

Left Γ -Filters on Γ -Semigroups

Jyothi V^{1*}, Sarala Y², Madhusudhana Rao D³, Nageshwara Rao T¹

¹Department of Mathematics, K.L. University, Guntur, Andhra Pradesh, India

²Department of Mathematics, NIT, Andhra Pradesh, India

³Department of Mathematics, V.S.R & N.V.R College, Tenali, Andhra Pradesh, India

***Corresponding author:** Jyothi V, Department of Mathematics, K.L. University, Guntur, Andhra Pradesh, India, E-mail: jyothi.mindspace@gmail.com

Received: February 03, 2017; Accepted: February 23, 2017; Published: March 06, 2017

Abstract

In this article we define left Γ -filters, right Γ -filters and prime left Γ -ideal in Γ -semigroup and characterize Γ -semigroups in terms of these notions. Finally, we give the relation between the left Γ -filters and the prime right Γ -ideals.

Keywords: Nano powder; Hexagonal wurtzite structure; Chemical precipitation; X-ray diffraction

Introduction

Anjaneyulu [1] initiated the study of ideals in semigroups Petrich [2] made a study on filters in general semigroups. Lee and Lee [3] introduced the notion of a left filter in a PO semigroup. Kehayopulu [4-6] gave the characterization of the filters of S in terms of prime ideals in ordered semigroups [7-9]. Sen [10] introduced Γ -semigroups in 1981. Saha [11] introduced Γ -semigroups different from the first definition of Γ -semigroups in the sense of sen.

Let S and Γ be two nonempty sets. Then S is said to be a Γ -semigroup if there exist a mapping from $SX\Gamma XS \rightarrow S$ which maps $(a, \alpha, b) \rightarrow a\alpha b$ satisfying the condition $(a\gamma b)\mu c = a\gamma(b\mu c) \quad \forall a, b, c \in S$ and $\mu, \gamma \in \Gamma$ [8].

Let *S* be a Γ -semigroup. If *A* and *B* are two subsets of *S*, we shall denote the set $\{a\gamma b : a \in A, b \in Band \gamma \in \Gamma\}$ by $A\Gamma B$.

Let S be a Γ - semigroup. A non-empty subset A of S is called a right Γ -ideal of S if $A\Gamma S \subseteq A$. A non empty subset A of a Γ -semigroup S is a right Γ -ideal of S if $s \in S$, $a \in A$, $\alpha \in \Gamma$ implies $a\alpha s \in A$. [8].

Let S be a Γ -semigroup. A non empty A of S is called a left Γ -ideal of S if $S\Gamma A \subseteq A$. A nonempty subset A of a Γ -semigroup S is a right Γ -ideal of S if $s \in S$, $a \in A$, $\alpha \in \Gamma$ implies $s\alpha a \in A$. A is called an Γ -ideal of S if it is a right and left Γ -ideal of S.

A subset T of S is called a prime if $A\Gamma B \subseteq T \implies A \subseteq T$ or $B \subseteq T$ for subsets A, B of S. T is called a prime right ideal if T is prime as a right ideal. T is called a prime left ideal if T is a prime as a left ideal. T is called a prime ideal if T is prime as an ideal [11].

We now introduce the left Γ -filter, right Γ -filter and Γ -filter.

A Γ -sub semigroup F of a Γ -semigroup S is called a left Γ -filter of S if $a\alpha b \in F$ for $\alpha \in \Gamma, a, b \in S \Longrightarrow a \in F$. A Γ -semigroup F of a Γ -semigroup S is called a right Γ -filter of S if $a\alpha b \in F$ for $a, b \in S$; $\alpha \in \Gamma \Longrightarrow b \in F$. [13].

Theorem (1)

Let S be a Γ -semigroup and F a non-empty subset of S. The following are equivalent.

- 1. *F* is a left Γ -filter of *S*.
- 2. $S \setminus F = \phi$ or $S \setminus F$ is a prime right Γ -ideal.

Proof: (1) \Rightarrow (2): Suppose that $S \setminus F \neq \phi$. Let $x \in S \setminus F$; $\alpha \in \Gamma$ and $y \in S$. Then $x \alpha y \in S \setminus F$. Indeed: If $x \alpha y \notin S \setminus F$; then $x \alpha y \in F$. Since F is a left Γ -filter, $x \in F$. It is impossible. Thus $x \alpha y \in S \setminus F$, and so $(S \setminus F) \Gamma S \subseteq S \setminus F$. Therefore $S \setminus F$ is a Γ right ideal.

Next, we shall prove that $S \setminus F$ is a prime.

Let $x \alpha y \in S \setminus F$ for $x, y \in S$ and $\alpha \in \Gamma$. Suppose that $x \notin S \setminus F$ and $y \notin S \setminus F$. Then $x \in F$ and $y \in F$. Since F is a sub semigroup of S, $x \alpha y \in F$. It is impossible. Thus $x \in S \setminus F$ or $y \in S \setminus F$. Hence $S \setminus F$ is a prime, and so $S \setminus F$ is a prime right Γ -ideal.

 $(2) \Rightarrow (1)$: If $S \setminus F = \phi$ then F = S. Thus F is a left Γ -filter of S. Next assume that $S \setminus F$ is a prime right Γ ideal of S. Then F is a Γ -sub semigroup of S. Indeed: Suppose that $x \alpha y \notin F$ for $x, y \in F$ and $\alpha \in \Gamma$. Then $x \alpha y \in S \setminus F$ for $x, y \in F$ and $\alpha \in \Gamma$. Since $S \setminus F$ is prime, $x, y \in S \setminus F$. It is impossible. Thus $x \alpha y \in F$ and so F is a sub semigroup of S.

Let $x \alpha y \in F$ for $x, y \in S$ and $\alpha \in \Gamma$. Then $x \in F$. Indeed: If $x \notin F$, then $x \in S \setminus F$. Since $S \setminus F$ is a prime right Γ -ideal of S, $x \alpha y \in (S \setminus F) \Gamma S \subseteq S \setminus F$. It is impossible. Thus $x \in F$. Therefore F is a left filter of S.

Theorem (2)

Let S be a Γ -semigroup and F be a non-empty subset of S. The following are equivalent.

- (1) F is a right Γ filter of S.
- (2) $S \setminus F = \phi$ or $S \setminus F$ is a prime left Γ -ideal.

Proof: (1) \Rightarrow (2): Suppose that $S \setminus F \neq \phi$. Let $y \in S \setminus F$; $\alpha \in \Gamma$ and $y \in S$. Then $x \alpha y \in S \setminus F$. Indeed: If $x \alpha y \notin S \setminus F$; then $x \alpha y \in F$. Since F is a right Γ -filter, $y \in F$. It is impossible. Thus $x \alpha y \in S \setminus F$, and so $S\Gamma(S \setminus F) \subseteq S \setminus F$. Therefore $S \setminus F$ is a left Γ -ideal.

Next, we shall prove that $S \setminus F$ is a prime.

Let $x \alpha y \in S \setminus F$ for $x, y \in S$ and $\alpha \in \Gamma$. Suppose that $x \notin S \setminus F$ and $y \notin S \setminus F$. Then $x \in F$ and $y \in F$. Since F is a sub semigroup of S, $x \alpha y \in F$. It is impossible. Thus $x \in S \setminus F$ or $y \in S \setminus F$. Hence $S \setminus F$ is a prime and so that $S \setminus F$ is a prime left Γ -ideal.

 $(2) \Rightarrow (1)$: If $S \setminus F = \phi$ then S = F. Thus F is a right Γ -filter of S. Next assume that $S \setminus F$ is a prime left Γ -ideal of S. Then F is a Γ -sub semigroup of S. Indeed: Suppose that for $x, y \in F$ and $\alpha \in \Gamma$. Then $x \alpha y \in S \setminus F$ for $x, y \in F$ and $\alpha \in \Gamma$. Since $S \setminus F$ is a prime, $x, y \in S \setminus F$. It is impossible. Thus $x \alpha y \in F$; $\alpha \in \Gamma$ and so F is a Γ sub semigroup of S.

Let $x \alpha y \in F$ for $x, y \in S$ and $\alpha \in \Gamma$. Then $y \in F$. Indeed: If $y \notin F$, then $y \in S \setminus F$. Since $S \setminus F$ is a prime right Γ ideal of S, $x \alpha y \in S\Gamma(S \setminus F) \subseteq S \setminus F$. It is impossible. Thus $y \in F$. Therefore F is a right Γ filter of S. From theorem 2.6 and 2.7, we get the following.

Corollary: Let S be a Γ -semigroup and F be a non-empty subset of S. The following are equivalent.

- (1) F is a Γ filter of S.
- (2) $S \setminus F = \phi$ or $S \setminus F$ is a prime Γ -ideal of S.

Proof: (1) \Rightarrow (2) : Assume that $S \setminus F \neq \phi$.

By theorem (1), $S \setminus F$ is a right Γ ideal.

By theorem (2), $S \setminus F$ is a left Γ ideal.

By theorem (1) and (2), $S \setminus F$ is a Γ ideal.

By theorem (2) and (2), $S \setminus F$ is a prime Γ ideal of S.

 $(2) \Rightarrow (1)$: If $S \setminus F = \phi$ then F = S. Thus F is a Γ -filter of S. Next assume that $S \setminus F$ is a prime Γ -ideal of S. By theorem (1) and (2). F is a Γ -subsemigroup of S. Let $x \alpha y \in F$ for $x, y \in S$ and $\alpha \in \Gamma$. By theorem (1); F is a left Γ -filter of S. By theorem (2); F is a right Γ -filter of S. Therefore F is a Γ -filter of S.

Conclusion

This concept is used in filters of chemistry, physical chemistry, electronics.

References

- 1. Anjeaneyulu A. Structure and ideal theory of semigroups, thesis, ANU. 1980.
- 2. Petrich M. The introduction to semigroups. Merrill Publishing Company, Columbus, Ohio. 1973.
- 3. Lee SK, Kwon YI. "On left regular po-semigroups", Comm. Korean Math Soc. 1998;13:1-6.
- 4. Kehayopulu N. On filters generalized in po-semigroups. Math Japan. 1990;35:789-96.
- 5. Kehayopulu N. Remark on ordered semigroups. Math Japan. 1990;35:1061-63.
- 6. Kehayopulu N. On left regular order ed semigroups. Math Japan. 1990;35:1057-60.
- 7. Lee SK, Kwon YI. "On left regular po-semigroups", Comm. Korean Math Soc. 1998;13:1-6.
- Madhusudhana Rao D, Anjaneyulu A, Gangadhara Rao A. Prime-radicals in semigroups. Int e-j math Eng. 2011; 116:1074-81.
- 9. Clifford AH, Preston GB. The algebraic theory of semigroups. Am math soc Providence II. 1967.
- 10. Sen MK. On-semigroups. Proceeding of international Conference of Algebra and its Application, Decker publication, New York-301.
- 11. Saha NK. On-semigroups-III. Bull Cul Math Soc. 1988;116:1-12.