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ABSTRACT 
 
The problem of joint input and state estimation is addressed in this paper for discrete-time
stochastic systems without direct feedthrough from unknown inputs to outputs. Following
the identical idea of previous study on discrete-time stochastic systems with direct
feedthrough, the weighted least squares estimation for an extended state vector including
unknown inputs and states is used to derive a Kalman filter with unknown inputs without
directfeedthrough (KF-UI-WDF) approach. The information on unknown inputs is not
needed for KF-UI-WDF and the necessary and sufficient conditions for the state and input
detectability are presented. The estimators of KF-UI-WDF are proven minimum variance
unbiased (MVU) ones. 
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INTRODUCTION 
 

 When unknown inputs are presented in stochastic linear systems, traditional filter approaches for state estimation are 
not feasible any more. To solve this problem, two different categories of filter approaches have been studied, i.e., (i) the 
augmented state Kalman filters (ASKFs) [1-3]; and (ii) the robust Kalman filters (RKFs) [4-9]. The former category (ASKFs) 
requires the dynamical information of unknown inputs, which is hard to be obtained in reality. Different from ASKFs, the 
latter category (RKFs) doesn’t need any prior information of unknown inputs. As the result of the feasibility, RKFs attracted 
more attention of researchers than ASKFs in the past decade. To the best of the authors’ knowledge, the latest progress on 
RKFs is made by Gillijns and De Moor [10,11] for discrete-time system without and with direct feedthrough, respectively. In 
Gillijns and De Moor [10,11], the unknown input estimator is proven an minimum variance unbiased (MVU) estimator, which 
extended the results of Kitanidis [4], Darouach and Zasadzinski [5], and Hsieh [7], etc. However, the optimalities for the 
unknown input and state estimators in Gillijns and De Moor [10,11] are not achieved globally. For instance, the optimal gain 
matrices for the state estimation and input estimation are considered separately. 
 To obtain a globally optimal filter for the unknown input and state estimation, it is beneficial to check the derivation 
of traditional Kalman filter [12,13] for reference. The recursive solutions of traditional Kalman filter can be derived by using 
the weighted least squares estimation (LSE) for an unknown state vector with fixed dimension. Following the idea of 
weighted LSE with the aid of decomposing method [14-16] and collecting the unknown states and inputs in one unknown 
extended state vector with increasing dimension, Pan et al [17] proposes a minimum variance unbiased (MVU) filter for the 
estimation of unknown states and unknown inputs referred to as Kalman filter with unknown inputs (KF-UI), which is for 
discrete-time stochastic systems with direct feedthrough from unknown inputs to outputs. The recursive solutions of KF-UI 
are the direct extension of traditional Kalman filter and no heavier computational burden and prior information of unknown 
inputs are required. 
 For the case with direct feedthrough from unknown inputs to outputs, the measurements at  = tΔt k , ky  obviously 

possesses the information of the unknown inputs at = t k tΔ , kd . On the other hand, for the case without direct feedthrough, 

the unknown inputs  = ( 1)t k t− Δ , 1k−d , instead of kd , is reflected by ky . In this situation, the unknown inputs have to be 

estimated with one step delay, i.e., the estimation of 1k−d  should be obtained no earlier than the time instant = t k tΔ  [9,10]. 

Due to the time delay of unknown inputs, the filter solutions for the case with direct feedthrough are enormously different 
from the ones for the case without direct feedthrough. In this regard, the globally optimal filter for the case without direct 
feedthrough is derived in this paper following the samilar procedure described in [17]. As the KF-UI provided by Pan et al 
[17], the filter approach proposed herein is also a direct extension of traditional Kalman filter with low computational burden 
and without the requirements about prior information and the type of unknown inputs. 
 This paper is outlined in the following. First, the problem formulation is given in Section 2. The recursive solutions 
for extended state vector including unknown inputs and states are presented in Section 3. Then, the optimal filter for 
unknown inputs and states is proposed in Section 4. Furthermore, the proofs for minimum variance unbiased (MVU) 
estimators and their error covariance matrices are given in Section 5. Finally, Section 6 is the conclusion. 

 
PROBLEM FORMULATION 

 
 Consider the following stochastic linear discrete-time system, 
 

1k k k k k k+
= + +x A x G d w  (1) 

 

k k k k= +y C x v  (2) 

 
where n

k R∈x  is the state vector; m
k R∈d  is the unknown vector, respectively; p

k R∈y  is the output measurement 

vector; the process noise n
k R∈w  and the measurement noise p

k R∈v  are mutually uncorrelated, zero-mean, white 

random signals with known covariance matrices, T[ ]k k kE=Q w w  and T[ ]k k kE=R v v , respectively. Unlike the case with 

direct feedthrough [17], it is observed from Eqs.(1) and (2) that the information of unknown inputs 1k−d  instead of kd  is 

contained in the measurements ky . The unknown inputs can be any type of signals and no prior information of unknown 

inputs is given or assumed. In what follows, the bold face letter represents either a vector or a matrix. 
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 Let 
k|kx̂  and 

1k |k
ˆ

−d  be the estimates of 
kx  and 1k−d at t k t= Δ , respectively, given the observations 

(
1 2      k, , ...,y y y ). Following the derivation of traditional Kalman filter [12], 

k|kx̂  and 
1k |k

ˆ
−d  can be determined by 

minimizing the objective function of sum square error as follows, 
 

T 1 T

1
               

k
k i i|k i k k ki

J −

=
= =∑ Δ R Δ Δ W Δ%  (3) 

 
in which 

iΔ
 is the output error at t i t= Δ  (i = 1, 2, …, k) 

 To make the unknown quantities involve only 
kx  and 

id , the unknown quantities 
ix  (i = 1, 2, …, k−1) in Eq.(3) 

can be treated by expressing 
ix  in terms of 

kx  and 
jd  (j = i, i+1, …, k−1) through repeated applications of the transition 

relation based on state equation Eq.(1). Substituting the result into t Eq.(4) leads to the following expression for 
kΔ

, 

 

k k e,k e,k= −Δ Y A x   (4) 

 

where 
TT T T

1 1e,k k k−
⎡ ⎤= ⎢ ⎥⎣ ⎦

x x d dL , 
kY  and 

e,kA  are known matrices. 

 
THE RECURSIVE SOLUTIONS FOR EXTENDED STATE VECTOR 

 
 As observed from Eqs.(3) and (4), the objective function 

kJ  is a quadratic function of the unknown extended state 

vector 
e,kx . Assuming that the dimension of the output measurement vector 

ky  is greater than the dimension of unknown 

inputs 1k−d , i.e., p > m, the least squares estimation of 
e,kx  at t k t= Δ , 

e,k|kx̂ , is obtained by minimizing 
kJ  in Eq.(3) as 

follows, 
 

T[ ]e,k|k e,k e,k k k
ˆ =x P A W Y   (5a) 

 
T 1 [ ]e,k e,k k e,k

−=P A W A   (5b) 

 
where T T T T T  T

1 2 1[ ]e,k|k k|k |k |k k |k
ˆ ˆ ˆˆ ˆ −=x x d d dL  is the estimation of 

e,kx , given the observations (
1 2      k, , ...,y y y ). 

 From the solution of 
e,k|kx̂  given by Eqs.(5a)&(5b), we obtain the recursive solutions for 

e,k|kx̂  with the method 

of [14], 
 

1
1 1

1
   

e,k e,k e,k k k |k
e,k|k

k |k

ˆ ˆ
ˆ

ˆ

−
− −

−

⎡ ⎤+
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

x P P G d
x

d

%
  (6) 

 
where 

 
T 1

1 1 1 1 1 1 ( )*
k |k k k e,k k,k e,k |k k e,k

ˆˆ ˆ−
− − − − − −= − + −d S G P Φ x F x% %   (7) 

 
 In Eqs.(6)-(7), the estimate of the extended state vector at t k t= Δ , 

1 1e,k |k
ˆ

− −
x  is obtained from Eqs. (5a)&(5b) by 

replacing k with k−1. 
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THE RECURSIVE SOLUTIONS FOR STATE AND UNKNOWN INPUT ESTIMATORS 
 

 Since the extended state vector 
e,k|kx̂  has an increasing dimension as k increases [14], the computational burden is 

quite heavy even for the recursive solutions presented in Eqs.(6)-(7). To obtain the analytical recursive solutions of 
k|kx̂  and 

1k |k
ˆ

−
d , the recursive solutions of 

e,k|kx̂  in Eqs.(6)-(7) should be further decomposed. Finally, the recursive solutions for 

k|kx̂  and 
1k |k

ˆ
−

d  are obtained with the method presented in [14]: 

 

1 1( )k|k k|k ,k k k k|k
ˆ ˆ ˆ

− −
= + −xx x K y C x   (8) 

 
T T 1

1 1 ,k 1 1 1( )( )k |k k k k k p k k k k k |k
ˆ ˆ−
− − − − −

− −= xd S G C R I C K y C A x   (9) 

 
where 
 

1 1 1 1 1 1k|k k k |k k k |k
ˆˆ ˆ− − − − − −= +x A x G d   (10) 

 
T T 1 1

1 ,k 1( )[ ]k k k k p k k k
− −

− −= − xS G C R I C K C G   (11) 

 
 In Eqs.(8), (9) and (11), ,kxK  is the Kalman gain matrix given by 

 
T T 1

1 1( ),k ,k|k k k k ,k|k k
−

− −= +x x xK P C R C P C   (12) 

 
where 

1,k|k−xP  is given by 

 
T

1 1 1 1 1 1,k|k k ,k |k k k− − − − − −= +x xP A P A Q   (13) 

 
where 1k−Q  is the covariance matrix of the model noise vector 1k−w , and 

1 1,k |k− −xP  is given by 

 
T T

1 1 1 1 1 2 2 1 2 1 1( ) ( )[ ]− − − − − − − − − − −= − + −x x x xP I K C P G S G I K C,k |k n ,k k ,k |k k k k n ,k k
  (14) 

 
where 1k−S , 1,k−xK  and 

1 2,k |k− −xP  are obtained from Eqs.(11)-(13) by replacing k by k−1, respectively. As the 

components of 
e,k|kx̂  given by Eq.(5a), the state and unknown input estimation 

k|kx̂  and 
1k |k

ˆ
−d  achieve optimal values 

simultaneously when 
e,k|kx̂  becomes optimal. The description of the derivation procedure shows clearly that, the solutions 

of the new filter presented in Eqs.(8)-(14) is a direct extension of traditional Kalman filter [12]. To avoid the confusion with 
Kalman filter with unknown inputs (KF-UI) proposed in [17], the new filter presented in Eqs.(8)-(14) in this paper is referred 
to as the Kalman filter with unknown inputs without direct feedthrough (KF-UI-WDF), which is not available in the previous 
literatures. When all the inputs are known, i.e., k k =G d 0  in Eq.(1), the proposed KF-UI-WDF reduces to the traditional 

Kalmen filter [12]. 
 

THE DISCUSSION ABOUT PROPERTIES OF THE ESTIMATORS 
 

 (1). 
k|kx̂  and 

1k |k
ˆ

−d  are minimum variance unbiased (MVU) estimators. 

 
Proof 
 Following the unbiasedness proof [12], the unbiased estimator of e,kx  can be expressed by 

 



BTAIJ, 10(23) 2014 Shuwen Pan et al.  14575 

1

k
e,k|k i i|k k k

i
ˆ

=
= =∑x S y S Y%   (15) 

 
where iS%  = [(n + m(k−1))×p] matrix, 1 2[ ]k k=S S S S% % %L . Using   [ ]e,k|k e,kˆE =x x  with the aid of Eq.(5a), one 

obtains 
 

1

1 ( 1)

   

[ ]

[ ] [ ]e,k e,k|k k k k e,k e,k

k e,k n m k e,k

ˆE E +

+ + −

= = =

⇒ − =

x x S Y S A x

S A I x 0
  (16) 

 
Since e,k ≠x 0 , from Eq.(16), we have 

 

1 ( 1)  k e,k n m k+ + −− =S A I 0   (17) 

 
With the aid of above results, we have 
 

T 1 ( )( )  [ ] ( )T
e,k e,k|k e,k e,k|k k k kˆ ˆE E −− − =x x x x S W S   (18) 

 
in which kW  is givne by Eq.(3). Using the following relation, 
 

T 1 T T 1 T
e,k k e,k e,k k k e,k e,k e,k e,k k k( ) ( )  [ ]− −+ − =A W A A W S A W A A W S   (19) 

 
 Eq.(18) becomes 
 

T
e,k e,k|k e,k e,k|k

T 1 T T 1 T 1
e,k k e,k e,k k k e,k e,k e,k e,k k k
T 1 T T 1 T
e,k k e,k e,k k k e,k e,k e,k e,k k

ˆ ˆE ( )( )

E ( ) ( )  

T        ( ) ( )  

[ ]

[ ]

[ ]

{ }
{ }

− − −

− −

− −

= + −

+ −

x x x x

A W A A W S A W A A W W

A W A A W S A W A A W

  (20) 

 
 Substituting Eq.(19) into Eq.(20) and minimizing the trace of the resulting T( )( )[ ]e,k e,k|k e,k e,k|kˆ ˆE − −x x x x , one 

obtains the optimal  kS , i.e., 

 
T 1 T( )k ,optimal e,k k e,k e,k k

−=S A W A A W   (21) 

 
 As a result, the minimum variance unbiased (MVU) estimator of e,kx  is given by 

1 T( )T
e,k|k k ,optimal k e,k k e,k e,k k kˆ −= =x S Y A W A A W Y   (22) 

 
 Eq.(22) is identical to Eq.(5a). Therefore, we conclude that the least squares estimator 

e,k|kx̂  for e,kx  is also the 

minimum variance unbiased (MVU) one. Comparing the structures of e,kx  and 
e,k|kx̂  leads to the conclusion that 

k|kx̂  and 

1k |k
ˆ

−
d  given by Eqs.(8) and (9) are minimum variance unbiased (MVU) estimators of kx  and 1k−d . 

 The proof is completed. 
 (2) Among the recursive solutions presented in Eqs.(8)-(14), 

1,k|k−xP , 
1 1,k |k− −xP , and kS  are the error covariance 

matrices of 
1k|kˆ −x , 

1 1k |kˆ − −x  and 
1k |k

ˆ
−d , respectively, i.e., 

 (i) T
1 1 1 1 1 1 1 1 [( )( ) ],k |k k k |k k k |kˆ ˆE− − − − − − − −= − −xP x x x x  
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 (ii) T
1 1 1 [( )( ) ],k|k k k|k k k|kˆ ˆE− − −= − −xP x x x x ; 

 (iii) T
1 1 1 1 ( )( )[ ]k k k |k k k |k

ˆ ˆE − − − −= − −S d d d d . 

 
Proof 
 For (i) and (iiii): 
 Following the derivation for traditional Kalman filter [12], the estimation error 

e,k e,k|kˆ−x x  can be expressed as 

follows by using Eqs.(4) and (5a), i.e., 
 

T 1 T( )e,k e,k|k e,k k e,k e,k k kˆ −− = −x x A W A A W E   (23) 

 
 Substituting Eq.(23) into T ( )( )[ ]e,k e,k|k e,k e,k|kˆ ˆE − −x x x x  and using the definition of kW  given by Eq.(3), the 

error covariance matrix can be obtained as 
 

T ( )( )[ ]e,k e,k|k e,k e,k|k e,kˆ ˆE − − =x x x x P   (24) 

 
where e,kP  is given by Eq.(5b). It is observed from the structures of e,kx  and 

e,k|kx̂  that the top left (n×n) and bottom right 

(m×m) sub-matrices of T ( )( )[ ]e,k e,k|k e,k e,k|kˆ ˆE − −x x x x  are T( )( )[ ]k k|k k k|kˆ ˆE − −x x x x  and 

T
1 1 1 1 ( )( )[ ]k k |k k k |k

ˆ ˆE − − − −− −d d d d , respectively. 

 
1 1,k |k− −xP  is then obtained by replacing k with k−1 in T( )( )[ ],k|k k k|k k k|kˆ ˆE= − −xP x x x x . 

 For (ii): 
 It is observed from the relations between e,kx  and 1e,k−x  that 

 

1 1 1
*

e,k k,k e,k k− − −= +x Φ x w% % ;
1 1 1

*
e,k k,k e,k |k

ˆ ˆ− − −=x Φ x%   (25) 

 
where 
 

T T T T
1 2[ ]e,k k k−=x x d d% L  and T T T T

1 1 1 2 1[ ]e,k k|k |k k |k
ˆ ˆ ˆˆ

− − − −
=x x d d% L . 

 
 In Eq.(25), T

1 1 1 1[ ]T
k k m m− − × ×=w w 0 0% L  is a [n+m(k−2)]-vector. Therefore, 

 
*

e,k e,k k,k 1 e,k 1 e,k 1|k 1 k 1
ˆ ˆ( )− − − − −− = − +x x Φ x x w% % %   (26) 

 
 Taking the expectation of the both sides of Eq.(26), one obtains 
 

T( ) ( )[ ]e,k e,k e,k e,k e,k
ˆ ˆE − − =x x x x P%% % % %   (27) 

 
 As a result, one obtains T

1 1 1 [( )( ) ],k|k k k|k k k|kˆ ˆE− − −= − −xP x x x x . The proof is completed. 

 
CONCLUSIONS 

 
 A globally optimal filter referred to as Kalman filter with unknown inputs without directfeedthrough (KF-UI-WDF) 
is proposed for the state and unknown input estimation of discrete-time stochastic systems without direct feedthrough. The 
analytical recursive solutions of KF-UI-WDF are derived with the weighted least squares estimation of an extended state 
vector including states and unknown inputs. The unknown inputs can be any type of signals and prior information of 
unknown inputs is not required. The estimators of KF-UI-WDF are proven minimal variance unbiased (MUV) ones and 
necessary and sufficient conditions for the uniqueness of the filter solutions are presented. 
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