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ABSTRACT 

The main purpose of this note is to demonstrate how Laplace transforms techniques can be useful to economist. 
Laplace transforms have been widely used in valuing financial derivatives. In this paper, the present discounted value 
equation in finance is shown to be equivalent to the Laplace transformation in mathematics. Also we will focus on the 
general properties of the Laplace transform & present value rules for the elementary functions. And shows how the time 
derivative property is useful for the derivation of each rule using Laplace transforms/present value. 
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INTRODUCTION 

During the last thirty years, the Laplace transforms has found an increasing number of applications 
in the fields of physics and technology. The transform itself has a very close relation to fundamental 
economic ideas. 

The outline of this note is as follows – 

In section 1 we introduce the Laplace transforms as present value rules. 

In section 2 we identified the present value rules for each of the elementary functions. 

In section 3 we discussed the general properties of Laplace transforms with present value rules. 

In section 4 we show the application of time derivative property to each of the present value rules. 

In section 5 we show how the simple rules can be combined to approximate the present value of 
complex cash flows. 

Laplace transforms as a present value rules 

The Laplace transform of a time variable functions g(t) for all positive values of t, is defined as- 
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( ) ste  g(t) dt

0
L g t

∞ −=⎡ ⎤ ∫⎣ ⎦  …(1) 

Provided that the integral exists,‘s’ is a parameter which may be real or complex number. Because of 
the upper limit in the integral is infinite, the integral on R.H.S. of equation (1) is an improper integral i.e. 

ste  g(t) dt
0

∞ −∫ st= lim e  g(t) dt
0

T

T
−∫

→ ∞
and it is a function of 's'. 

Therefore equation (1) can be written as - 

 ( ) ( )L g t G s= =⎡ ⎤⎣ ⎦
ste g(t) dt

0

∞ −∫  …(2) 

(Now we think about the present value problem in finance.) 

One of the most recurring problems in finance is to estimate the present value of a given   future cash 
flow. If the interest rate is constant & equal to 'θ' then the present value of a future cash flow, S  a function 
of t is given by: 

t=1
P(t) =

S (t)θ

( )1+ tθ
∑

 

 
t=1

=
θ

e−θt S(t)∑
 …(3) 

Here the present value function is continuous and the time is bounded between 0 & N (some finite 
quantity). In the limiting case, replacing summation to an integral, the above equation can be expressed as, 

 

N

0

P( )= e  S(t) dttθθ −∫  …(4) 

(Due to presence of an integral, the domain of the computation changes from time ‘t’ to rate ‘θ’ & 
therefore, the present value becomes a function of the rate, θ). 

Now, if N →∞  then the equation (4) becomes: 

 0

P( )= e  S(t) dttθθ
∞
−∫  …(5) 

Therefore, the present value of a future cash flow P (θ) is the Laplace transform of the cash flow S (t). 

Present value rules for the elementary functions  

From an economic point of view we immediately recognize the Laplace transform as the present 
value of the stream of returns S (t) at the interest rate θ. 

Ex1. If the cash flow is $1, i.e. S(t)=1 the present value of a stream of return $1/year (a consol) at the 
interest rate θ is - 
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[ ]
0

11 e  dt =tL θ
θ

∞
−= ∫

 

This is the well known formula for the price of a consol bond or level payment stream. 

[Verification: Let interest rate = 5% and cash flow = $100 then the present value of all the cash 
flows (summation over 100 yrs) would be equal to $ 1, 985 and by Laplace transform = $2,000] 

Ex 2. The present value at interest rate ‘θ’ of a stream of returns growing at the rate α, 

( ) tS t eα=  is   
( ) 1= tL S t L e ifα θ α

θ α
⎡ ⎤ = >⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦ −  

Rule 1 & 2 are the well known expressions for the present value of the consol & the geometric (or 
exponential) growth stream, resp. Rule 3 shows that an arithmetic (or linear) growth stream is equivalent to 
receiving one consol per period in perpetuity. This rule is used in many standard sources for present value 
solutions.Rule 4 is a power sequence which is natural extension of Rule 1 and 3.If we put n=0 in Rule 4, we 
get the equation for the present value of the consol (Rule 1) & if we put n=1 in 4, we get an arithmetic 
growth stream (Rule 3). 

Table 1: Present values for the elementary functions 

S. No. Cash flow ( )S t  Present values P( )θ  

1 Constant (1) 1
θ , 0θ >  

2 Geometric 
teα  

1 ,θ α
θ α

>
−  

3 Arithmetic  (t) 
1
2θ , 0θ >  

4 Power  (tn) 
!

1
n

nθ +  

5 sine [sin t] 
1

21 θ+  
6 cosine [cos t] 21

θ

θ+  

Ex. suppose a continuous cash flow of a crop grows quadratically with time & given by – 

( ) 2200S t t= ∗  
The present value of the set of infinite cash flows is found by, 

Transform: Laplace (200*t^2, t, θ)    is   3

400
θ

 

So if the yield is 10%, them the present value of all the crops is -     

400/{(10%) ^3} = $400,000                             

Rule 5 & 6 shows that the present value rules for elementary periodic cash flows are neither less 
malleable (easily controlled) nor more troublesome than present value rules for elementary noncyclical 
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cash flows. On the contrary, the rules are noticeable (i.e. easily seen or deleted) simply. At moderate 
rates of discount, the present value of the standard sine cash flow having unit amplitude is 
approximately $1 and for standard cosine cash flow is approximately equal to the rate of discount. 

General properties of laplace transform 

In table 1 we show a list of commonly used transforms. Such a table is certainly quite valuable but 
even more useful is the general properties of the Laplace transform which allow us to   work with these 
transforms in an algebraic fashion.        

(Let us look at some of the main properties) 

 (P1): Linearity: The Laplace transform is linear operator; it allows us to deduce more complex 
transforms from simple transforms. (P2) shows that scaling a cash flow by geometric growth term is 
equivalent to corresponding reduction in the rate of discount. Both rules are readily understood from the 
definition of the Laplace transform as the integral of an exponentially weighted function. (P3) shows the 
effect of scaling a cash flow by the linear growth term. 

[For the confirmation we recall the derivative of the exponential function, te θ− with respect toθ  is 

simply the function itself scaled by –t.] 

Table 2: The algebra of laplace transform/present value 

P1 Linearity S (t)+ R (t)α β  P( )+ R( )α θ β θ  
P2 Geometric scaling e S (t)tα  P( ),   >θ α θ α−  
P3 Multiplication by t t S ( t )  ( )P θ′−  

P4 Division by t S ( t) / t  P(y)dy
θ

∞
∫

 

P5 Time Shift 
S( + t) for  t   
 0            for t < 
α β α β

α β
≥

 
1e ( ) P ( / )θ α β θ β
β  

P6 Point Flow S (t)            fo r  t= k
  0             fo r  t k      ≠  e  S(k)tθ−

 

P7 Finite life 
S ( t )            f o r  t   k
0                f o r  t  k

≤
≥   

 W ith  S (t)=  R (t k )−  
P( )  e  R( )kθθ θ−  

P8 Time derivative S (t) ′  P( )  S(0)θ θ −  

P9 Integral S(y)dy
0

t
∫

 
P( ) /θ θ  

(P4), the division property is a corollary to (P3) which obtained from Leibnitz’s rule for the derivative 
of a definite integral taken with respect to its lower bound. (P5) is the change of scale property, which is 
helpful for evaluating cash flows with altered time schedules. This property is also used in conjunction with 
the trivial rule for the transform of a single payment (P6) to evaluate flows with the finite lives as indicated 
in (P7). 

 (P8) is the time derivative property which is the relation between Laplace transform for cash flows 
& their time derivatives. It has nontrivial solution. This property is different from the other rules of table-I 
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and hence important for this note. All the six expressions of table-I can be derived by using this single 
property. 

We can confirm this property (P8) by using integration by parts for the function, ( )te S tθ− ′ . 

(P9) is a corollary to (P8) which obtained from Leibnitz's rule for the derivative of definite integral 
taken with respect to its upper bound. 

Applications of the time-derivative property on the present value rules 

As we shown in section-1, the present value of a future cash flow P (θ) is the Laplace transform of 
the cash flow ( )S t , i.e. ( ) ( )L S t P θ=⎡ ⎤⎣ ⎦  

Using this notation rewrite the time derivative property (P8) as - 

 
[ ]L S'(t)S(0)L[S(t)]= + 

θ θ
 …(6) 

Now we apply this time derivative property to each of the present value rule. 

The rule for the consol (I.1) follows trivially from equation (6). 

For S (t) = 1 ⇒  S (0) =1 & ( )S t′  = 0, we get 

( ) 1=L S t
θ

⎡ ⎤⎣ ⎦
 

In turn, the consol rule can be define as each asset is valued as if its cash flow were projected at a 
constant level equal to the current rate plus the present value of the time derivative of the cash flow. 

For geometric cash flow (2.I) 

  S(t) = e S(0) = 1  & S'(t) = et tα αα⇒ , we get  

 

1tL[e ]=
tL eαα

α
θ θ

⎡ ⎤
⎢ ⎥⎣ ⎦+  …(7) 

Alternatively, we could combine the consol rule with geometric scaling (P2) to derive the rule for 
geometric growth. 

 For S(t) = t  S(0) =0  & S' (t) =1   ⇒   

And (I.3) follows immediately. Alternatively, we could combine the consol rule with (P3) to derive 
the rule for linear growth. 

For any power sequence, nS(t)=t  

⇒ n 1S(0)=0  & S' (t)= n t   −
 

 (6) n 1L t n nL t
θ

−⎡ ⎤ ⎡ ⎤⇒ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  
…(8) 
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By repeating this observation n times we get the rule for power cash flow (I.4) alternatively, we can 
confirm the result by repeated application of (P3). 

For S(t) = sin t , for S(t) = cos t ,   

 

( )
( )
0 = 0 

S t  = cos t 

S⇒

′⇒                                         

( )
( )
0 =1 

S t  = sin t 

S⇒

′⇒ −  

∴  (6)⇒ [ ] [ ] [ ] [ ]L cos t L sin t1L sin t  =    ..... (9)          L cos t = 
θ θ θ

−   …(10) 

Solving equations (9) and (10), we get the rules for the simple periodic cash flows. 

*All this combinations tabulated as follows: 

Cash 
Flow ( )L s t⎡ ⎤⎣ ⎦  

Present discounted 
Value P(θ) 

Time derivative 
property [ ]L S'(t)S (0)L[S(t)]= + 

θ θ
Combination 

1 1
θ  

1
θ  consol rule-1 

teα  
1 if θ α

θ α
>

−  
1 t+  L e  α α
θ θ

⎡ ⎤
⎢ ⎥⎣ ⎦  

consol rule-1+P2 

t 
1
2θ  

L[1]
θ  

Consol + P3 

tn 
!

1
n

nθ +  

 n (n-1)L[t ]    
θ  

Consol +repeated 
application of P3 

Sin t 
1

21 θ+  

L [cos t]
θ  

Consol +6.I 

Cos t 21

θ

θ+  
1  L [s in  t]  
θ θ

−
 

Consol +5.I 

Present value rules for complex cash flows 

Now we consider the case of the lowly k-period annuity by using the above potential combinations. 

We apply (P7) with S(t)= S(t k)=1,− we get 

[ ] [ ]
0

L S(t k) =L S(t) =P( )= S(t k) e  dt tθθ
∞

−− −∫
 

( )= 1  e  dt 
0

tθ∞ −∫ ( )1 R θ
θ

= =

 

And we get the following rule for the present value of an annuity,  

 
( ) 1kP( )= 1 e  θθ

θ
−−  …(11) 

This equation assumes that the 1st payment of the annuity is made at the end of the 1st time period. If 
instead the payments are made at the beginning of each time period, then the present value calculation would 
be similar to the above.  
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 Equation (11) represents the finite level payment stream. It is the difference between   payment 
beginning today & the payment differed from k-periods. 

If we combine the Rule 5(T-I) with property (P1) & (P5) for  
S(t) =  sin ( + t) i i iiα β γ∑

 , we get the 
present value of the complex cyclical cash flow as follows.  

 

( ) iiP( )=  ei i 2 2
i

i i

θβ γ γ
θ α

γ θ
∑

+
 …(12) 

In this example, the cash flow is measured by the amplitude ( ) & frequency ( ) of each sine 
value so, there is certainty (predictability) about the future cash flow or rate of discount. There is no 
variation in the cash flow as having substantial impact on the present value of the cash flow. 

CONCLUSION 

In this article we have presented the close relationship between Laplace transform & present 
discounted value in finance. The result seems to be new & to have a potential to increase the practical utility 
of Laplace transform especially in finance. The transforms are considered as a tool to make mathematical 
calculations easier. However it is important to notice that frequency domain is possible appreciate also in the 
real world & applied in the areas like economics or finance. 

A list of combination of Rule in table-I and property in table-II is quite large as compare to extensive 
tables of Laplace transform. Many of the individual entries in these lists are of unsure practical value in 
finance. There is no collection of rules could serve as a valuable reference. But the Laplace transform is the 
big source for present discounted value function to illustrate the enhanced problems.  
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