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Localized surface plasmons in coupled metallic nanospheres
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ABSTRACT

An approximate analytical solution of the problem of the spectrum of plasma oscillations in a system of two
metallic nanospheres is presented. The essence of the approximation is that the field of each sphere is replaced
by the field of a dipole with a finite arm, the center of the dipole being shifted from the sphere center. The
magnitudes of the shift and the arm are determined from the boundary conditions for the electric field in quasistatic
approximation. The results are in good agreement with previous results of other studies. The proposed method
has several advantages compared with numerical methods and other approximate analytical methods.
 2015 Trade Science Inc. - INDIA

INTRODUCTION

It is well-known that for a system of two inter-
acting metal nanosphere strong dependence of sur-
face plasmon (SP) frequency 

sp 
on interparticle cen-

ter to center distance a is revealed by both experi-
mental data and numerical calculations[1-10]. This fact
gives new opportunities for the applications of in-
teracting metal nanoparticles in a molecular medi-
cine as a nano dimensional ruler[10, 11].

The peculiarities of optical properties of coupled
particles can also be used for chemical or biologi-
cal imaging, catheterization, and surface-enhanced
Raman scattering (SERS). The dependence of SP
frequency of nanopair on interparticle distance is
more intense when a <1.1D (D-diameter of the
sphere). However, for such small distances a vari-
ety of numerical methods requiring a huge amount of
calculations are used[7, 12], which becomes a major
obstacle for obtaining reliable results.

It is important to note that all known methods of
numerical calculations of 

sp
 such as widely used

DDA, or T-matrix bring to a cumulative error of few
percents, which increases with the size of particle
or as a result of surface or volume discretization.
This arguments force us to develop a new approaches
which allows to analytically make approximate cal-
culations of the SP resonance frequencies for any
value of interparticle distance. A physically simple
approach called eliminated quadrupole moment ap-
proximation (EQMA) has been developed re-
cently[13], which allows to easily obtain the longitu-
dinal and transverse frequency of SP resonance for
small nanoparticles pair D < ë

 
/ 2. The essence of

the method is that the electric field of each sphere is
substituted by the field of a point dipole, located at
the point shifted from the sphere centre by certain
distance. Further, corresponding boundary problem
is solved, which allows determining the dipole po-
sition and the resonance frequency in a self-consis-
tent manner. It has been shown that for up to 1.1D
interparticle centre-to-centre distances the deviation
from results for SP frequencies obtained by numeri-
cal methods is smaller than 2%. It has been also
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shown that 
sp

 () dependence is well approximated
by an exponential function, although analytically de-
scribed in very different functions. However, for
smaller distances (less than 1.1D) the difference
between results obtained through numerical calcu-
lation and approximate analytical method increases.
This fact shows the limited application of this ap-
proach for almost touching (very close) nanospheres
case. It should be mentioned that for exactly touch-
ing spheres reliable analytical solutions are
known[14], however we are interested in the change
of frequency depending on the distance in case of
very small distances.

Other approach[15] is based on the theory of infi-
nite fractions[16], which results in a strictly conver-
gent iteration procedure and due to that significantly
reduces both calculation errors and calculation time
(the results are obtained in few seconds). The method
does not require powerful computer tools and al-
lows quick and efficient processing of experimental
data, it can be regarded as the theoretical basis for
theory of �plasmon nanoruler� in extremely small

range of interparticle separations. The advantage of
this method is shown for the interparticle gaps much
smaller than 0.1 D (almost touching nano particles).
Despite the advantages of this method, it does not
allow determination of the field distribution, and on
the other hand the physical meaning of the mathemati-
cal procedure remains unclear.

In order to avoid these difficulties in this com-
munication we apply the generalization of the
EQMA, formulated in[13]. In this approach the im-
provement of the accuracy of the EQMA calculation
for smaller interparticle distances is achieved by
introducing the nonzero arm of the dipoles. We sub-
stitute the ûeld of each sphere by the ûeld of a

nonpoint dipole, that is, by the ûeld of two equal

point charges of opposite sign separated by a ûnite

distance and solve the boundary problem.

IMPROVED ANALYTICAL APPROACH

As it is mentioned we substitute the field of each
sphere by the field of a nonpoint dipole, that is, by
the field of two equal point charges of opposite sign,
q

1
 in the first sphere and 2q  in the second one, sepa-

rated by a finite distance 2ç. The geometrical center
of this dipole is located on the straight line connect-
ing the centers of the spheres at the point O�. It is
obvious that the charge distribution has only odd
multipolar moments with respect to the dipole cen-
ter. We suppose the system to be smaller than the
wavelength of the radiation arising during the plasma
oscillations.

In the general case of dissimilar spheres, we

derive six equations with given values of 1R , 2R ,

and a for the following quantities: the surface plas-

mon frequency of the coupled spheres sp which en-

ters the equations through the real part of metal di-

electric function    ; the arms of the dipoles in

the first and second spheres 12  and 22 , respec-

tively (the corresponding dipole moments being

1 12q


 and 2 22q 


); the charge ratio 1q / 2q ; and the dis-

placements 1z  and 2 z  of the geometrical centers

of the charges. Note that the dipole moments in the
case of longitudinal oscillations are directed along
the Z axis, whereas for transverse oscillations, they
are directed perpendicular to the Z axis.

The boundary conditions for the electric field
potential   and the normal component of the elec-

tric field strength nE
R





 on the surface of the

right hand sphere (see Figure 1) (sphere II) are of
the form

 int 0 , int,,   ext ext n nE E   ,
where the resultant external potential

   1 2ext R R   
r r

, and  2 R
r

 is the field po-
tential of the sphere II in the outer region and 0  is
the dielectric constant of the surrounding media. For

Figure 1
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simplicity, we consider the longitudinal oscillations
and derive the basic equations in the following way.
The total potential, 

1
 , of two charges that mimic

the field of the first sphere

1 1

1 1 1 1

1 1
q

r r


   

 
  
    
 

 
   (1)

can be expanded with respect to the center of
the second sphere

   
1 1 21 1

1 1

1 1
1 cos

l l
ll l

q R P
a a

 
 

 

 
   

 
 (2)

where 1 1 1a a  

  

  

 and 1 1 1a a  

  

  

. The
boundary problem we solve using the result for the
problem of dielectric sphere in field of a point
charge[17], which leads to following expression for
the electric field potential created by the polariza-
tion of the second sphere in the outer space

 
 

1 1 1 1
1 1

1 1
1 cos

 

 

 
   

 


l

l l
q P

a a
 

 
 0

1 1
2 0

( )1 1
1 cos

( ) ( 1)

  
 

  
lq P

l l

  
 

  
(3)

Further, for the lowest-order multipoles (l = 1,
2, 3), we approximate the potential in eq 3 as the
potential created by two charges located in the sec-
ond sphere at the points 2 2 

 

with respect to its
center, which leads to the relation

 

  2 1 1
2 2 2 2 21 1

2 2 0
1 1 1 1

1 1
1 

 

 
      
     
 

l l

l l

q
lR

q l lr r   
 

  

 
0

2 2 2 2 21 1
2 2 0

( )

( ) ( 1)

 
      

    
 

l l

q l l

  
   

  

 
 

(4)

As the first sphere is polarized in the field cre-
ated by two charges located at the points  in the sec-
ond sphere, the expression analogous to Eq. 4 takes
the form

 
2 1 1
1 1 1 1 11 1

2 1 0
2 2 2 2

1 1

 

 
     
     
 

l

l l

q
lR

q l lr r   
 
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0

1 1 1 1 1
2 1 0

( )

( ) ( 1)

 
     

    
 

l l

q l l

  
   

  

 
 

(5)

Equations 4 and 5 for l = 1, 2, 3 form the re-
quired set for determining the SP spectrum. Elimi-

nating the five auxiliary quantities 1


, 2


, 1z


, 2z


 and

1q / 2q , we find the frequency sp  as a function of

the parameters. These equations in the case of iden-

tical spheres 2 1z z  
 

, 1 2z z 
 

 can be simpli-

fied to take the form

3 0
22 2

0

( )
2 1

( ) 2 ( )

 


    

z

z

a
R

a

   

     (6)

2 2
5 0

32 2
0
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  

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z
z

z

a
R

a

    

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(7)

2 2
7 2 20

42 2
0

( ) ( )
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  
  
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z
z z

z

a
R a

a

    
  

     (8)

where the upper sign relates to the in-phase oscilla-
tions of charges in the spheres, which can be ex-
cited optically. It is easy to see that, if the arms of
the dipoles tend to zero, the Eqs (6) and (7), as ex-
pected, are reduced to the equations of EQMA.

RESULTS AND DISCUSSION

The numerical solution of Eqs (6) - (8) is as
simple as in the case of the EQMA with zero-arm
dipoles. First we introduce new dimensionless un-
known quantities instead of ç and ä

 
H

R R
,

 
   , (9)

and change the notations

 

0

a a
x y 2s 2s x

R R
, , ,

   
     

 , (10)

where s is the interparticle center-to-center distance
divided by the particle diameter. Now the equations
(6)-(8) take the form
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 
 
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y x H
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2 2
2 2

42 2

1
12 3 .

3 4

 
  

 

y x H
x H

y x H
(13)

Eq. 11 allows to determine the dependemce of
H on x and y as follows

 
 2 2 1

2
2


  



y
x, y x x

y
, (14)

and then eliminate H from Eqs. 12 and 13. Next,
we divide the Eq. 13 by the Eq. 11 to obtain the
final equation to be solved

   
 

 

22 2
2 2

2 2

x H x yy 2 1
3 x y H x y 0

3y 4 6 x H x y

,
, ,

,

        
  , (15)

where the function  x y, is determined by substi-

tuting H from Eq. 11 into 12

 
 

 

 

2 2

32 2

3x H x yy 1
x y

2y 3 x H x y

,
,

,


  

   
. (16)

Note that when s varies from unity to infinity Ä
varies from 0 to 1, so that we can assign to the aux-
iliary parameter x values starting with 1 to infinity.
We determine graphically the roots of the equation
(15) for given value of x and then the values of x and
y substitute into the Eq. 16 and the last of the Eqs.
10 in order to obtain corresponding values of s. Thus
we can plot the dependence of the resonance value
of dielectric function y on the dimensionless inter-

particle center-to-center distance s a 2R that is

shown on the Figure 2 (red circles). For compari-
son we also present the same dependence calculated
with use of the infinite fraction method[15] (blue solid
line), which is the simplest method, which leads to
results close to the published in the papers cited here
for arbitrary interparticle distances.

It is clear, that our method fails in case of very
small interparticle gaps, e.g. for s=1.03 the discrep-

ancy reaches 7%, while decreases rapidly for
smaller interparticle separations, and for s=1.04 we
obtain an error of 3%. At the same time the EQMA
based method for s=1.04 gives a deviation from the
exact result as large as 22%. It is must be empha-
sized that the calculation error for frequency is
smaller than that for the dielectric function. Indeed,

consider the model for     used in Ref.[8], namely

with  p 9eV. h Then for a typical value hù = 2 eV

we obtain

 

 
4

  

  
: .

Note that the resonance frequencies can be de-
termined from the experimental data for the function

   
[18].

It is important to mention that the approach de-
veloped in this communication is not applicable for
gap distances comparable to atomic size. For ex-
ample, in the case of identical spheres with 2R = 20
nm, the interparticle distance a/2R = 1.02 presented
above corresponds to only 4 Å of the gap distance

between the particles, and obviously, the micro-
scopic considerations must be invoked.

Further for each value of x and y we find the
dependence of the dipole semi-arm  from the Eq. 14
and the magnitude of the shift of the dipole center
from the sphere center  using the Eq. 16. These
dependences are presented on the Figure 3, where
red squares relate to the dipole semi-arm and the

Figure 2
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open squares to the shift of the center of the dipole.
It can be seen that the shift of the center of the

dipole ä tends to zero much faster than the semi-arm
ç. This means that the finiteness of the semi-arm is
more important than the shift of the dipole center.
This is why the presented approach gives more reli-
able results than the EQMA based calculations
where the electric field of the sphere is substituted
by the field of a point dipole.

In conclusion, we note the advantages of the pro-
posed approach compared with the method of con-
tinued fractions. Firstly our approach allows to cal-
culate the field distribution using expressions (3) -
(5) with known values of å(ù), ä and ç. Second,
calculated field can be used as a zero-order approxi-
mation for the calculation of higher approximations
by iteration. As is known from potential theory[19]

using the approximate expression for the field, one
can calculate the charge distribution induced by this
field, then calculate new field configuration, which
is closer to the exact value than the zero-order ap-
proximation. Third, our approach can be general-
ized to calculate SP spectra and field of more com-
plicated systems of nanoparticles.

The author expresses his gratitude to A. Melikyan
and H. Minassian for discussions.
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