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ABSTRACT

Feed- forward neural network (FFNN) and radial basis function networks
(RBFN) were used in the development of a kinetic-spectrophotometric
method for the simultaneous determination of Sn(l1) and Sn(1V). Thetwo-
way datamatrices, based on changes of absorbance at the maxi mum wave-
length of reaction products of Sn(11) and Sn(IV) with pyrocatechol-viol et
in acetate buffered solution (pH 4.0) were processed separately by the
principal component-radial basisfunction-artificial neural network (exact
fit and fewer neurons) and principal component feed-forward neural net-
work (PC-FFNN). The network architecture (number of hidden, and output
nodes), transfer functions, number of epochs, momentum and learning
rate in FFNN model and spread value in radial basis function, were also
optimized for getting satisfactory results with minimum errors. The pro-
posed methods were successfully applied to determination of desirable
metal ionsin several synthetic samples. Theresults obtained by PC-FFNN
and PC-RBF networkswere compared to each other. The prediction perfor-
mance of RBF network (exact-fit) was better than RBF (fewer neurons)
network and PC-FFNN. The obtained satisfactory results indicate the ap-
plicability of ANNs approach for determination of desirable species. The
proposed methods were successfully applied to the quantification of the
Sn(1V) and Sn(1l) in different water samples and canned products.
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INTRODUCTION
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Spectrophotometric analysis of multicomponent
mixtures showsthat the quantification of compounds
wheretherewasno spectra difference had been adif-
ficult problem. For solving thisproblem, during thelast
decadesin many cases, kinetic-based methods con-
tinuously were applied*3.

Thechemometric methodsincluding classicd least
squares (CLS), inverseleast squares(ILS), principa
component regression (PCR) and partid |east squares
(PLS) had been found increasing applicationsfor mul-
ticomponent kinetic determination**2, Thesemethods
do not require prior knowledge of reaction order or
reaction rate coefficient of theinvolved andytica sys-
tems. The predicted va ues of thesemethodswill notin
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good agreement with known val ueswhen nonlinearity
presented in considered system.

Anartificia neura network (ANN) isanintercon-
nected group of artificia neuronsthat usesamathemati-
ca mode or computationa modd for information pro-
cessing™ %, The multi-layer feed-forward neura net-
works (FFNNSs) with theerror back-propagetion learn-
ing ruleisthetechnique most frequently used. Radial
basi sfunction (RBF) networkson theother hand, offer
interesting aternativesto FFNNsin thesensethat they
alow locd training*¢'". Radid basisfunction networks
possessabest property of best gpproximation and may
require more neuronsthan feed-forward back propa-
gation networkg822,

A different approach to carry out multicomponent
kineti c determinationswas proposed based on artificia
neural network (ANN) model§%24, Alsofor resolve
three dimensional data(combination of kineticsand
spectroscopy data) themultidimensional partial |east
square (NPLS) and the parallel factor (PARAFAC)
analysiswas presented?>?9, However threeway data
matrix can be devel oped based on the so called sec-
ond order advantage, i.e. robust estimation of the
andytes concentration in mixturesthat contain unknown
interferences. But the number of studiesusing experi-
mental dataisgtill very limited. For example PARAFAC
hasabasictrilinear model whichiscompatiblewith
andytica datastructuresinvolving spectrophotometric
mesasurements.

Tin can enter your body when you eat contami-
nated food or drink contaminated water, when you touch
or eat soil that hastininit, or when you breathe tin-
containing fumes or dusts. When you eat tin in your
food, very littleleavesthe gastrointestingl tract and gets
into your bloodstream. Thepresenceof tininfreshfood
of both vegetableand animd originishighly dependent
ontheconcentration of tininthesoil of theareainwhich
thefood isproduced. Thereisno evidencethat tinisan
essential e ement for humans. Exposureto Snandits
compounds can produce severd effectssuch asneuro-
logicd, hematologica andimmunologicd. Inhdation of
1Sn can induceto pneumoconiosisand ingestion may
lead to gastrointesting effects. Despitethedangersthey
aregppliedinagreat number of industries, such asthe
paintindustry and theplasticindustry, andin agriculture
through pesticides. Tin metal isused asaprotective
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coatinginfood, beverage and aerosol cans. Canning
may result indissolution of thetinlining of the can, par-
ticularly if theproductsareacidic.

Determination of tin species, mainly their organo-
metdlic derivatives, isamong the most required analy-
sisinenvironmentd studies, not only duetotheir toxic-
ity, but also because they are good indicators of an-
thropogenic pollution sources? ., Intheliterature, sev-
erd methodsfor determination of tinwere proposed®
%2 Tothebest of our knowledgelessattention hasbeen
paid to s multaneousdetermination of Sn(1V) and Sn(ll).
Recently, Afkhami et al ., devel oped mean centering of
ratio kinetic profiles and partial least squares (PLS)
methodsfor the simultaneousanalysis of binary mix-
tures of Sn(ll) and Sn(1V)&=3.

DeAzevedoet a., devel oped aprocedurefor the
determination of tininwhole blood and urine by GF
AASwithaminimum sample pre-treatment, using Pd/
Mg aschemica moditer®.

ANNsare powerful chemometric methods because
they do not need any modé structure speciation and
can process multivariate problemsof nonlinear systems.
With proper training, ANNSs can accurately model the
presence of synergistic efiectsand avoid the potential
lossof kinetic datafor mixturesresulting from too short
induction periods, outliers, nd small ditierencesinthe
rate constants, and so on. The purposeof thisstudy is
to compare performancesof the principal component-
radial basisfunction networksand principa compo-
nent-feed forward neural networksfor multi-compo-
nent determination based on differencein kinetic rates
of Sn(I1) and Sn(IV) by PCV. We created exact fit —
PC-RBF, fewer neuron-PC-RBF and PC-FFNN that
they are often used for determination. To our knowl-
edgethisisfirst report on applicability of RBFfor ki-
neti c- spectrophotometric determination of Sn(ll) and
Sn(IV). Thevariationsof absorbance of thecomplexes
were monitored at maximum wavel ength of 550 nm.
The part of datafrom 0to 10 minwasapplied for anay-
ss. Smultaneousdetermination can be performed with-
out carefully controlling experimenta conditionsanddso
with handling non-linearitiesdueto kinetic parameters.
By using the two way data (absorbance measurement
a asnglewave ength by changing the concentration of
reactants) themeta ionswere estimated. The obtained
results of PC-RBF (exact fit and fewer neurons) and
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PC-FFNNswere compared with each othersand those
obtained from previous work®3. The methods were
validated by determining Sn(l1) and Sn(1V in synthetic
mixtures, tap water, river water and canned products.

EXPERIMENTAL

Reagents

All solutionswere prepared with analytical grade
reagents. Stock solutionsof Sn(ll) and Sn(1V) (1002 g
mL1) were prepared by dissolving appropriateamounts
of SnCl-2H,0 (Merck) and SnCl -5H,0 (Fluka), re-
spectively, in0.2mol L*HCI. A 1.0x10°mol L%,
Pyrocatechol-violet (PCV) (Merck) solutionwaspre-
pared daily by dissolving appropriate amount of this
indicator in doubly distillated water. Acetic acid-ac-
etate (1.0 mol L1) buffer solution of pH 4.0 was pre-
pared from acetic acid and sodium acetate (M erck).

Apparatus

A Perkin-Elmer Lambda45 UV-vis spectrometer
was used for recording and storage of UV—vis absor-
bance spectrausing 1 cm quartz cellsand dlit width of
0.5 nm. The ANN algorithm (nntool) was run in
MATLAB (MathWork, version 7.1).

Procedure

Two ml buffer solutionand 1.68 mL of PCV solu-
tion and desirable concentration of metal ionswere
added to a5 ml volumetric flask and made up to the
mark with water. A portion of the solution wastrans-
ferredinto aquartz cell torecord theabsorption kinetic
profileof thesolution a 550 nminthetimerange0-10
minwith 1 sintervals.

(a) Theory of RBF networks

A radid basisfunction (RBF) isared-vaued func-
tion. Thestructure of radial basisfunction networks
(RBFN) iscomprised three unitsof input, hidden and
output. Theinput unitsserveonly to distributeinput to
hidden unit. Each neuron of the hidden unit representsa
bas sfunctions, with equa dimensionstotheinput data.
RB networksgenerally useaGaussian functionto ac-
count for the non-linearity of thehidden unit processing
elements. TheGaussian function respondsonlytoasmal
region of theinput spacewherethe Gaussianis cen-
tered. The successful implementation of these networks
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istofind suitable centersfor suchaGauss anfunctions,
whichischaracterized by two parameters, i.e. Center

(c ), andpesk width(J,). TheRBF aretypically used
to build up the output of theform

out; = ¢ﬂ|xj —cj”): exp{

X; —¢;
2
5

)

WhereHxi - C; H isthe cal culated Euclidean distance

between x and ¢, and &; determinesthe portion of

the input space where the jth RBF will have a non-
significant zero response. Theinput valueto each out-
put nodeistheweighted sum of all the outputsof the
hidden nodes. Finally, theresponse of each output node
iscalculated by alinear function of itsinput (including
thebiasw, ), what is, theoutput of hidden layer (out,).
Therelation between thevalueout, and theinput vari-
ablex, can berepresented by:

out, =ka+Zj:ij¢(HXi =G ”) @

Theweights w,; are adjusted to minimizethe mean
squareerror of the net output.

(b) Optimization of experimental conditions

Theoptimum conditionsfor s multaneousdetermi-
nation of Sn(ll) and Sn(IV) werechosen asfollows. pH
is4.0 and Anexcessamount of PCV (3.2x10*mol L?)
was appliedto obtain apseudo-first order reaction with
respect to each cation.

RESULTSAND DISCUSSION

Kinetic-spectral natureof themetal— pyrocatechol
violet

Sn(1V) and Sn(I1) can react with PCV to form a
colored complex. They show maximum absorbanceat
550 nm. Figure 1 showsthe spectrum of individua of
component at presence of PCV in 10 min. Simulta-
neous determination of desirablemeta ionsdueto lack
of spectrd discriminationwereimpossible(Figure 1).

Thereactionrate of Sn(1V) and Sn(ll) werediffer-
ent and for Sn(IV) wasfaster. Thisdifferencegivesthe
possibility for resolving their mixtures (Figure2) ins-
multaneous determination of two metal ions. Absor-
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bance monitoring at singlewavel ength hasagreat ad-
vantage in determination of Sn(I1) and Sn(1V) when
diodearray spectrophotometer not beavailablein each
|aboratory. Principa component andys swasperformed
on the created two way datawhich obtained by mea-
auringtheabsorbance a asinglewavd ength after chang-
ing the concentration of Sn(ll) and Sn(IV). Optimal
numbersof principa components (PCs) wereused as
inputsfor calibration of artificial neura networks.
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Figurel: Absorption spectraof Sn(l1) and Sn(1V) by PCV at
3.2x10*mol L"™PCV and 0.60mgL-*Sn(I1) and Sn(IV) at pH
4.0.
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Figure2: Thekinetic profilesof complexation reactionsof
Sn (1) and Sn (1V) with PCV at 550 nm, conditions: PCV
concentration 3.2x10*molL *, the concentration of Sn(ll) and
Sn(1V) was0.60mgL  at pH 4.0.

Networ k optimization
(a) Calibration of PC-FFN networks

Thekinetic dataobtained from experimentswere
processed by FFNN, which was trained with back-
propagation of errorslearning algorithm. Theaim of
cdibrationisto produceamode that relatesthekinetic
spectral dataof calibration mixturesto the concentra-
tion data. If we suppose cdibration set with m samples
containing n analyteswith the absorption obtained at t
times, theninthelearning procedurefor thefirst andyte,
the mx t datamatrix isfedinto the network with out-
put vector nx r concentration set of desired anayte).
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The response of network with one hidden layer and
one output neuron, out,, to theinput vector x,, isthe
calculated concentration that can bewrittenaseq.1:

h k
out, =g( J_g;lekf(gjlw”xi +b)+b' ) 3

Wheref isthetrangfer function applied for hidden layer,
gthetransfer function applied for hidden layer, b and
b' are the biases of the model, W, the weight value
from theinput neuronsto the hidden neurons, w,, the
wei ght from hidden neuronsto the output neuronand h
the neuron number in the hidden layer. The network
output, out,, iscompared with desired output and the
error termiscal culated. During thetraining process,
theweightsareiteratively caculated in order to mini-
mizethesum of squared difference between theknown
concentrationsand the cal culated concentrations. The
training was stopped manually when the root mean
squareerror of thetest set remained constant after suc-
cessive iteration. The neural network models were
tested onan externa prediction set (validation set) that
consisted of samplesbelonging to neither thecaibra-
tion set nor test set.

The chose architecture for comparison was that
which produced theminimum rel ative standard error of
prediction (RSE %) aseq.2:

4

Wherenpisthenumber of the samplesusedinvalida
tionset, Cred vdueand Cpthe predicted vadue. Inthese
work, the whole data set (34 synthetic sample mix-
tures) was prepared randomly from concentrations of
both analytesto cover the measuring range. The syn-
thetic sample mixtureswererandomly distributed into
threesets, i.e. calibration set, test set and validation set
with sizes 20, 13 and 6 respectively. Theformer was
used to train the network and second for testing and
thethird was used to vaidatethe learned network.
The numbers of input nodes were selected asan
optimal number of principa componentswhich obtained
by applying principa component analysisontwoway
kinetic data. To optimization of network architecture,
number of hidden |layerswasvaried fromonetofive
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(Figure3). AstheFigure 3 showsthe RSE% was mini-
mum at onelayer. Theeffected number of hidden neu-
ronswas determined by training PC-FFNN with dif-
ferent number of neurons. AsobservedinFigure4 a
minimumin RSE% occurred when proper neuronsfour
and threewereused inthe hidden layer for Sn(IV) and
Sn(11) respectively. Thebasictransfer functionused here
conssted of aLogistic function, which passesthevaue
through a non-linear function for hidden layer and
purelinefor output layer.

The output layer for Sn(1V) and Sn(ll) was one
layer. Training the network was performed with severa
learning rateswhich changed from 0.01t0 0.1. During
thelearning procedure of the network withthecdibra-
tion set, thetest set was subsequently tested with the
learned network. Theresultsfor optimized parameters
for construction of the network are represented in
TABLE 1.

70

60 _—

50

40

SEP%

30 1

20 1

10

0

0 1 2 3 4 5 6
number of layers

Figure 3: Plots of RSE% as a function of the number of
layer sfor selection of hidden layer for Sn(l1) (&) and Sn(1V)
() in determination by FFNN.
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Figure 4 : Plots of RSE% asa function of the number of
neuronsin hidden layer for Sn(1V) (A) and Sn(l1) (w) in
deter mination by FFNN.

TABLE 1: Optimized parametersused in PC-FFNNsat si-
multaneousdeter mination of Sn(1V) and Sn(l1) by PCV.

Compound
Par ameter

Sn(1V) Sn(ll)
Input nodes 3 3
Hidden nodes 4 3
Output nodes 1 1
Learning rate 0.1 0.1
Momentum 0.01 0.01
Number of iteration 850 1000
Hidden layer transfer function Logsig Logsig
Output layer transfer function Purelin  Purdin

By optimized parameter in TABLE 1 the network
architecturesfor two ion metalswas created and con-
centration of eachionwas predicted. TABLE 2 shows
the results obtained for prediction samples by PC-
FFNN. Thereasonablereativeerrorsfor each anayte
inboth setscalculated by eq.2, for each anayteinthis
setindicatethe applicability of the proposed method.

TABLE 2: Prediction resultsobtained Sn(1V) and Sn(l1) in
simultaneousdeter mination with PC-FFNN.

Actual/pg mL™ Found/pg mL™*

sn(1v) sy sn(lv)  Sa(ll)
0.50 0.00 0.50 0.51
0.60 1.00 0.61 0.00
1.00 0.80 0.98 0.99
0.30 0.60 0.32 0.78
0.50 0.60 0.51 0.61
0.90 0.30 0.90 0.62
0.50 0.90 0.49 0.32
0.50 0.60 0.50 0.89
0.60 0.80 0.61 0.58
0.60 0.00 0.61 0.78
0.60 1.00 0.60 0.00
0.00 0.00 0.00 1.00
1.60 1.57 0.00
R.S.E% 1.79 1.96
Mean R.S.E% 1.87

(b) Calibration of RBF networks

In RBF networks, two sets of parameters (the cen-
ters and the widths) in the hidden layer and a set of
weightsintheoutput layer areadjusted. Therefore, the
adjustment of theoutput layer issmpleand RBFN has
aguaranteed |earning procedurefor converge. How-
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ever, in back-propagation FFNN, the parameters of
trandfer functionsbothin hidden and output layersshould
be adjusted by using the Sigmoidtransfer functionsand
generdly itistimeconsuming. For the determination of
tin species, the exact fit type of radial basis from
MATLAB 7.1wassdlected. Inthisprocedurethe num-
bersof hidden nodesareequal to thenumber of nodes
intheinput layer. So, the adjustable parameterswere
the number of input variable and spread. Input vari-
ablesfor thispart werefirst four principa components.
Thelatter parameter wasin relation with the spread of
radid basisfunctionsinthenetwork. RSE% for thepre-
diction of both of Sn(I1) and Sn(1V) at the spread val-
uesof 1-50 wereinvestigated(Figure5).

40

35T
30
25 [
20

RSE%

157
101

0 10 20 30 40 50 60
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Figure5: Plotsof RSE% asafunction of spread for Sn(1V)
(A) and Sn(I1) (w) in deter mination by RBFN.

Theobtained resultsfrom repetition of training pro-
cedure of PC-RBF, for each condition werethe same.
It was dueto high reproducibility of modelingthatisa
main advantagefor the RBFN. In thisway, 3timesrep-
etition of traningin each of experimentd conditionwas
performed (TABLE 3).

Also sameprocedurewas applied for thesmulta-
neous determination of tin species; by fewer neurons-
RBFfrom MATLAB 7. Inthiscasethe number of in-
putswas sameas exact fit type but optimal amount of
SPREAD vauewas 25 for both of meta ions. By the
optimal parameters the concentration of Sn(ll) and
SN(IV) waspredicted. Theresult of prediction set which
obtained by fewer neurons -RBF are presented in
TABLE3.

TheANNSshave been trained onthe samedatasets.
To evauate the performance of neural networks, the
RSE% of itsresulrts compared with the RSE% of the
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mean centering(MC) and PLS as well as previous
one®l, The RSE% for Sn(ll) and Sn(1V) were 3.76
and 3.80%, respectively by MC and Sn(ll) and Sn(1V)

were 4.5 and 1.80% respectively by PLS. Thesere-
vedl thesuperiority of neural networksover the other
methods. The superiority of the neural networksover
theMCand PLSispartly duetothefact that in neural

networkstheinteractions between different parameters
used as considered. By considering the results of

TABLE 2and TABLE 3it wascleared that the calcu-
lated valuesby f PC-RBF (exact fit and fewer neurons)

are better than that obtained and PC-FFNN. How-
ever the performance of two typesof RBF networks
(exact fit and fewer neurons) had not much difference
but exact fit -RBF performed better than fewer neu-
rons-RBF in predicting of Sn(1V) and Sn(ll) concen-
trations. It wasduetoloca training ability of RBF and
interpretation of final model intermsof logical rules.

RBF networksare ableto detect new local generdiza
tion. Thisoneisobtained by the Gaussiansbasisfunc-
tionsthat are maximal to the core, and decreasein a
monotonousway with thedistance. Ontheother hand,

Dueto thelocaized nature of RBFN, the network can
betrained extremely quickly and facilitates nonlinear
calculation. Therefore, the precision and accuracy of

RBFNsresultsare better than FFNN results.

TABLE 3: Prediction resultsobtained in smultaneousde-
termination of Sn (1V) and Sn(l1) by (a)exact fit-PC-RBF and
(b)fewer neurons-PC-RBF.

Actual /pg mL™

aFound /ug mL* °Found /pg mL*

sn(1V)  sn(l) Sn(lV) sn(Il) Sn(IV) sn(ll)
050 050 050 051 051 051
060 000 060 000 060 000
100 100 098 100 102 101
030 08 030 08 029 082
050 060 051 060 050 061
090 060 090 061 090 060
050 030 049 031 050 0.30
050 090 052 091 051 091
060 060 061 060 060 061
060 080 062 08L 060 080
060 000 060 000 061 000
000 100 000 100 000 097
160 000 159 000 158  0.00
R.S.E% 1.52 1.04 1.31 1.84
Mean R.S.E 1.28 1.57
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TABLE 4: Simultaneousdeter mination of Sn(1V) and Sn(l1)
indifferent water samplesby theproposed methods.

Actual/ It Found / It

M ethod ctual/pg m ound /ug m
sn(ll)  Sn(1V) sn(ll) sn(1Vv)

a a

EENNS 1.00 1.20 1.18+0.00 1.33+0.00
0.80° 070° 0814001 0.68+0.11
1.00*  1.20° .10+0. .20+0.

FENNS 1.10+0.00  1.20+0.00
0.80° 070° 0.08+00 0.69+0.11

spiked in tap water and (b) spiked in river water
Application of themethods

Totest theaccuracy of themethod, known amounts
of Sn(I1) and Sn(1V) were spiked into several tap wa-
ter and river water samples(TABLE 4). Theappropri-
ateamountsof PCV and solution of buffer wereadded
afterward. The proposed methodswere applied to the
determination of the ana ytes, and satisfactory results
wereobtained (TABLE 4).

The proposed methodswere successfully applied
tothes multaneousdetermination of meta ionsin canned
orange and pineapplejuicesamples(TABLED5).

For digestion of the sample, fivemillilitersof or-
angejuiceor pinegpplejuicewastransferred into a250
mL Erlenmeyer flask and 10 mL of concentrated sulfu-
ric acid was added. The solution wasdiluted to about
75 mL by distilled water. Then, it was cooled, filtered
and washed withwater and thefiltratewas collected in
a100 mL calibrated flask and diluted to the volume
with water. The 2.0 mL of the solution and optimal
amount of PCV and buffer solutionweretransferredin
volumetric flask and diluted to the mark. The absor-
bance of thissolution wasrecorded. Theconcentration
of Sn(ll) and Sn(lV) was determined by the PC-
FFNNs and PC-RBF networks. Total concentration
of tininthesampleswasd so determined by flameatomic
absorption spectrometry (FAAS). Thetotal amount of
Sn(l11) and Sn(IV) obtained by FAASwere 57.60 pg
mL%, 61.84 ug mL* and 70.50 ug mL*for orangejuice
1, orangejuice 2 and pineappl ejuice sampl es, respec-
tively.

Thetotal amountsof Sn(l1) and Sn(1V) which ob-
tained by the proposed methods werein good agree-
ment with those obtained by FAAS. Theresultsare
shownin TABLE 5. The predicted concentrations of
Sn(I) and Sn(1V) in different fruit jui ce sampl es show
that the predicted resultsarein good consistent with

Hnalytical CHEMISTRY o

the standard values. Moreover the cal cul ated results
proved that the proposed neural networks approach
based on the PCA input selection was suitablefor the
smultaneousdetermination of Sn(ll) and Sn(IV) indif-
ferent samples.

TABLES5: Concentration and recoveriesof Sn(IV) and Sn(l1)
in fruit juicessamplesby the proposed and standard meth-
ods.

Added/ Found/pg mL™

pg mL* PC- Exact fit-P Fewer neuron
Sample FENN RBF PCRBF
Sn(V) Sn(l1) Sn(1V) Sn(l1) Sn(V) Sn(l1) Sn(lVv) Sn(ll)
Orange 3124 2810 29.88 2660 3020 28.20
juice (1) 8 6 4026 3288 3832 3295 3942 33.90
Recovery% 1025 9642 10114 101.0 1031 99.12
Orange 3452 2925 3354 3054 3352 3045
juice (2) 8 6 4470 3465 4232 3695 4327 3518
Recovery% 1051 983 1018 1011 1042 9651
Pineapple 4035 2862 3750 3172 404 27.72
juice 8 6 4987 3332 4694 3867 47.28 3324
Recovery% 1031 9624 103.1 1025 97.69 9858
CONCLUSION

This study has shown that the PC-RBF (exact fit
and fewer neurons) and PC-FFNN arethe most effec-
tivefor smultaneouskinetic determination of binary mix-
tures. Becauselack spectrd discrimination betweenthe
product of reaction of Sn(ll) and Sn(IV) by PCV were
presented, differencesintheir rates of reaction afford
their quantitation with an ANN modes. Hence, not nec-
essary to usedll of theanalytical information acquired
such asabsorbance, times, and al wavelengths; rather,
onecan useonly datarecorded at the maximum absor-
banceof product. Determination of themwasperformed
by PC- FFNNsand PC-RBFN. The proposed meth-
odsarevery selective, sensitive and do not need any
Separation stepsin simultaneous determination of both
metd ions. Thesemethodsare offering acceptablemeth-
odsfor the determination of Sn(ll) and Sn(1V) inrou-
tineanaysis. At the RBF training, the obtained results
from repetition of training procedure, arecloseto each
other and not large different. It was dueto high repro-
ducibility of the RBF modeling that it canbeamain
advantagefor the RBFN. Satisfactory results created
by RBFN shows, the modeling haveapowerful poten-
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tia for the cons dered system without knowledgeof the
Kinetic rate constant and reaction order. High repro-
ducibility of training procedure and considerably lower
training period (dueto |less obtainable parameters) in
the RBFN areamong the main advantage of these net-
works compared to FFNNs. The RBF network espe-
cidly exact fit-RBF can beeffective cdibration method
for thekinetic determination of highly spectra overlap-
ping systems.
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