otherwise not.
Two numbers describes these matrices: w_for the
number of 1’s in each row and LA for 1’s in the col-
umns. For amatrix to be called low-density thetwo
conditions 1.) w << nand 2.) w <<m must be satis-
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Figure 2 : Example of a parity check matrix of practi-
cally used LDPC codes?
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fied. The practical parity check matrices are very
large, so the matrix taken in example can’t be really
called low-density.

Graphical representation

The second possibility isagraphica representa
tion. An effective graphical representation for LDPC
codeswas proposed by Tanner. Thesegraphs not only
provide acomplete representation of the codes, these
also help to describe the decoding algorithm.

Tanner graphs are bipartite graphsi.e. the nodes
of the graph are separated into two distinctive sets
and edges are only connecting nodes of two differ-
ent types. Thetwo types of nodesin aTanner graph
are called variable nodes (v-nodes) and check nodes
v-nodes (c-nodes).

VARIOUSCODE DESIGNAPPROACHES

The construction of binary LDPC codesinvolves

check nodes

bit nodes
Figure 3 : Example of an arbitrary Tanner graph!?

Representation:

Fanty Cheack Malrix

assigning a small number of the values in an all-
zero matrix to be 1 so that the rows and columns
havetherequired degreedistribution. Therearevari-
ous methods proposed by researchers time to time
for designing:

Gallager codes

The original LDPC codes were presented by
Gallager™™. These are regular in nature and are de-
fined by a banded structure in H. The rows of
Gallager’s parity-check matrices are divided into
w, setswith M/w_ rowsin each set. The first set of
rows containsw_consecutive onesordered from I eft
to right across the columns. Every other set of rows
isarandomly chosen column permutation of thisfirst
set. Consequently every column of H hasa ‘1’ entry
oncein every one of thew_sets.

Mackay and neal codes

The second major method was proposed by
MacKay and Nea. In this method columns of H
are added one column at a time from left to right.
The weight of each column is chosen to obtain the
correct bit degree distribution and the location of
thenon-zero entriesin each column chosen randomly
from thoserowswhich arenot yet full. If at any point
therearerowswith more positionsunfilled then there
are columns remaining to be added, the row degree
distributionsfor parity check matrix ‘H” will not be
exact. The process can be started again or back
tracked by afew columns, until the correct row de-

Low Density Parity Check Code

Tamer Graph

Figure 4 : Illustration of relation between matrix representation and tanner graph of LDPC coded?
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Figure 5 : Encoder of LDPC code
grees are obtained. Fan showed that a specific class of codesArray

RA, IRA and el RA codes

Another type of LDPC codes called repeat-ac-
cumulate codes have characteristics of both serial
turbo codes and LDPC codes. Here, user bits are
repeated, permuted and then sent through differen-
tial encoder. These codes achieve ailmost Shannon
capacity limit but are naturally low rate (1/2 rate).
Irregular RA codes and extended IRA codes arethe
improved versions of repeat accumulate LDPC
codes®8,

Irregular L DPC codes

These codes are proposed by Richardson et. al.
and Luby et. Al™19, |n this type of codes, it is not
necessary that all rows and columns would have
constant number of 1’s.

Finite geometry codes

This method was proposed by Y. Kou et a. in
20011, The codes resulted by this technique fall
into the cyclic and quasi-cyclic classes of block
codes and use shift registers in encoders thus sim-
plifies encoding process.

Array codes

codes can be viewed as LDPC codes and can be
decoded using message passing algorithm. Then
Eleftheriou proposed amodified version of it. These
modified codes have very low error rate and both
low- and high-rate codes may be designed.

Combinatorial approaches

Thisapproach isused to create small block-size
LDPC codes with simple encoders. As compare to
randomly generated L DPC codes, structured or com-
binational LDPC codes have ssimple and less ex-
pensive hardware. Example of this approach is
LDPC codeused inthe DV B-S2 standard and LDPC
codes based on Reed Solomon codes used in 10
Gigabit Ethernet.

ENCODING SCHEME OF LDPC CODES

Let us explain the coding of LDPC codes with
an exampl g2

For encoding of LDPC codes, theinput data bits
(D) arerepeated and distributed to a set of constitu-
ent encoders. The constituent encodersare basically
accumulators and each accumulator generating apar-
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ity symbol after accumulating the input bits. The
origina data (S, ;) along with the parity bits (P) is
transmitted as a code-word. The ‘S’ bits from each
constituent encoder are discarded. The parity bit can
be used within another constituent code.

In an example shown above,

DVB-S2 rate = 2/3 code, encoded block size=
64800 symbols (N=64800), Data bits= 43200 data
bits (K=43200) and 21600 parity bits (M=21600).
Each check node encodes 16 data bits except for the
first parity bit which encodes 8 data bits. The first
4680 data bits are repeated 13 times, while the re-
maining data bits are used in 3 parity codes. This
constructed codeisirregular type of LDPC code.

Let uscomparethe classical turbo codes coding
schemewith this. Classic turbo codes generally use
two constituent codes configured in parallel, each
of which encodes the full input block (K) of data
bits. These constituent encoders are basically re-
cursive convolutional codes (RSC) that are sepa-
rated by a code inter-leaver which interleaves one
copy of theframe. These codes have moderate depth
(8 or 16 states). The LDPC code, on opposite side,
uses many low depth constituent accumulators in
paralel, each of which encode only asmall portion
of theinput frame. The large number of constituent
codes can be viewed as many low depth (2 states)
‘convolutional codes’ that are connected via the re-
peat and distribute operations. The repeat and dis-
tribute operations perform the function of the inter-
leaver in the turbo code.

The ability of LDPC codes to manage the con-
nections of the various constituent accumulators
(codes) and the level of redundancy for each input
bit more precisely give more flexibility in the de-
sign process of LDPC codes. This feature lead to
better performance than turbo codes in some cases.
Still low code rate and their designs are imple-
mented using turbo codes more commonly.

DECODING METHOD FOR LDPC CODES

LDPC codes are decoded in time linear to their
block length using iterative belief propagationi*3. As
with other codes, the Maximum likelihood decod-
ing scheme of an LDPC code on the BSC (Binary
Symmetric Channel) is an NP- complete problem.

Optimal decoding for a NP-complete code of any
useful sizeisnot practical and common. However,
sub-optimal techniques based on iterative belief
propagation decoding give much better results and
are practically implemented. The sub-optimal de-
coding techniques check ‘each’ parity check that
makes up the LDPC as an independent single parity
check (SPC) code. Soft-in-Soft-out techniques like
SOVA, BCJIR, MAP and other derivates are used to
decode each SPC code. The soft decision informa-
tion extracted from each SISO decoding is cross-
checked and updated with other redundant SPC
decodings of the same information bit. Each SPC
code is then decoded again using the updated soft
decision information. This processis repeated until
a valid code word is achieved or decoding is ex-
hausted. This type of decoding is often referred to
as sum-product decoding. The decoding of the SPC
codesisreferred to asthe “check node” processing
and the cross-checking of the variablesis generally
referred to as the “variable-node” processing.

For example, consider that the valid code-word
101011 istransmitted across a binary erasure chan-
nel and received with the first and fourth bit erased
toyield 201?11. Sincethe transmitted message have
to satisfy the code constraints, the message can be
represented by writing the received message on the
top of the factor graph. In this example, thefirst bit
cannot be recovered yet, because total number of
constraints connected have more than one unknown
bit. In order to proceed with decoding the message,
constraints connecting to only one of the erased bits
must beidentified. In thisexample, only the second
constraint suffices. Examining the second constraint,
thefourth bit must have been zero, sinceonly azero
inthat position would satisfy the constraint.

This procedure is then iterated. The new value
for the fourth bit can now be used in conjunction
with the first constraint to recover the first bit as
seen below. This means that the first bit must be a
oneto satisfy theleftmost constraint.

Thus, the message can be decoded iteratively.
For other channel models, the messages passed be-
tween the variable nodes and check nodes are red
numbers, which express probabilitiesand likelihoods
of belief.

The mgjor issuein LDPC codesistheir decod-
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Figure 6 : Decoding algorithm of LDPC code

ing algorithms. There are various methods to de-
codethem:

M essage-passing decoding

Onthebinary erasure channel (BEC) atransmit-
ted bit is either received correctly or completely
erased with some probability . Sincethebitswhich
are received are always completely correct the task
of the decoder is to determine the value of the un-
known bits. If there exist a parity-check equation
whichincludesonly one erased bit the correct value
for the erased bit can be determined by choosing the
value which satisfies even parity.

In the message-passing decoder each check node
determinesthe value of an erased bit if it istheonly
erased bit in its parity-check equation.

Bit-flipping decoding

The bit-flipping algorithm is a hard-decision
message-passing algorithm for LDPC codes. A bi-
nary (hard) decision about each received bitismade
by the detector and this is passed to the decoder.
For the bit-flipping algorithm the messages passed
along the Tanner graph edges are also binary: a bit
node sends a message declaring if itisaone or a
zero, and each check node sends amessage to each
connected bit node, declaring what value the bit is
based ontheinformation availableto the check node.
The check node determinesthat itsparity-check equa-
tionissatisfied if the modul 0-2 sum of theincoming
bit values is zero. If the majority of the messages
received by abit node aredifferent fromitsreceived
value the bit node changes (flips) its current value.
Thisprocessisrepeated until all of the parity-check
equationsare satisfied, or until somemaximum num-
ber of decoder iterations has passed and the decoder

——— Rev/iew

givesup.

The bit-fli pping decoder can beimmediately ter-
minated whenever avalid codeword has been found
by checking if all of the parity-check equations are
satisfied. Thisistrue of al message-passing decod-
ing of LDPC codes and has two important benefits;
firstly additional iterations are avoided once a so-
lution has been found, and secondly afailureto con-
verge to a codeword is aways detected.

Sum-product decoding

The sum-product algorithm is a soft decision
message-passing algorithm. It is similar to the bit-
flipping a gorithm described in the previous section,
but with the messages representing each decision
(check met, or bit value equal to 1) now probabili-
ties. Whereas bit-flipping decoding accepts an ini-
tial hard decision on the received bits as input, the
sum-product algorithm is a soft decision algorithm
which accepts the probability of each received bit
asinput. The input bit probabilities are caled the a
priori probabilitiesfor the received bits becausethey
were known in advance before running the LDPC
decoder. The bit probabilities returned by the de-
coder are caled the a posteriori probabilities. In
the case of sum-product decoding these probabili-
ties are expressed as log-likelihood ratios.

SHORTCOMINGSOFLDPC CODES

Like any other codes, these codes are not per-
fect. Thesetoo have short-comings. Liketurbo codes,
these codes suffer from low-error ratefloors. These
problems occur due to poor distance spectra and
weaknessin theiterative decoding algorithm(*3,

APPLICATIONAREASOFLDPC CODES

X/
L %4

Wireless, Wired, and Optical Communications.
LDPC codes offer performance benefits on the
BEC, BSC, Fading channels, Channels with
memory, Coded modulation for bandwidth-lim-
ited channels, MIMO Systemsand AWGN chan-
nels.

s Insatellite-based digital video broadcasting and

long-haul optical communication standards,

+¢ Under consderation for thelong-term evolution
of third generation mobiletelephony.

X/
L %4
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s Inapplicationsrequiring reliable and highly ef-
ficient information transfer over bandwidth or
return channel-constrained linksin the presence
of corrupting noise. Implementation of LDPC
codes has lagged behind implementations of
other codes, importantly that of turbo codes,

s Used with OFDM technology to achieve low
error rate. E.g. Reed-Solomon codeswith LDPC
modulation schemes.

CONCLUSION

Inthe end, it could be concluded that LDPC codes
are basically future of coding field. Although they
remained obsolete for around 35 years. But they
proved their importance in every application field.
These codes also offer scope for research in their
easier and cheaper implementation. Their remark-
able performance ensures that they will not be for-
gotten again.
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