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Introduction 

Anjaneyulu [1] initiated the study of ideals in semigroups Petrich [2] made a study on filters in general semigroups. Lee 

and Lee [3] introduced the notion of a left filter in a PO semigroup. Kehayopulu [4-6] gave the characterization of the 

filters of S in terms of prime ideals in ordered semigroups [7-9]. Sen [10] introduced  -semigroups in 1981. Saha [11] 

introduced   -semigroups different from the first definition of   -semigroups in the sense of sen. 

 

Let S and   be two nonempty sets. Then S  is said to be a   -semigroup if there exist a mapping from SXSSX   

which maps ( , , )a b a b   satisfying the condition ( ) ( )a b c a b c      , ,a b c S and ,    [8]. 

 

 Let S be a   -semigroup. If A and B are two subsets of S, we shall denote the set { : , }a b a A b Band     by

A B . 

 

Abstract  

In this article we define left -filters, right -filters and prime left -ideal in -semigroup and characterize -semigroups in 

terms of these notions.  Finally, we give the relation between the left -filters and the prime right -ideals. 
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Let S be a  - semigroup. A non-empty subset A of S is called a right  -ideal of S if A S A  . A non empty subset

A  of a  -semigroup S is a right  -ideal of S if ,Ss ,Aa   implies .Asa  [8]. 

 

Let S be a   -semigroup. A non empty A of S  is called a left   -ideal of S  if .AAS   A nonempty subset A of a 

  -semigroup S  is a right  -ideal of S if Ss , ,Aa   implies Aas  . A  is called an   -ideal of S if 

it is a right and left   -ideal of .S  

 

 A subset T  of S  is called a prime if TBA    TA  or TB   for subsets BA, of .S  T  is called a prime 

right ideal if T  is prime as a right ideal. T is called a prime left ideal if T  is a prime as a left ideal. T  is called a prime 

ideal if T is prime as an ideal [11]. 

 

 We now introduce the left   -filter, right   -filter and   -filter. 

 

A   -sub semigroup F  of a   -semigroup S is called a left  -filter of S  if Fba   for

.,, FaSba   A  -semigroup F  of a   -semigroup S is called a right  -filter of S  if Fba   for 

;, Sba    .Fb [13]. 

 

Theorem (1) 

Let S be a  -semigroup and F a non-empty subset of S. The following are equivalent. 

 

1. F is a left   -filter of S. 

2. FS \ =   or FS \  is a prime right   -ideal. 

Proof: :)2()1(   Suppose that FS \ . Let  ;\ FSx and Sy . Then FSyx \ . Indeed: If 

FSyx \ ; then .Fyx   Since F is a left  -filter, .Fx  It is impossible. Thus ,\ FSyx  and so 

.\)\( FSSFS   Therefore FS \  is a   right ideal.  

 

 Next, we shall prove that FS \  is a prime. 

 Let FSyx \  for Syx ,  and .  Suppose that FSx \  and .\ FSy  Then Fx  and .Fy  Since 

F is a sub semigroup of S  , .Fyx   It is impossible. Thus FSx \  or .\ FSy  Hence FS \  is a prime, and so 

FS \  is a prime right  ideal. 

 

:)1()2(   If FS \  then .SF   Thus F  is a left  -filter of .S  Next assume that FS \  is a prime right   -

ideal of .S  Then F  is a   -sub semigroup of .S  Indeed: Suppose that Fyx   for Fyx ,  and .  Then 
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FSyx \  for Fyx ,  and .  Since FS \  is prime, .\, FSyx   It is impossible. Thus Fyx   and so 

F  is a sub semigroup of .S   

 

 Let Fyx   for Syx , and .  Then .Fx  Indeed: If ,Fx  then .\ FSx  Since FS \  is a prime 

right  -ideal of ,S .\)\( FSSFSyx   It is impossible. Thus .Fx  Therefore F is a left filter of .S  

 

Theorem (2) 

Let S  be a   -semigroup and F  be a non-empty subset of .S  The following are equivalent. 

 

(1)  F  is a right   filter of .S  

(2) FS \  or FS \  is a prime left  -ideal. 

Proof: :)2()1(  Suppose that .\ FS  Let ;\ FSy    and .Sy  Then .\ FSyx   Indeed: If 

;\ FSyx   then .Fyx   Since F  is a right  -filter, .Fy  It is impossible. Thus ,\ FSyx   and so 

.\)\( FSFSS   Therefore FS \  is a left  -ideal.  

  

Next, we shall prove that FS \  is a prime. 

 Let FSyx \  for Syx , and .  Suppose that FSx \  and .\ FSy  Then Fx  and .Fy  

Since F  is a sub semigroup of ,S .Fyx   It is impossible. Thus FSx \  or .\ FSy  Hence FS \  is a prime 

and so that FS \ is a prime left   -ideal. 

 

:)1()2(   If FS \  then FS  . Thus F  is a right  -filter of .S  Next assume that FS \  is a prime left  -

ideal of .S  Then F is a  -sub semigroup of .S  Indeed: Suppose that for Fyx ,  and .  Then FSyx \  

for Fyx ,  and .  Since FS \  is a prime, .\, FSyx   It is impossible. Thus ;Fyx    and so F  

is a   sub semigroup of .S  

  

Let Fyx   for Syx ,  and  . Then .Fy  Indeed: If ,Fy  then .\ FSy  Since FS \  is a prime 

right   ideal of ,S .\)\( FSFSSyx   It is impossible. Thus .Fy  Therefore F is a right  filter of .S  

From theorem 2.6 and 2.7, we get the following. 

 

Corollary: Let S be a  -semigroup and F  be a non-empty subset of .S  The following are equivalent. 

 

(1) F is a  filter of .S  

(2)  FS \  or FS \  is a prime  -ideal of .S  



www.tsijournals.com | March-2017 

416 

  

Proof: :)2()1(  Assume that .\ FS  

By theorem (1), FS \  is a right  ideal. 

By theorem (2), FS \  is a left  ideal. 

By theorem (1) and (2), FS \  is a  ideal. 

By theorem (2) and (2), FS \  is a prime  ideal of .S  

 

:)1()2(   If FS \  then .SF   Thus F  is a  -filter of .S  Next assume that FS \  is a prime  -ideal of .S  

By theorem (1) and (2). F  is a  -subsemigroup of .S  Let Fyx   for Syx , and .  By theorem (1); F  is 

a left  -filter of .S  By theorem (2); F  is a right  -filter of .S  Therefore F  is a  -filter of .S  

 

Conclusion 

This concept is used in filters of chemistry, physical chemistry, electronics. 
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