ISSN: 0974 - 7524

Volume 11 Issue 1

Physical CI IEMISTH

PCAIJ, 11(1), 2016 [035-044]

IR and NMR spectral hammett correlations in (2-naphthyl)-3-(substituted phenyl)bicyclo[2.2.1]hept-5-ene-2-yl)methanones

Ganesamoorthy Thirunarayanan Department of Chemistry, Annamalai University, Annamalainagar-608002, (INDIA) E-mail: drgtnarayanan@gmail.com

ABSTRACT

A series of some novel (2-naphthyl)-3-(substituted phenyl)bicyclo[2.2.1]hept-5-ene-2-yl)methanones have been synthesized by aqueous phase fly-ash catalyzed [4+2] Diels-Alder reaction of 2-naphthyl chalcones and cyclopentadiene according to literature. The yields of the methanones are more than 60%. These methanones were characterized by their physical constants and spectral data. The assigned characteristic infrared and NMR spectral data are correlated using Hammett equation with Hammett substituent constants, F and R Swain-Lupton's parameters by single and multi-linear regression analysis. From the results of statistical analysis, the effect of substituents on the spectral data has been discussed with correlation co-efficient value in all correlations. © 2016 Trade Science Inc. - INDIA

INTRODUCTION

Methanone and its derivatives are important biological substrates^[1]. Due to the presence of keto, unsaturation moieties and polar substituents are origin for the biological potentials. Presence of substituents enhances the structural activity relationships(SAR) of organic compounds^[2]. Spectroscopic data of organic compounds including methanone derivatives are useful for prediction of ground state equilibrations^[3]. From infrared spectra the s-cis and s-trans conformers of unsaturated ketones, anti- and syn- form of ω -bromo esters have been predicted^[4]. Shielding light on plant biology was reported thorough the study of FT IR spectroscopy of pollen^[5]. NMR spectroscopy was applied to confirm E or Z isomers of all types of ketones, unsaturated ketones, spatial arrangements of protons in pyrazoline and its derivatives, oxazine derivatives^[6,7]. Now-a-days physical organic chemist paid much more interest for spectral and biological activity correlations such as QSAR, QPR, QSR and SAR using Hammett equation with its constants and Swain-Lupton's^[3,4, 8,9] constants by single and multilinear regression analysis. Recently, Thirunarayanan et al have studied the effect of substituents on spectral data of pyrazolecarbothioamides^[8]. Arulkumaran et al have studied the spectral correlation study and predict the substituent effects on the spectral frequencies on pyrimidine carboxamides^[10]. Thirunarayanan and Sekar^[11-14] have studied the spectral linearity of some oxazine thione derivatives, pyrimidine diazenyl benzoic acids, hydrazides and N-acetyl pyrazolines. Mayavel et. al.,^[15] have studied the effect of substituents on some E-Schiff's bases through spectral data using Hammett equation. Kalyanasundaram et al^[16] have studied the spectral linearity of some phenoxyphenyl chalcones. Within

Full Paper

the above view there is no report available for the spectral correlation study of novel (2-naphthyl)-3- (substituted phenyl) bicyclo[2.2.1]hept-5-ene-2-yl)methanones in literature in the past. Therefore the author has taken efforts to prepare the above mentioned methanones and recorded infrared and NMR spectra for studying the spectral correlation analysis.

EXPERIMENTAL

General

Sigma-Aldrich and Merck company chemicals and solvents used in this present study. The infrared spectra of all chalcones were recorded in SHIMADUZ Fourier Transform IR spectrophotometer using KBr discs. The NMR all compounds have been recorded in BRUKER AV 400 type spectrometer, using CDCl₃ as a solvent, 400 MHz have been applied for recording¹H NMR spectra and 100 MHz for recording ¹³C NMR spectra, taking TMS as standard.

Synthesis of (2-naphthyl)-3-(substituted phenyl)bicyclo[2.2.1] hept-5-ene-2-yl) methanones^[2].

The (2-naphthyl)-3-(substituted phenyl) bicyclo [2.2.1] hept-5-ene-2-yl) methanones were synthesized and the purities of the compounds were examined by literature method^[1, 29-31]. Appropriate equimolar quantities of 2-naphthyl chalcones (2 mmol) in 15 mL of ethanol, cyclopentadiene (2 mmol) and 4 g of fly-ash in 20 mL of water were stirred for 6 h at 0–4 °C overnight. Progress of the reaction was moni-

X=H, 3-Br, 3-Cl, 4-Cl, 4-N(CH₃)₂, 4-F, 4-OH, 4-OCH₃, 4-NO₂ Figure 1 : General structure of(2-naphthyl)-3-(substituted phenyl)bicyclo[2.2.1] hept-5-ene-2-yl) methanones

Physical CHEMISTRY An Indian Journal tored by thin-layer chromatography. Dichloromethane (10 mL) was added and the extract was separated by filtration. The filtrate was washed with water, brine (10 mL), dried over anhydrous Na₂SO₄ and concentrated to give a solid product. The crude product was further purified by recrystallization with ethanol. The general structure of (2-naphthyl)-3-(substituted phenyl)bicyclo[2.2.1] hept-5-ene-2-yl) methanones is shown in Figure 1. The physical constants and analytical data of these methanones are presented in TABLE 1. The infrared characteristicstretches (v, cm⁻¹) and NMR chemical shifts (δ , ppm) of methanones are presented in TABLE 2.

RESULTS AND DISCUSSION

Infrared spectral study

In the present investigation, the author have studied the effects of substituents on the characteristic infrared frequencies vCO, $-CH=CH_{op}$ and $>C=C<_{op}$ (cm⁻¹)of (2-naphthyl)-3-(substituted phenyl)bicyclo[2.2.1]hept-5-ene-2-yl)methanones by single and multi-linear regression analysis^{[3, 4, 6, 7, 10-^{20]} using Hammett equation with Hammett substituent constants and Swain-Lupton's constants^[8] F and R parameters. The assigned vCO, $-CH=CH_{op}$ and $>C=C<_{op}$ of (2-naphthyl)-3-(substituted phenyl)bicyclo[2.2.1]hept-5-ene-2-yl)methanones are presented in TABLE 2. In infrared spectral correlations, the Hammett equation was employed as,}

$$\mathbf{v} = \mathbf{\rho}\mathbf{\sigma} + \mathbf{v}_{\mathbf{o}}(\mathbf{1})$$

where v_0 is the frequency for the parent member of the series.

The results of statistical analysis are presented in TABLE 3. TABLE 3 reveals that the single parameter correlation of vCO (cm⁻¹) with Hammett σ , σ^+ , σ_R constants and R parameters gave satisfactory correlations(σ : r=0.909; σ^+ :r=0.905; σ_R : r=928 and R: r=0.907). Remaining Hammett σ_I constant and F parameter were fail in correlations. The single of -CH=CH-_{op} (cm⁻¹) frequencies with Hammett σ , σ^+ , σ_R constants and R parameters gave satisfactory correlations (σ : r=0.907; σ^+ : r=0.906; σ_R : r=0.908and R: r=0.907). Hammett σ_I constant and F parameter

TABLE 1 : The physical constants,	analytical and m	ass fragments	of the of	(2-naphthyl)-3-(su	ıbstituted
phenyl)bicyclo[2.2.1]hept-5-ene-2-yl)m	ethanones				

Entry	X	M.F.	M.W.	Mp(°C)a	Mass (m/z)
1	н	C. H. O	324	116-117	324 [M ⁺], 197, 155, 121, 93,
1	11	C ₂₀ 11 80	524	110 117	77, 68, 52, 42, 29, 27
2	3-Br	CaoHioBrO	403	127-128	403 [M ⁺], 405 [M ²⁺], 323, 247, 231,
-	5 151	020119010	105	12, 120	203, 196, 120, 111, 79,77, 35, 29
3	3-C1	C ₂₀ H ₂₀ ClO	358	142-143	358 [M ⁺], 360 [M ²⁺], 323, 247,
C	0.01	020119010	000	1.2 1.0	231, 203, 155, 127, 111, 77, 35, 29
4	4-C1	CaoHaoClO	358	142-143	358 [M ⁺], 360 [M ²⁺], 323, 247, 231,
		020119010	000	1.2 1.0	203, 155, 127, 111, 77, 35, 29
5	$4-N(CH_2)_2$	CacHaeNO	367	128-129	367 [M ⁺], 352, 337, 323, 247, 240,
-		- 2023- * -			212, 155, 127, 120, 93, 77, 15
6	4-F	C ₂₀ H ₁₀ FO	342	130-132	342 [M ⁺], 344 [M ²⁺], 323, 247, 187,
		20 19 -			155, 127, 95, 93, 77, 29, 19
7	4-OH	$C_{20}H_{20}O_{2}$	340	152-153	340 [M ⁺], 323, 247, 213, 185, 169,
		20 20 2			155, 127, 93, 77, 29, 17
8	4-OCH ₃	$C_{25}H_{22}O_{2}$	354	120-121	354 [M ⁺], 339, 323, 247, 199, 155,
	5	25 22 2			107, 93, 91, 77, 31, 15
9	$4-NO_2$	$C_{24}H_{19}NO_{3}$	369	132-134	309 [M] J, 323, 247, 242, 214, 155,
	=				127, 122, 93, 88, 77, 46, 27, 15

a=Ref. 2

 TABLE 2 : Infrared and NMR spectroscopic data of (2-naphthyl)-3-(substituted phenyl)bicyclo[2.2.1]hept-5-ene-2-yl)methanones

E-4	v		IR , v(cm ⁻¹)										
Entry	Δ	CO	CH=CH _{op}	C=C _{op}	$H_1(dd)$	$\mathbf{H}_{2}(t)$	H ₃ (<i>t</i>)	$H_4(dd)$	$\mathbf{H}_{5}(d)$	$\mathbf{H}_{6}(d)$	$H_7(dd)$	$\mathbf{H}_{7a}(dd)$	
1	Н	1662	1062	675	2.66	3.19	3.62	2.02	5.50	5.93	2.15	1.58	
2	3-Br	1648	1046	608	2.88	3.22	3.65	2.72	5.49	5.96	2.14	1.54	
3	3-C1	1659	1055	673	2.85	3.76	3.58	2.86	5.40	5.98	2.20	1.63	
4	4-Cl	1653	1063	614	2.49	3.88	3.5	2.55	5.01	5.10	2.13	1.48	
5	$4-N(CH_3)_2$	1644	1046	613	2.78	2.61	3.48	2.73	5.49	5.96	2.67	1.40	
6	4-F	1628	1050	667	2.84	3.76	3.68	2.83	5.57	5.68	2.56	1.63	
7	4-OH	1637	1019	671	2.85	3.66	3.99	2.72	5.47	5.77	2.72	1.75	
8	$4-OCH_3$	1655	1035	633	2.81	2.82	3.18	2.71	5.58	5.62	2.55	1.56	
9	$4-NO_2$	1685	1087	682	3.03	3.75	3.58	2.75	5.96	5.39	2.20	1.44	
Entw	X	¹³ C NMR δ(ppm)											
Entry		CO	C1	C_2	C ₃	C ₄	C 5	C ₆	C ₇	$C_{1'}$	$C_{1''}$	Cipos	
1	Н	190.53	40.33	54.47	46.03	50.29	135.47	45.86	130.02	127.29	127.24	190.53	
2	3-Br	190.53	40.34	54.81	46.22	50.37	135.64	45.41	129.85	136.96	148.48	190.53	
3	3-C1	189.57	39.37	54.98	38.42	48.44	135.83	45.87	131.15	142.96	127.49	189.57	
4	4-Cl	190.15	41.16	54.08	46.07	51.29	135.17	46.83	130.12	144.85	132.48	190.15	
5	4-N(CH ₃) ₂	190.55	41.20	54.81	45.19	50.37	135.27	46.22	130.25	136.26	148.80	190.55	
6	4-F	191.37	42.81	54.03	46.27	50.90	135.37	47.17	131.05	142.34	161.40	191.37	
7	4-OH	189.21	42.72	54.22	46.21	51.32	135.62	46.74	131.19	129.30	158.29	189.21	
8	$4-OCH_3$	190.05	42.72	54.77	46.17	51.32	135.58	45.86	131.97	139.49	158.82	190.05	
9	4-NO ₂	189.39	43.72	52.48	44.54	50.36	135.72	46.57	132.01	153.29	146.82	189.39	

were fail in correlations. The single of >C=C $<_{op}$ (cm⁻¹) frequencies with Hammett σ and σ +gave satisfactory correlations(σ : r=0.963 and σ +: r=0.903). The

Hammett σ^+ , σ_I constants, F and R parameters gave poor correlations.. All correlations gave positive ρ values. This implies that the normal substituent ef-

Figure 2 : The resonance-conjugative structure

fect operates in all systems. The fail in correlation was due to the inability of prediction of effect of substituents on the frequencies along with the resonance-conjugative structure as shown in Figure 2

In single parameter correlations of characteristic infrared frequencies vCO, $-CH=CH_{op}$ and $>C=C<_{op}$ (cm⁻¹)of (2-naphthyl)-3-(substituted phenyl)bicyclo[2.2.1] hept-5-ene-2-yl)methanones with Hammett substituents and F and R parameters, some of them produced poor correlation coefficients. While seeking in multi-parameter correlations of these frequencies with Swain-Lupton's constants^[8] gave satisfactory correlation coefficients. The generated multi-linear regression analysis equations are shown in (2-7).

$$vCO(cm^{-1}) = 1669.49(\pm 8.809) + 6.222(\pm 1.760)\sigma_{I} + 59.842(\pm 15.760)\sigma_{R}$$
(2)

$$(R = 0.984, n = 9, P > 95\%) + vCO(cm^{-1}) = 1670.10(\pm 9.741) + 12.051(\pm 1.854)F + 35.588(\pm 11.737)R$$
(3)

$$(R = 0.977, n = 9, P > 95\%) + v-CH = CH_{-op}(cm^{-1}) = 1061.10(\pm 11.700) + 14.987(\pm 2.259)\sigma_{I} + 58.701(\pm 20.868)\sigma_{R}$$
(4)

$$(R = 0.979, n = 9, P > 95\%) + v-CH = CH_{-op}(cm^{-1}) = 1060.40(\pm 11.756) + 13.047(\pm 2.232)F + 37.955(\pm 14.161)R$$
(5)

$$(R = 0.976, n = 9, P > 95\%) + v-CH = CH_{-op}(cm^{-1}) = 656.85(\pm 29.455) + 6.353(\pm 2.566)\sigma_{I} + 42.628(\pm 12.516)\sigma_{R}$$
(6)

$$(R = 0.934, n = 9, P > 90\%) + 18.432(\pm 51.646)F + 28.316(\pm 32.689)R$$
(7)

$$(R = 0.937, n = 9, P > 90\%)$$

¹H NMR spectral study

TABLE 3 : Results of statistical analysis of IR spectral data of (2-naphthyl)-3-(substituted phenyl) bicyclo [2.2.1] hept-5-ene-2-yl) methanones with Hammett σ , σ^+ , σ_{μ} , σ_{μ} constants, F and rparameters

Frequency	Constant	r	Ι	ρ	S	n	Correlated derivatives		
20 (⁻¹)	σ	0.906	1651.10	22.063	13.82				
	σ^{+}	0.905	1654.49	11.012	14.76				
	$\sigma_{\rm I}$	0.812	1647.26	14.348	17.10	0	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-		
VCO(cm)	σ_{R}	0.928	1666.38	58.018	9.35	9	OCH ₃ , 4-NO ₂		
	F	0.803	1653.41	2.820	17.42				
	R	0.907	1664.94	34.298	11.33				
	σ	0.907	1049.73	30684	14.03				
	σ^{+}	0.906	1054.62	16.239	15.10		H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ , 4-NO ₂		
vCH=CH _{op} (cm ⁻	$\sigma_{\rm I}$	0.881	1039.30	34.666	18.71	0			
1)	σ_{R}	0.901	1067.16	62.860	12.69	9			
	F	0.823	1042.60	23.056	19.58				
	R	0.907	1065.91	39.333	13.50				
	σ	0.963	647.27	20.946	31.37				
	σ^{+}	0.903	651.06	13.379	30.97				
$vC=C_{op}(cm^{-1})$	$\sigma_{\rm I}$	0.814	641.02	21.006	32.50	0	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-		
	σ_{R}	0.834	659.56	44.491	31.67	9	OCH ₃ , 4-NO ₂		
	F	0.819	638.51	25.900	32.34				
	R	0.835	659.57	30.264	30.18				

r=correlation coefficient; I= intercept; p=slope; s=standard deviation; n=number of correlated derivatives

39

TABLE 4 : Resultsofstatisticalanalysis	of ¹ H MNR spectral data of (2-naphthyl)-3-(substitut	ed phenyl)bicyclo [2.2.1]
hept-5-ene-2-yl)methanones with Ham	mett σ , σ^+ , σ_{I} , σ_{R} constants, F and Rparameters	

Frequency	Constant	r	I	ρ	s	n	Correlated derivatives
i v	σ	0.829	2.793	0.098	0.15		
	σ^{+}	0.818	2.805	0.035	0.15		
SU (nnm)	$\sigma_{\rm I}$	0.804	2.699	0.280	0.14	0	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ , 4-
on ₁ (ppiii)	σ_{R}	0.801	2.816	0.071	0.16	9	NO ₂
	F	0.845	2.683	0.301	0.13		
	R	0.821	2.803	0.012	0.14		
	σ	0.906	3.368	0.664	0.37		
	σ^{+}	0.916	3.482	0.391	0.36		
$\delta H_2(nnm)$	σ_{I}	0.907	2.879	0.491	0.35	9	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ , 4-
0112(ppiii)	σ_{R}	0.837	3.589	0.736	0.45		NO_2
	F	0.906	2.905	1.304	0.37		
	R	0.848	3.632	0.617	0.43		
	σ	0.806	3.582	0.028	0.22		
	σ^{+}	0.803	3.589	0.225	0.22		
δH (ppm)	σ_{I}	0.811	3.554	0.085	0.22	Q	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ , 4-
011 ₃ (ppiii)	σ_{R}	0.802	3.589	0.018	0.22)	NO ₂
	F	0.815	3.528	0.145	0.22		
	R	0.801	3.580	0.100	0.22		
	σ	0.804	2.651	0.045	0.26		
	σ^{+}	0.800	2.651	0.145	0.27		
	σ_{I}	0.906	2.404	0.706	0.21	0	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ , 4-
oH ₄ (ppm)	σ_{R}	0.803	2.547	0.425	0.24	9	NO ₂
	F	0.906	2.367	0.748	0.19		
	R	0.817	2.556	0.265	0.25		
	σ	0.824	5.489	0.133	0.25		
	σ^{+}	0.815	5.506	0.047	0.25		
STT ()	σ_{I}	0.819	5.419	0.219	0.25	0	H 3-Br 3-Cl 4-Cl 4-N(CH ₂) ₂ 4-F 4-OH 4-OCH ₂ 4-
$\delta H_5(ppm)$	σ _R	0.806	5.563	0.788	0.25	9	NO_2
	F	0.800	5.385	0.291	0.25		
	R	0.815	5.534	0.100	0.25		
	σ	0.803	5.722	0.221	0.30		
	σ^+	0.802	5.689	0.131	0.31		
_	σ	0.841	5.945	0.667	0.28		H 3-Br 3-Cl 4-Cl 4-N(CH.), 4-F 4-OH 4-OCH. 4-
δH ₆ (ppm)	σ ₁	0.823	5 634	0.302	0.31	9	NO_2
	F	0.841	5.920	0.548	0.29		
	R	0.821	5.621	0.240	0.31		
	σ	0.907	2.939	0.438	0.16		
	σ^+	0.908	2 317	2 631	0.14		
	о С-	0.832	2.517	2 361	0.25		$\mathbf{H} = \mathbf{P}_{\mathbf{m}} = \mathbf{C} \left[\mathbf{A} = \mathbf{C} \left[\mathbf{A} = \mathbf{N} \right] \left[\mathbf{C} = \mathbf{H} \right] \right] \mathbf{A} = \mathbf{A} = \mathbf{C} \left[\mathbf{A} = \mathbf{C} \left[\mathbf{A} = \mathbf{C} \right] \mathbf{A} = \mathbf{C} \left[\mathbf{A} = $
δH ₇ (ppm)	ο ₁	0.002	2.127	0.900	0.13	9	n_{3} $(Cn_{3})_{2}$, 4 - r_{1} , 4 - OCn_{3}
	о _к Е	0.900	2.145	0.064	0.15		
	R	0.000	02 139	0.621	0.20		
	π	0.913	1 5 5 8	0.021	0.11		
	υ σ ⁺	0.011	1.556	0.020	0.11		
	0	0.000	1.550	0.003	0.11		
δH _{7a} (ppm)	OI -	0.801	1.538	0.048	0.11	9	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ , 4-NO ₂
	σ _R F	0.811	1.528	0.111	0.11		
	г	0.003	1.540	0.026	0.11		
	K	0.812	1.545	0.036	0.11		

r=correlation coefficient; I= intercept; p=slope; s=standard deviation; n=number of correlated derivatives

PCAIJ, 11(1) 2016

Full Paper

In NMR spectral correlations, the Hammett equations was taken as,

 $\delta = \delta_0 + \rho \sigma \tag{8}$

where δ_0 is the chemical shift of the corresponding parent compound.

The characteristic proton chemical shifts(δ , ppm) $H_1, H_2, H_3, H_4, H_5, H_6, H_7$ and H_{7_0} of (2-naphthyl)-3-(substituted phenyl)bicyclo[2.2.1] hept-5-ene-2yl)methanones were assigned and tabulated in TABLE 2. The H_1 , H_4 , H_7 and H_{7a} protons gave double doublets (dd). The H_2 and H_3 protons gave triplets(t). The H_5 and H_6 protons gave doublets(d). These chemical shifts (δ , ppm) were correlated with Hammett substituent constants, F and R parameters. The results of statistical analyses are presented in TABLE 4. TABLE 4 reveals that the chemical shifts(δ , ppm) of H₁, H₃, H₅, H₆ and H₇, protons were fail and produce poor correlation with Hammett substituent constants, F and R parameters in single regression analysis. The chemical shift(δ , ppm) of H₂ proton with Hammett σ , σ^+ , σ_1 constants and F parameters gave satisfactory correlations (σ : r=0.906; σ^+ : r=0.916; σ_r : r=907 and F: r=0.906) in single regression analysis. The Hammett $\sigma_{\!_R} constant$ and Rparameter were fail in correlations. The fail in correlation is due to the complete absence of resonance effects of substituents and inability of prediction of substituent effects on the δH_{γ} protons along with the conjugative structure as shown in Figure 2. The correlation of δH_{4} with Hammett σ_{1} constant and F parameter were satisfactory (σ_1 : r=906 and F: r=0.906). The remaining Hammett σ , σ^+ , σ_R constants and R parameters gave poor correlations. The inductive and field effects of the substituents predict the reactivity on this proton. A satisfactory correlations were obtained for H_7 proton chemical shifts (δ , ppm) with Hammett σ , σ^+ , σ_R constants and R parameters (σ : r=0.907; σ^+ : r=0.908; σ_R : r=908 and R: r=0.913) in single regression analysis. The Hammett σ_1 constants and F parameters gave poor correlations. All correlations gave positive ρ values. This positive ρ values implies that the normal correlations operates in all system. The reason for fail and poor correlation was already stated and along with the resonanaceconjugtive structure ash shown in Figure 2.

Some of the single parameters correlation of

Physical CHEMISTRY Au Indian Journal chemical shifts(δ , ppm) of H₁, H₃, H₅, H₆ and H_{7a} protons were fail and produce poor correlation coefficients with Hammett substituent constants, F and R parameters^[8]. While seeking in multi-regression analysis, these protons gave satisfactory correlations with σ_{I} and σ_{R} constants and Swain-Lupton's parameters. The multi-regression analysis equations are given in (9-24).

 $\delta H_1(ppm) = 2.695(\pm 0.140)$ $+0.284(\pm0.024)\sigma_{I}$ $+0.011(\pm0.004)\sigma_{R}$ (9) (R=0.940, n=9, P > 90%) $\delta H_1(ppm) = 2.673(\pm 0.127)$ $+ 0.306(\pm 0.024)F + 0.019(\pm 0.001)R$ (10)(R = 0.945, n = 9, P > 90%) $\delta H_2(ppm) = 3.002(\pm 0.325)$ $+1.375(\pm0.628)\sigma_{I}$ +0.333(±0.058) σ_{R} (11)(R=0.972, n=9, P > 95%) $\delta H_{2}(ppm) = 3.313(\pm 0.292)$ $+1.173(\pm0.557)F$ $+0.493(\pm0.035)R$ (12)(R = 0.974, n = 9, P > 95%) $\delta H_{a}(ppm) = 3.551(\pm 0.215)$ $+0.087(\pm0.021)\sigma_{I}$ +0.064(±0.004) σ_{R} (13)(R=0.908, n=9, P > 90%) $\delta H_3(ppm) = 3.516(\pm 0.199)$ + $0.152(\pm 0.034)$ F + $0.026(\pm 0.002)$ R (14)(R = 0.916, n = 9, P > 90%) $\delta H_4(ppm) = 2.143(\pm 0.124)$ $+0.948(\pm0.241)\sigma_{I}$ +0.704(±0.222) σ_{R} (15)(R=0.987, n=9, P > 95%) $\delta H_4(ppm) = 2.201(\pm 0.130)$ + $0.844(\pm 0.248)$ F + $0.354(\pm 0.157)$ R (16)(R = 0.984, n = 9, P > 95%) $\delta H_5(ppm) = 5.503(\pm 0.237)$ $+0.141(\pm 0.045)\sigma_{I} +0.226(\pm 0.042)\sigma_{R}$ (17)(R=0.928, n=9, P > 90%) $\delta H_5(ppm) = 5.419(\pm 0.221)$ + 0.271(±0.042)F +0.037(±0.002)R (18)(R = 0.928, n = 9, P > 90%) $\delta H_{c}(ppm) = 5.901(\pm 0.268)$ $+0.621(\pm 0.051)\sigma_{r} +0.114(\pm 0.047)\sigma_{p}$ (19) (R=0.949, n=9, P > 90%) $\delta H_{c}(ppm) = 5.832(\pm 0.754)$ + $0.498(\pm 0.048)$ F + $0.187(\pm 0.030)$ R (20)(R = 0.946, n = 9, P > 90%) $\delta H_{7}(ppm) = 2.169(\pm 0.130)$ $+0.610(\pm 0.251)\sigma_{I} +0.882(\pm 0.232)\sigma_{R}$ (21)

TABLE 5 : Resultsofstatisticalanalysis of ¹³ C MNR spectral data of (2-naphthyl)-3-(substituted phenyl)biyclo [2.2.1
hept-5-ene-2-yl)methanones with Hammett σ , σ^+ , $\sigma_{_{I}}$, $\sigma_{_{R}}$ constants, F and Rparameters

Frequency	Constant	r	Ι	ρ	S	n	Correlated derivatives
	σ	0.820	190.16	0.309	0.71		
	σ^{+}	0.811	190.13	0.100	0.72		
	$\sigma_{\rm I}$	0.811	190.31	0.469	0.72	0	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ , 4-
oCO(ppm)	σ_{R}	0.830	189.91	0.925	0.69	9	NO ₂
	F	0.804	190.97	0.136	0.73		
	R	0.824	199.98	0.461	0.70		
	σ	0.802	41.60	0.651	1.55		
	σ^{+}	0.811	41.55	0.219	1.54		
δC (nnm)	σ_{I}	0.813	40.85	2.089	1.47	0	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ , 4-
OC_1 (ppin)	σ_{R}	0.812	41.40	0.769	1.54	7	NO ₂
	F	0.846	40.46	2.941	1.38		
	R	0.816	41.35	2.666	1.53		
	σ	0.905	54.34	0.926	0.68		
	σ^{+}	0.881	54.96	0.429	0.73		
$\delta C_{s}(ppm)$	$\sigma_{\rm I}$	0.905	54.21	1.588	0.68	9	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ , 4-
oc ₂ (ppiii)	σ_{R}	0.905	53.87	1.683	0.69	,	NO ₂
	F	0.905	53.98	1.803	0.68		
	R	0.814	53.94	0.954	0.72		
	σ	0.831	45.11	1.794	2.57		
	σ^{+}	0.829	44.82	1.966	2.59		
$\delta C_2(ppm)$	σ_{I}	0.821	45.89	2.507	2.65	9	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ , 4-
-341 /	σ_{R}	0.820	44.47	2.150	2.66		NO ₂
	F	0.808	45.38	0.963	2.70		
	R	0.822	44.41	0.616	2.64		
	σ	0.836	50.55	0.721	0.89		
	σ_{+}	0.836	50.43	0.417	0.89		
δC ₄ (ppm)	σ_{I}	0.809	50.64	0.362	0.95	9	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ , 4-NO
	σ _R	0.832	50.20	1.245	0.90		
	F	0.802	5048	0.096	0.96		
	K	0.832	50.22	0.799	0.91		
	σ σ+	0.845	135.50	0.218	0.20		
	0	0.845	135.54	0.110	0.20		
$\delta C_{5,6}(ppm)$	o _I	0.831	135.40	0.303	0.21	9	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH_3) ₂ , 4-F, 4-OH, 4-OCH ₃ , 4-NO
	O _R	0.030	125.00	0.546	0.21		
	Г Р	0.815	135.42	0.174	0.21		
	к л	0.837	4678	0.224	0.21		
	σ ⁺	0.807	46.70	0.056	0.61		
	0 G	0.328	45.27	0.050	0.58		H = 3 Br = 3 Cl = 4 Cl = 4 N(CH) = 4 E = 4 OH = 4 OCH = 4
$\delta C_7(ppm)$	σ_{r}	0.824	46.13	0.896	0.89	9	NO ₂ NO ₂
	_{Эк} F	0.905	45 79	1.277	0.53		2
	R	0.821	46.15	0.340	0.60		
		0.021	10.15	0.010	0.00		

Frequency	Constant	r	Ι	ρ	S	n	Correlated derivatives
δC ₁ (ppm)	σ	0.815	130.82	0.288	0.86		
	$\sigma^{\scriptscriptstyle +}$	0.806	130.88	0.073	0.87		
	$\sigma_{\rm I}$	0.839	130.32	1.458	0.80	0	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ ,
	σ_{R}	0.800	130.84	0.011	0.88	7	4-NO ₂
	F	0.842	130.26	1.541	0.79		
	R	0.801	130.88	1.330	0.88		
δC ₁ "(ppm)	σ	0.911	138.71	10.367	7.32		
	σ^+	0.903	141.16	6.341	7.00		
	$\sigma_{\rm I}$	0.817	134.71	0.376	11.64	0	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ ,
	σ_{R}	0.800	139.74	0.015	13.68	9	4-NO ₂
	F	0.811	140.71	0.617	11.68		
	R	0.843	141.76	0.117	10.11		
δC _{ipso} (ppm)	σ	0.906	134.55	11.46	6.49		
	σ^{+}	0.905	130.22	5.231	7.28		
	σ_{I}	0.918	128.77	26.635	4.93	0	H, 3-Br, 3-Cl, 4-Cl, 4-N(CH ₃) ₂ , 4-F, 4-OH, 4-OCH ₃ ,
	σ_{R}	0.833	132.04	11.291	8.02	9	4-NO ₂
	F	0.907	129.27	25.871	5.76		
	R	0.835	132.10	7.962	7.91		

r=correlation coefficient; I= intercept; p=slope; s=standard deviation; n=number of correlated derivatives

(R=0.985, n=9, P > 95%)	
$\delta H_{7}(\text{ppm}) = 2.098(\pm 0.091)$	
+ 0.097(±0.018)F +0.633(±0.120)R	(22)
(R = 0.990, n = 9, P > 95%)	
$\delta H_{7a}(ppm) = 1.513(\pm 0.106)$	
$+0.036(\pm 0.021)\sigma_{I}$ $+0.112(\pm 0.018)\sigma_{R}$	(23)
(R=0.925, n=9, P > 90%)	
$\delta H_{7a}(ppm) = 1.527(\pm 0.101)$	
+ 0.036(±0.019)F +0.040(±0.012)R	(24)
(R = 0.914, n = 9, P > 90%)	

¹³C NMR spectral study

The ¹³C NMR chemical shifts(δ , ppm) of CO, norbornyl ring, C₁, C₁, and ipso carbons of (2-naphthyl)-3-(substituted phenyl)bicyclo [2.2.1] hept-5ene-2-yl)methanones have been assigned and tabulated in TABLE 2. These chemical shifts were correlated with Hammett substituent constants, F and R parameters. The results of statistical analyses are shown in TABLE 5. TABLE 5 reveals that the correlations of CO, C₁, C₃, C₄-C₆ and C₁, chemical shifts (δ , ppm) with Hammett substituent constants, F and R parameters were fail. A satisfactory correlation obtained for C₂ chemical shifts (δ , ppm) with Hammett σ , σ_1 , σ_R constants and F parameters(σ : r=0.902; σ_1 : r=0.905; σ_R : r=0.905 and F: r=0.905).

Physical CHEMISTRY Au Indian Journal The Hammett σ^+ constant and R parameters were fail in correlation. The C_{γ} chemical shifts (δ , ppm) satisfactory correlation with gave F parameter(r=0.905). Remaining Hammett σ , σ^+ , σ_1 , σ_{R} constants and R parameters gave poor correlations. The correlation of $C_{1,i}$ chemical shifts (δ , ppm) with Hammett σ and σ ⁺constants were satisfactory(σ : r= 0.911 and σ^+ :0.903). A poor correlation were obtained for $C_{1,i}$ chemical shifts (δ , ppm) with Hammett σ_{I} , σ_{R} constants, F and R parameters. Hammett σ , σ^{+} , σ_{r} constants and F parameters produce satisfactory correlation (σ : r=0.900; σ ⁺: r=0.905; σ_1 : r=0.918 and F: r=0.907) with C_{inso} carbon chemical shifts (δ , ppm). The resonance component of the substituents was fail in correlations. All correlations gave positive ρ values and it is the evident for the normal substituent effects operates in all system. The reason for failure in correlation was stated earlier and it associated with the resonance-conjugated structure as shown in Figure 2.

In ¹³C NMR spectral correlation of the methanones many single regressions gave poor correlations. When seeking the multi-regressions of these ¹³C NMR chemical shifts (δ , ppm) with σ_{I} , σ_{R} constants or Swain-Lupton's parameters^[8] produced

Full Paper

(33)

(39)

satisfactory correlations. The multi-linear regression analysis equations are presented in (25-44). $\delta CO(npm) = 189.99(+0.658)$

$$+0.168(\pm 0.012)\sigma_{\rm I} +0.876(\pm 0.117)\sigma_{\rm R}$$
(25)

$$(R=0.932, n=9, P>90\%)$$

$$\delta CO(ppm) = 189.86(\pm 0.621)$$

+
$$0.265(\pm 0.112)$$
F + $0.489(\pm 0.075)$ R (26)
(R = 0.925 , n = 9, P > 90%)

$$\delta C_1(ppm) = 40.28(\pm 1.364)$$

$$+2.615(\pm 0.235)\sigma_{\rm I} + 1.530(\pm 0.243)\sigma_{\rm R}$$
(27)
(*B*= 0.020, n = 0, **D**> 00%()

$$(K = 0.939, \Pi = 9, \Gamma > 90\%)$$

 $\delta C (nnm) = 39.99(+1.181)$

$$+ 3.207(\pm 2.244)F + 1.005(\pm 0.142)R$$
(28)

$$(R = 0.952, n = 9, P > 95\%)$$

$$\delta C_{2}(\text{ppm}) = 54.49(\pm 0.583) +1.452(\pm 0.113)\sigma_{\text{I}} +1.255(\pm 0.104)\sigma_{\text{R}}$$
(29)

$$(R=0.965, n=9, P > 95\%)$$

$$\delta C_2(\text{ppm}) = 54.61(\pm 0.558)$$

+1.595(
$$\pm 0.104$$
)F +0.788(± 0.066)R (30)
(R = 0.965, n = 9, P > 95%)

$$\delta C_3(\text{ppm}) = 45.31(\pm 0.215)$$

$$+1.966(\pm 0.481)\sigma_{\rm I} +1.157(\pm 0.445)\sigma_{\rm R}$$
(31)

$$(K = 0.925, n = 9, P > 90\%)$$

 $\delta C (nnm) = 44.65(+2.351)$

$$+ 0.553(\pm 0.014)F + 1.557(\pm 0.283)R$$
(32)
(*R* = 0.923, n = 9, P > 90%)

$$\delta C (\text{nnm}) = 50.187(+0.864)$$

$$+0.631(\pm 0.166)\sigma_{\star} +1.259(\pm 0.015)\sigma_{\star}$$

$$(R=0.932, n=9, P > 95\%)$$

$$\delta C_4(ppm) = 50.08(\pm 0.807)$$

+
$$0.316(\pm 0.015)$$
F + $0.833(\pm 0.097)$ R (34)
(R = 0.933 , n = 9, P > 95%)

$$\delta C_{\epsilon}$$
 (ppm) = 135.51(±20.761)

$$+1.331(\pm 0.117)\sigma_{\rm I} +8.734(\pm 0.817)\sigma_{\rm R}$$
(35)
(R= 0.915, n = 9, P > 90%)

$$\delta C_{c,c}(ppm) = 135.601(\pm 12.361)$$

$$+ 4.017(\pm 0.817)F + 12.361(\pm 0.417)R$$
(36)

$$(R = 0.938, n = 9, P > 90\%)$$

$$\delta C_{\gamma}(\text{ppm}) = 45.564(\pm 0.445)$$

+
$$1.339(\pm 0.084)$$
F + $0.488(\pm 0.053)$ R (38)
(R = 0.990 , n = 9 , P > 95%)

$$\delta C_{1}(ppm) = 130.15(\pm 0.763)$$

$$+1.636(\pm0.147)\sigma_{I}$$
 +0.467(±0.013) σ_{R}

(R=0.941, n=9, P > 90%) $\delta C_{1}(ppm) = 130.20(\pm 0.708)$ $+ 1.547(\pm 0.135)F + 0.124(\pm 0.085)R$ (40)(R = 0.942, n = 9, P > 90%) $\delta C_{1,n}(ppm) = 144.76(\pm 65.31)$ $+13.760(\pm 1.441)\sigma_{r} + 8.361(\pm 0.018)\sigma_{p}$ (41)(R=0.957, n=9, P > 95%) $\delta C_{1,..}(ppm) = 146.68(\pm 31.245)$ + 8.211(±0.171)F +5.643(±1.311)R (42)(R = 0.958, n = 9, P > 95%) $\delta C_{inso}(ppm) = 129.798(\pm 4.655)$ $+28.365(\pm 8.988)\sigma_{I}+2.897(\pm 0.830)\sigma_{R}$ (43)(R=0.989, n=9, P > 95%) $\delta C_{imm}(ppm) = 129.01(\pm 5.121)$

+
$$12.141(\pm 3.214)$$
F +1.331(± 0.877)R (44)

(R = 0.980, n = 9, P > 95%)

CONCLUSIONS

A series containing nine novel (2-naphthyl)-3-(substituted phenyl)bicyclo[2.2.1] hept-5-ene-2yl)methanones have been synthesized by aqueous phase fly-ash catalyzed [4+2] Diels-Alder reaction of 2-naphthyl chalcones and cyclopentadiene according to literature. The assigned characteristic infrared and NMR spectral data are correlated using Hammett equation with Hammett substituent constants, F and R Swain-Lupton's parameters by single and multi-linear regression analysis. From the results of statistical analysis, the effect of substituents on the spectral data has been discussed. Many of the single and multi-parameter correlations gave satisfactory correlation co-efficient.

Novelty and Highlights

Aqueous phase fly-ash catalyzed [4+2] Diels-Alder reaction was performed to synthesis of some novel (2-naphthyl)-3-(substituted phenyl) bicyclo [2.2.1] hept-5-ene-2-yl)methanones.

The synthesized methanones were characterized by their physical constants and spectral data.

The assigned characteristic infrared and NMR spectroscopic data are correlated with Hammett equation using single and multi-linear regression analysis.

Full Paper

The IR and NMR spectroscopic data of novel (2-naphthyl)-3-(substituted phenyl) bicyclo [2.2.1] hept-5-ene-2-yl) methanones have been correlated using Hammett equation with Hammett substituent constants, F and R Swain-Lupton's parameters by single and multi-linear regression analysis. From the results of statistical analysis, theeffect of substituents on the spectral data has been discussed with correlation co-efficient value in all correlations.

NOTES AND REFERENCES

- [1] A.J.Boersma, B.L.Feringa, G.Roelfes; Org.Lett, 9, 3647 (2007).
- [2] G.Thirunarayanan; Q-Science Connect, DOI: http://dx.doi.org/10.5339/connect., 2014.18, (2014)
- [3] G. Thirunarayanan, M. Gopalakrishnan, G. Vanangamudi; Spectrochim. Acta (A), **67**, 1106.
- [4] G.Vanangamudi, M.Subramanian, G.Thirunarayanan; Arabian J.Chem., DOI: 10.1016/ j.arabjc.2013.03.006, (**2013**).
- [5] Spectrossocpyasia
- [6] G.Vanangamudi, M.Subramanian, P.Jayanthi, R.Arulkumaran, D.Kamalakkannan, G.Thirunarayanan; Arabian J.Chem., doi:10.1016/ j.arabjc.2011.07.019, (2011).
- [7] G.Thirunarayanan, K.G.Sekar; J.Saudi Chem.Soc., DOI: 10.1016/j.jscs.2013.12.002, (**2013**).
- [8] C.G.Swain, Jr.E.C.Lupton; J.Am.Chem.Soc, 90, 4328 (1968).
- [9] bio correlation
- [10] R.Arulkumaran, R.Sundararajan, V.Manikandan, V.Sathiyendiran, S.Pazhamalai, G.Thirunarayanan; Int.Lett.Chem.Phys.Lett., **19**(1), 15 (**2014**).

- [11] G.Thirunarayanan, K.G.Sekar; Int.Lett.Chem.Phys.Astro, 17(2), 193 (2014).
- [12] V.Sathiyendiran, K.G.Sekar, G.Thirunarayanan, R.Arulkumaran, R.Sundararajan, D.Kamalakkannan, R.Suresh, V.Manikanadan, R.Vijayakumar, G.Vanangamudi; Int.Lett.Chem.Phys.Astro, 11(1), 33 (2014).
- [13] G.Thirunarayanan, K.G.Sekar, R.Lakshmi Narayanan; Int.Lett.Chem.Phys.Astro., 13(1), 88 (2014).
- [14] G.Thirunarayanan, K.G.Sekar; Int.J.Chem., 3(1), 112 (2014).
- [15] P.Mayavel, K.Thirumurthy, S.Dineshkumar, G.Thirunarayanan; Q-Science Connect, 2014.DOI: http://dx.doi.org/10.5339/connect.2014.10
- [16] N.Kalyanasundaram, S.P.Sakthinathan, R.Suresh, D.Kamalakkannan, S.John Joseph, G.Vanangamudi, G.Thirunarayanan; Int.Lett.Chem.Phys.Astro, 9, 23 (2014).
- [17] P.Janaki, K.G.Sekar, G.Thirunarayanan; J.Saudi Chem.Soc., DOI.10.1016/j.jscs.2012.11.013, (2013).
- [18] G.Thirunarayanan; J.Saudi Chem.Soc., doi:10.1016/ j.jscs.2011.10.011, (2011).
- [19] G.Thirunarayanan, G.Vanangamudi; Arabian J.Chem., DOI:10.1016/j.arabjc.2010.10.034, (2010).
- [20] R.Arulkumaran, R.Sundararajan, S.Vijayakumar, S.P.Sakthinathan, R.Suresh, D.Kamalakkannan, K.Ranganathan, G.Vanangamudi, G.Thirunarayanan; J.Saudhi Chem.Soc., DOI: 10.1016/ j.jscs.2012.09.006, (2012).

Physical CHEMISTRY An Indian Journal