
Low-density parity check (LDPC) codes: A new era in coding

INTRODUCTION

Low-density parity-check (LDPC) codes are ba-
sically from linear block codes family. The name
�Low Density� comes from the characteristic of their

parity-check matrix that contains small number of
1�s in comparison to the amount of 0�s in them. This

sparseness of parity check matrix guarantees two
features: First, �a decoding complexity� which in-

creases only linearly with the code length and sec-
ond, �a minimum distance� which also increases lin-

early with the code length. These codes are practi-
cal implementation of Shannon noisy coding theo-
rem[1].

LDPC codes are similar to other linear block
codes. Actually, every existing code can be success-
fully implemented with the LDPC iterative decod-
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ing algorithms if they can be represented by a sparse
parity-check matrix. However, this implementation
is not so common.

These codes differentiate from other codes in fol-
lowing aspects

a) These codes are categorized by parity check ma-
trix. Firstly, parity check matrix is constructed
and then generator matrix is determined.

b) The other major point of distinction is the sparse-
ness of parity check matrix.

c) Apart from sparseness, the other difference be-
tween LDPC codes and classical block codes is
the methodology of decoding. Classical block
codes are generally decoded with Maximum
likelihood (ML) decoding algorithms and so are
generally short and designed algebraically to
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ABSTRACT

LDPC codes are one of the current topics in information coding theory
these days. Invented in the early 1960�s, these codes have experienced

impressive comeback in the almost last twenty years. These codes are
similar to other linear block codes except the sparse parity check matrix
and the decoding algorithms. These are giving good performance in the
presence of noise. The purpose of writing this review paper is to summa-
rize the study about these codes. This paper would sum up coding and
decoding techniques of these codes along with various strategies of code
design. LDPC codes are not only attractive from a theoretical point of
view, but also perfect for practical applications in the field.
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reduce the complexity. LDPC codes are decoded
iteratively using a graphical representation of
their parity-check matrix and so are designed
with the properties of H as a focus.
The main advantage of LDPC codes is that they

provide a performance which is very close to the
capacity for a lot of different channels and linear
time complex algorithms for decoding. LDPC codes
offer both better performance and lower decoding
complexity. In fact, it is an irregular LDPC code (with
block length 10 that currently holds the distinction
of being the world�s best performing rate- 0.5 code,

outperforming all other known codes, and falling
only 0.04 dB short of the Shannon limit.

But due to the computational effort in implement-
ing encoder and decoder for such codes, less pow-
erful computers and the introduction of Reed-
Solomon codes, they were mostly ignored until about
ten years ago. But due to research in last two de-
cades, the value of LDPC codes is widely recog-
nized.

HISTORICAL DEVELOPMENTS

Low Density Parity Check (LDPC) codes are
forward error-correction codes, firstly proposed in
doctoral dissertation of Robert G. Gallager at Mas-
sachusetts Institute of Technology in 1962[2]. LDPC
codes are sometimes called Gallager Codes.

The incredible potential of these codes remained

undiscovered for almost 35 years. The major rea-
son for this avoidance was the complexity and com-
putational demands of simulation in an era of tran-
sistors, the implementation issues with limited tech-
nology available at that time and the introduction of
more easy Reed-Solomon codes & convolutional
codes. Despite the initial practical success of these
codes, the performance of these codes fell well short
of the theoretically achievable limits set down by
Shannon in his seminal 1948 paper. By the late 1980s,
despite decades of attempts, researchers were largely
resigned to this seemingly in surmountable theory�
practice gap.

Then a new era began in field of coding when
�turbo codes� were proposed by Berrou, Glavieux

and Thitimajshima in 1993. These codes offer nu-
merous features like very little algebra, employ it-
erative, distributed algorithms, focus on average
(rather than worst-case) performance and rely on
soft (or probabilistic) information extracted from the
channel. These codes almost approached the Shan-
non limit. This discovery paved the path of re-birth
of LDPC codes. Now researchers started thinking
about why turbo codes are so much efficient.

In 1993, two researchers, D. McKay and R. Neal
at Cambridge University, introduced a new class of
block codes designed to possess many of the fea-
tures of the new turbo codes. It was soon found that
these block codes were in fact a rediscovery of the
LDPC codes developed years earlier by Gallager.

Figure 1 : Evolution of different coding techniques [from trellis and turbo coding, Schlegel and perez, IEEE press,
2004]
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Indeed, the decoding algorithm of turbo codes was
subsequently shown to be a special case of that for
LDPC codes presented by Gallager so many years
before.

Afterwards, many researchers including Luby,
Mitzenmacher, Shokrollahi, Spielman, Richardson
and Urbanke, produced new irregular LDPC codes
whose performance was better than the best turbo
codes. Today, design techniques for LDPC codes
exist which enable the construction of codes which
approach the Shannon�s capacity to within hundredths

of a decibel. So rapid has progress been in this area
that coding theory today is in many ways unrecog-
nizable from its state just a decade ago.

DEFINITION OF LDPC CODES

Firstly, let us see what parity check codes are?
A binary parity check code is a block code i.e. a
collection of binary vectors of fixed length �n�. A
Linear Code can be described by a generator matrix
G or a parity check matrix H.

In field of coding, low-density parity-check
(LDPC) code is a linear error correcting codes that
transmits message over a noisy transmission chan-
nel reliably. LDPC codes are arguably the best er-
ror correction codes in existence at present. LDPC
codes refer to the class of block codes where the
percentage of 1�s in the parity check matrix is low.

One major important feature of LDPC codes is that
these are capacity-approaching codes that they try
to achieve data rate governed by Shannon theorem
for a symmetric memory-less channel.

These codes are defined by their parity check
matrix only. These are characterized by the sparse
matrix.
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A LDPC code is said to be regular if number of
1�s in row (w

r
) and column (w

c
) are fixed and are

related by relation: w
r
 = w

c
· (n/m). Example of par-

ity check matrix of regular LDPC codes:
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A regular LDPC code has two major properties:
a) every code digit is contained in the same number
of equations; b) each equation contains the same num-
ber of code symbols.

Irregular LDPC codes are the one in which H is
low density but the numbers of 1�s in each row or

column aren�t constant. An irregular LDPC code re-

laxes the conditions of constant 1�s. Example of par-

ity check matrix of irregular LDPC codes:
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REPRESENTATION OF LDPC CODES

There are two basic different possibilities to
represent LDPC codes:

Matrix representation

Like all linear block codes, they can be de-
scribed via matrices.

Here, a matrix is defined in which �1� repre-

sents the connection between variable node and
check node. If 1 is written at a

ij
 that means variable

node and check node are connected, otherwise not.
Two numbers describes these matrices: w

r
 for the

number of 1�s in each row and w
c
 for 1�s in the col-

umns. For a matrix to be called low-density the two
conditions 1.) w

c
 nand 2.) w

r
m must be satis-

Figure 2 : Example of a parity check matrix of practi-
cally used LDPC codes[2]
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fied. The practical parity check matrices are very
large, so the matrix taken in example can�t be really

called low-density.

Graphical representation

The second possibility is a graphical representa-
tion. An effective graphical representation for LDPC
codes was proposed by Tanner. These graphs not only
provide a complete representation of the codes, these
also help to describe the decoding algorithm.

Tanner graphs are bipartite graphs i.e. the nodes
of the graph are separated into two distinctive sets
and edges are only connecting nodes of two differ-
ent types. The two types of nodes in a Tanner graph
are called variable nodes (v-nodes) and check nodes
v-nodes (c-nodes).

VARIOUS CODE DESIGN APPROACHES

The construction of binary LDPC codes involves

assigning a small number of the values in an all-
zero matrix to be 1 so that the rows and columns
have the required degree distribution. There are vari-
ous methods proposed by researchers time to time
for designing:

Gallager codes

The original LDPC codes were presented by
Gallager[3]. These are regular in nature and are de-
fined by a banded structure in H. The rows of
Gallager�s parity-check matrices are divided into

w
c
 sets with M/w

c
 rows in each set. The first set of

rows contains w
r
 consecutive ones ordered from left

to right across the columns. Every other set of rows
is a randomly chosen column permutation of this first
set. Consequently every column of H has a �1� entry

once in every one of the w
c
 sets.

Mackay and neal codes

The second major method was proposed by
MacKay and Neal[4]. In this method columns of H
are added one column at a time from left to right.
The weight of each column is chosen to obtain the
correct bit degree distribution and the location of
the non-zero entries in each column chosen randomly
from those rows which are not yet full. If at any point
there are rows with more positions unfilled then there
are columns remaining to be added, the row degree
distributions for parity check matrix �H� will not be

exact. The process can be started again or back
tracked by a few columns, until the correct row de-Figure 3 : Example of an arbitrary Tanner graph[2]

Figure 4 : Illustration of relation between matrix representation and tanner graph of LDPC codes[2]
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grees are obtained.

RA, IRA and eIRA codes

Another type of LDPC codes called repeat-ac-
cumulate codes have characteristics of both serial
turbo codes and LDPC codes. Here, user bits are
repeated, permuted and then sent through differen-
tial encoder. These codes achieve almost Shannon
capacity limit but are naturally low rate (1/2 rate).
Irregular RA codes and extended IRA codes are the
improved versions of repeat accumulate LDPC
codes[5,6].

Irregular LDPC codes

These codes are proposed by Richardson et. al.
and Luby et. Al[7-10]. In this type of codes, it is not
necessary that all rows and columns would have
constant number of 1�s.

Finite geometry codes

This method was proposed by Y. Kou et al. in
2001[11]. The codes resulted by this technique fall
into the cyclic and quasi-cyclic classes of block
codes and use shift registers in encoders thus sim-
plifies encoding process.

Array codes

Fan showed that a specific class of codes Array
codes can be viewed as LDPC codes and can be
decoded using message passing algorithm. Then
Eleftheriou proposed a modified version of it. These
modified codes have very low error rate and both
low- and high-rate codes may be designed.

Combinatorial approaches

This approach is used to create small block-size
LDPC codes with simple encoders. As compare to
randomly generated LDPC codes, structured or com-
binational LDPC codes have simple and less ex-
pensive hardware. Example of this approach is
LDPC code used in the DVB-S2 standard and LDPC
codes based on Reed Solomon codes used in 10
Gigabit Ethernet.

ENCODING SCHEME OF LDPC CODES

Let us explain the coding of LDPC codes with
an example[12]

For encoding of LDPC codes, the input data bits
(D) are repeated and distributed to a set of constitu-
ent encoders. The constituent encoders are basically
accumulators and each accumulator generating a par-

Figure 5 : Encoder of LDPC code
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ity symbol after accumulating the input bits. The
original data (S

0,K-1
) along with the parity bits (P) is

transmitted as a code-word. The �S� bits from each

constituent encoder are discarded. The parity bit can
be used within another constituent code.

In an example shown above,
DVB-S2 rate = 2/3 code, encoded block size=

64800 symbols (N=64800), Data bits= 43200 data
bits (K=43200) and 21600 parity bits (M=21600).
Each check node encodes 16 data bits except for the
first parity bit which encodes 8 data bits. The first
4680 data bits are repeated 13 times, while the re-
maining data bits are used in 3 parity codes. This
constructed code is irregular type of LDPC code.

Let us compare the classical turbo codes coding
scheme with this. Classic turbo codes generally use
two constituent codes configured in parallel, each
of which encodes the full input block (K) of data
bits. These constituent encoders are basically re-
cursive convolutional codes (RSC) that are sepa-
rated by a code inter-leaver which interleaves one
copy of the frame. These codes have moderate depth
(8 or 16 states). The LDPC code, on opposite side,
uses many low depth constituent accumulators in
parallel, each of which encode only a small portion
of the input frame. The large number of constituent
codes can be viewed as many low depth (2 states)
�convolutional codes� that are connected via the re-

peat and distribute operations. The repeat and dis-
tribute operations perform the function of the inter-
leaver in the turbo code.

The ability of LDPC codes to manage the con-
nections of the various constituent accumulators
(codes) and the level of redundancy for each input
bit more precisely give more flexibility in the de-
sign process of LDPC codes. This feature lead to
better performance than turbo codes in some cases.
Still low code rate and their designs are imple-
mented using turbo codes more commonly.

DECODING METHOD FOR LDPC CODES

LDPC codes are decoded in time linear to their
block length using iterative belief propagation[12]. As
with other codes, the Maximum likelihood decod-
ing scheme of an LDPC code on the BSC (Binary
Symmetric Channel) is an NP- complete problem.

Optimal decoding for a NP-complete code of any
useful size is not practical and common. However,
sub-optimal techniques based on iterative belief
propagation decoding give much better results and
are practically implemented. The sub-optimal de-
coding techniques check �each� parity check that

makes up the LDPC as an independent single parity
check (SPC) code. Soft-in-Soft-out techniques like
SOVA, BCJR, MAP and other derivates are used to
decode each SPC code. The soft decision informa-
tion extracted from each SISO decoding is cross-
checked and updated with other redundant SPC
decodings of the same information bit. Each SPC
code is then decoded again using the updated soft
decision information. This process is repeated until
a valid code word is achieved or decoding is ex-
hausted. This type of decoding is often referred to
as sum-product decoding. The decoding of the SPC
codes is referred to as the �check node� processing

and the cross-checking of the variables is generally
referred to as the �variable-node� processing.

For example, consider that the valid code-word
101011 is transmitted across a binary erasure chan-
nel and received with the first and fourth bit erased
to yield ?01?11. Since the transmitted message have
to satisfy the code constraints, the message can be
represented by writing the received message on the
top of the factor graph. In this example, the first bit
cannot be recovered yet, because total number of
constraints connected have more than one unknown
bit. In order to proceed with decoding the message,
constraints connecting to only one of the erased bits
must be identified. In this example, only the second
constraint suffices. Examining the second constraint,
the fourth bit must have been zero, since only a zero
in that position would satisfy the constraint.

This procedure is then iterated. The new value
for the fourth bit can now be used in conjunction
with the first constraint to recover the first bit as
seen below. This means that the first bit must be a
one to satisfy the leftmost constraint.

Thus, the message can be decoded iteratively.
For other channel models, the messages passed be-
tween the variable nodes and check nodes are real
numbers, which express probabilities and likelihoods
of belief.

The major issue in LDPC codes is their decod-
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ing algorithms. There are various methods to de-
code them:

Message-passing decoding

On the binary erasure channel (BEC) a transmit-
ted bit is either received correctly or completely
erased with some probability å. Since the bits which
are received are always completely correct the task
of the decoder is to determine the value of the un-
known bits. If there exist a parity-check equation
which includes only one erased bit the correct value
for the erased bit can be determined by choosing the
value which satisfies even parity.

In the message-passing decoder each check node
determines the value of an erased bit if it is the only
erased bit in its parity-check equation.

Bit-flipping decoding

The bit-flipping algorithm is a hard-decision
message-passing algorithm for LDPC codes. A bi-
nary (hard) decision about each received bit is made
by the detector and this is passed to the decoder.
For the bit-flipping algorithm the messages passed
along the Tanner graph edges are also binary: a bit
node sends a message declaring if it is a one or a
zero, and each check node sends a message to each
connected bit node, declaring what value the bit is
based on the information available to the check node.
The check node determines that its parity-check equa-
tion is satisfied if the modulo-2 sum of the incoming
bit values is zero. If the majority of the messages
received by a bit node are different from its received
value the bit node changes (flips) its current value.
This process is repeated until all of the parity-check
equations are satisfied, or until some maximum num-
ber of decoder iterations has passed and the decoder

gives up.
The bit-flipping decoder can be immediately ter-

minated whenever a valid codeword has been found
by checking if all of the parity-check equations are
satisfied. This is true of all message-passing decod-
ing of LDPC codes and has two important benefits;
firstly additional iterations are avoided once a so-
lution has been found, and secondly a failure to con-
verge to a codeword is always detected.

Sum-product decoding

The sum-product algorithm is a soft decision
message-passing algorithm. It is similar to the bit-
flipping algorithm described in the previous section,
but with the messages representing each decision
(check met, or bit value equal to 1) now probabili-
ties. Whereas bit-flipping decoding accepts an ini-
tial hard decision on the received bits as input, the
sum-product algorithm is a soft decision algorithm
which accepts the probability of each received bit
as input. The input bit probabilities are called the a
priori probabilities for the received bits because they
were known in advance before running the LDPC
decoder. The bit probabilities returned by the de-
coder are called the a posteriori probabilities. In
the case of sum-product decoding these probabili-
ties are expressed as log-likelihood ratios.

SHORTCOMINGS OF LDPC CODES

Like any other codes, these codes are not per-
fect. These too have short-comings. Like turbo codes,
these codes suffer from low-error rate floors. These
problems occur due to poor distance spectra and
weakness in the iterative decoding algorithm[13].

APPLICATION AREAS OF LDPC CODES

 Wireless, Wired, and Optical Communications.
 LDPC codes offer performance benefits on the

BEC, BSC, Fading channels, Channels with
memory, Coded modulation for bandwidth-lim-
ited channels, MIMO Systems and AWGN chan-
nels.

 In satellite-based digital video broadcasting and
long-haul optical communication standards,

 Under consideration for the long-term evolution
of third generation mobile telephony.

Figure 6 : Decoding algorithm of LDPC code
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 In applications requiring reliable and highly ef-
ficient information transfer over bandwidth or
return channel-constrained links in the presence
of corrupting noise. Implementation of LDPC
codes has lagged behind implementations of
other codes, importantly that of turbo codes,

 Used with OFDM technology to achieve low
error rate. E.g. Reed-Solomon codes with LDPC
modulation schemes.

CONCLUSION

In the end, it could be concluded that LDPC codes
are basically future of coding field. Although they
remained obsolete for around 35 years. But they
proved their importance in every application field.
These codes also offer scope for research in their
easier and cheaper implementation. Their remark-
able performance ensures that they will not be for-
gotten again.
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