
INTRODUCTION

The standard CDM has as its principal matter com-
ponent collisionless cold dark matter of an unknown na-
ture. The rotation curves of spiral galaxies as well as the
inferred mass of galaxy clusters are best explained by the
existence of dark matter that dominates their mass con-
tent. Relatively recent work on colliding galaxy clusters
appear to confirm this supposition[1,2]. Other possibili-
ties, such as modifying Newton�s equations or postulating
a change in the gravitational interaction between dark and
normal matter have been proposed, but have not gained
favor.

In the case of the rotation curves of galaxies, the
density distribution of dark matter is generally assumed
to be spherical and to have an isothermal equation of
state; i.e., a polytropic equation of state (P = K y) where
= 1. The hydrostatic balance equation may then be inte-
grated to yield

(1)

where  is the gravitational potential. /K must then be
a solution of the isothermal Lane-Emden equation. Non-

singular solutions can be obtained by imposing appropri-
ate boundary conditions, such as requiring that the solu-
tion and its first derivative vanish at the origin. The result
is an exponential solution for the density of the form

(2)

The isothermal Lane-Emden equation cannot be solved
analytically and consequently /K is expanded in a power
series. The requirement that the first derivative vanish at
the origin limits the expansion to even powers starting
with (/K)2. Expanding the exponential in the denomi-
nator of Eq. (2), keeping only the first two terms, and
using the coefficient given by Chandrasekhar[3] for the
leading (/K)2 term results in the often used expression
for the dark matter density,

(3)

where . It will be shown that the right hand

side of this approximate expression corresponds to an
exact solution of the coupled Einstein-Maxwell equations
for exotic charged dust. Note that if r

0
 is to be identified
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with the King radius, the numerical factor of 6 should be
replaced by 9.

CHARGED DUST

The form of the metric for charged dust was intro-
duced by Majumdar[4] and Papapetrou[5]. It is spherically
symmetric and static, and can be motivated by consider-
ing the Reissner-Nordström metric

(4)

Assume the extreme form of this metric where |Q| =
m, and introduce the isotropic coordinates .
Doing so results in the metric

(5)

where . Henceforth the bar above the r will

be dropped with the understanding that isotropic coor-
dinates are used in what follows.

Using Newtonian mechanics and classical electrostat-
ics, it is straightforward to show that a system of charged
particles of mass m

i
 and charge q

i
, where all of the par-

ticles have the same sign charge, will be in static equilib-
rium if |q

i
| = G1/2m

i
. For a continuous distribution of

mass  and charge , there will be equilibrium every-
where if || = G1/2. This is what is known as charged
dust. It has a general relativistic analog that was discov-
ered by Papapetrou and Majumdar. Although spatial sym-
metry is not required, spherical symmetry will be assumed
here.

Note, however, that the extremal condition q = G1/2

m means that if q is chosen to be the minimal charge of
one electron or 1019 coulomb, then there is a minimal
mass of ~3.6  109 kilogram giving a charge to mass
ratio of 2.7  1011. This minimal mass is unusual in that it
is very close in value to the reduced Plank mass of

 kilogram (much greater than the

supersymmetric extension of the standard model pre-
dicting WIMPs having a mass of ~100 Gev/c2).

The equilibrium of charged dust in general relativity
has been treated extensively by W.B. Bonnor and others
since the early 1960s. It is his paper on the equilibrium of
a charged sphere[6] that forms the embarkation point for
the work here[7]. The Einstein and Maxwell field equa-
tions applied to the metric of Eq. (5) show that the
Newtonian condition for equilibrium given above must
also hold in general relativity. In what follows, the charge
will be chosen to be positive.

Bonnor obtained the equation that relates the general

form of f to the density,

(6)

Unfortunately, this equation is completely intractable un-
less  = 0, and as put by Lemos and Zanchin, �It is not a
method for solving the differential equation of the
Majundar-Papapetrou problem, it is an art of correct
guessing[8].� In other words, one is reduced to guessing a
form for the function f and hoping that the equation yields
a physically meaningful density distribution.

The problem addressed by Bonnor was to find the
density distribution of charged dust within a finite sphere
of radius a that would match to the vacuum Reissner-
Nordström solution at the boundary. This was success-
fully achieved using the following expression for f

(7)

In Eq. (7), m is the mass of the charged dust contained
within r = a. The density was found to be

(8)

The question addressed here is whether it is possible to
find a function f(r) that would result in a radially unlimited
density distribution matching that given in Eq. (3) for dark
matter. Indeed one can. Substitution of

(9)

into Eq (6) yields

(10)

where a is now a free constant. This has the same form as
Eq. (3) except that now the equality is exact and (r) is
derived from a solution of the Einstein-Maxwell field
equations. This is somewhat surprising given that the ori-
gins to Eq. (3) and Eqs. (9) and (10) are so different.

Both the isothermal sphere and the corresponding
solution given here to the Einstein-Maxwell field equa-
tions are unrealistic in the context of dark matter since the
total mass, proportional to r-2 at large radii, is infinite.
More realistic models can be obtained by modifying these
solutions, but this is outside the scope of this note.

There are also other solutions to Eq. (6) for the den-
sity distribution that exhibit unusual profiles that could
prove useful. They result from the form of f given by

(11)

for certain ranges of the constants a, b, and c. Figure 1
shows a density plot for two of these solutions.

Note that for n = 3/2 the density vanishes at r = 0,
peaks, and then rises again (peaking to  ~ 0.028 at r ~
15) before it decreases slowly to zero at infinity. There is
observational support for such dark energy distributions�
where, however, the density does not vanish at the ori-
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If one tries to generalize the solution of Eq. (9) to

(12)

the solution for the density is found to be

(13)

For  > 2, the density has negative values for some range
of r. Consequently, one must impose the condition that 
 2. The plot of the density for  = 2 and  < 2 is shown
in Figure 2. The cusp in the density for  < 2 is a result of
the density being singular at r = 0. Singular density func-
tions are often used to model the mass distributions in
elliptical galaxies. This is possible because the total mass as
a function of r is finite[10]. This also the case for the den-
sity function given by Eq. (13).

(14)

Given the result above for the density distribution, it is
not surprising that for  > 2, the total mass inside a radius
r becomes negative as r increases, so that  must again be
limited to values less than or equal to 2.

Static charged dust solutions to the Einstein-Maxwell
equations are known to be neutrally stable, meaning that
they neither collapse or expand without external force
being applied[12,13]. And while they are outside the scope
of this paper, there are also stationary, axially symmetric,
rigidly rotating solutions to the Einstein-Maxwell equa-
tions for charged dust[14]. Some of these are force-free[15]

in the sense that the current generated by the velocity of
the charged dust is parallel to the magnetic field gener-
ated by the motion.

SUMMARY

It has been shown that the approximate solution to
the isothermal Lane-Emden equation, often used�with
suitable boundary conditions at the origin�to model dark
matter halos, corresponds to an exact solution of the
Einstein-Maxwell equations for charged dust.
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0
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= 1. The density for  = 1.9 is singular at r = 0.
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