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ABSTRACT 

An estimate of time to reach maximum plasma concentration (tmax) is of paramount importance 

in assessing the efficacy of drugs used to treat acute conditions like pain and insomnia, which can be 

treated by a single dose. This study was conducted to develop Quantitative Structure Pharmacokinetic 

Relationship (QSPR) for the prediction of tmax in men for congeneric series of 24 quinolone drugs, using 

computer assisted Hansch approach. The QSPR correlations were duly analyzed using a battery of apt 

statistical procedures and validated using leave-one-out (LOO) approach. Analysis of several hundreds 

of QSPR correlations developed in this study revealed high degree of cross-validated coefficients (Q
2
) 

using LOO method (p<0.001). The overall predictability was found to be high (R
2 
= 0.9147 F=33.96 

S
2
=0.0748, Q

2
=0.8046 p<0.001). Both logarithmic transform and inverse transform of the tmax value 

resulted in decrease in correlation coefficient (for Log tmax, R
2
= 0.8636 and for 1/tmax, R

2
= 0.8701). 

Topological and electrostatic parameters were found to primarily ascribe the variation in tmax. The results 

indicate the involvement of dissolution rate limited absorption rather than permeation limited, as hardly 

any dependence on Log P was observed. 

Keywords : Quantitative structure pharmacokinetic relationships (QSPR), Time of peak plasma 

concentration (tmax), In Silico ADME, Quinolones. 
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INTRODUCTION 

Traditionally, drugs were discovered by testing compounds synthesized in time-

consuming multistep processes against a battery of in vivo biological screens1. Promising 

compounds were then further studied in development, where their pharmacokinetic 

(ADME) properties and potential toxicity were investigated. Adverse findings were often 

made at this stage, with the result that the project would be halted or retarded to find 

another clinical candidate, an unacceptable burden on the research and development budget

of any pharmaceutical company2. Today, this paradigm has been re-worked in several 

ways, as the in vitro approaches are widely practical to investigate the ADME properties of 

new chemical entities3. More recently, in silico modeling has been investigated as a tool to 

optimize selection of the most suitable drug candidates for development. The use of 

computational models in the prediction of ADME properties has been growing rapidly in 

drug discovery, as they provide immense benefits in throughput and early application of 

drug design4. 

Time of peak plasma concentration (tmax) value of a drug is vital pharmacokinetic 

parameter because it is directly related to the bioavailability and can be used in assessing 

the efficacy of drugs used to treat acute conditions like pain and insomnia which can be 

treated by a single dose. Hence, it is important to predict the tmax value of drug leads during 

drug discovery so that compounds with acceptable rate of absorption can be identified and 

those with poor bioavailability can be eliminated. Traditinally, the tmax value of a drug 

candidate is obtained via in vivo studies, which tends to be quite arduous, time consuming 

and expensive. Therefore, a computational QSPR modeling method, has recently been 

explored for predicting the tmax value of drug candidates in an effort to eliminate 

undesirable agents in a fast and cost effective manner5. The major aim of in silico QSPR is 

to enable the drug designer to modify the chemical structure of a pharmacodynamically 

active drug so that its pharmacokinetic properties may be altered without compromising 

pharmacodynamic potential6. The major advantage of QSPR lies in the fact that once such 

a relationship is ascertained with adequate statistical degree of confidence, it can be a 

valuable assistance in the prognosis of the behaviour of new molecules, even before they 

are actually synthesized. An early assessment of ADME properties will help 

pharmaceutical scientists to select the best drug candidate for development as well as to 

reject those with a low plausibility of success7. Also, these In Silico QSPR techniques tend 

to save considerable amount of time, money, animal life and involvement of “normal, 

healthy and drug-free volunteers” required for conducting the experimental 

pharmacokinetic studies, but also the expertise of pharmacokinetists and drug designers4. 
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The current study was conducted to investigate in silico QSPR amongst various 

quinolone drugs for tmax. Quinolones were chosen for QSPR as this category of drugs has 

extensively been used as antimicrobial agents in the treatment of serious infections. Also, 

quinolones consist of significant number of compounds thoroughly investigated for their 

pharmacokinetic performance particularly tmax (n=24). Further, the congeners in this class 

have many common pharmacokinetic characteristics, mechanism and degree of affinity 

with body tissues, etc. 

Construction of QSPR 

Construction of a typical QSPR model involves pharmacokinetic parameters, 

structural parameters (descriptors) and statistical techniques (Fig.1). 

 

Fig. 1:  

Methods 

QSPR was conducted amongst quinolone drugs employing extra-thermodynamic 

Multi Linear Regression Analysis (MLRA or Hansch) approach. The general steps for 

developing QSPR model include data set selection, chemical structure entry, 3D structure 

generation and descriptor calculation, model construction that involves selection of 
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descriptors and validation of testing set using a Pentium dual core (Intel, USA) Desktop 

(IBM, USA) with 1GB RAM and 160 GB Hard Disk. 

Dataset selection 

24 Quinolones with known human tmax values were selected from literature 
8-13. In 

order to ensure that experimental variations in determining tmax do not significantly affect 

the quality of our datasets, only tmax values obtained from healthy adult males after oral 

administration of drug were used for constructing the dataset. The tmax value of each of 

these compounds was also log-transformed (Log tmax) and inverse transformed (1/tmax) to 

normalize the data to reduce unequal error variance. 

Molecular structure and descriptors 

Chemical structures were drawn using suitable templates under Chem3D software 

pro v.3.5. (Cambridge Soft Corporation, Cambridge, MA) and HyperChem 8.05 

(hypercube, Inc. USA) software. Energy minimization was carried out using MM2 force 

field routine(s) and the files were saved as MDL molfiles. Molfiles generated by Chem3D 

were exported to DRAGON software, and as many as 1497 diverse descriptors, viz.

constitutional, geometrical, topological, Whim3D, electronic, electrostatic etc. were 

calculated. Molfiles were also transferred to CODESSA 2.0 software (Semichem, 

Shawnee, USA) for calculation of more molecular descriptors. 

Multivariate statistical analyses 

Attempts were made to correlate various descriptors with the tmax values. The initial 

regression analysis was carried out using heuristic analysis followed by best MLRA 

(RGMS) options of CODESSA software. All the descriptors were checked to ensure that 

value of each descriptor was available for each structure and there is a significant variation 

in these values. Descriptors for which values were not available for every structure in the 

data in question were discarded. Thereafter, the one and multiple parameter correlation 

equations for each descriptor were calculated.  

Pharmacokinetic data of tmax parameter available for 24 quinolones were analyzed, 

limiting the ratio of descriptors: drug to 1:4. As a final result, the heuristic method yields a 

list of the best ten correlations each with the highest r2 and F-values. Many such attempts 

were carried out to obtain significant correlations for quinolones. A set of important 

descriptors found to significantly ascribe the variation of tmax, was constructed. Further, a 

search for the multi-parameter regression with the maximum predicting ability was 

performed. A number of sets of descriptors were thus made and MLRA performed with 
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tmax. Regression plots of each correlation thus attempted were examined. Residual plots 

were also examined for absence of randomization and distinct patterns to eliminate chance 

correlations.  

Validation of testing set 

The predictability of the final models was tested by LOO method. Briefly, the 

descriptors of one compound are removed, the model is rederived and the target properties 

of the removed compound are predicted. This process is repeated until all target properties 

have been predicted once for each drug. A value of cross-validated R2, commonly called 

Q2, is then computed analogous to the conventional R2 according to equation (1).  

 

Q
2
= 1  −

∑ −

∑ −

( )

( )

y   y

y   y

pred obs

obs mean

2

2
 … (1) 

A model with good predictive performance has a Q2 value close to 1, models that 

do not predict better than merely chance alone can have negative values. 

The F-values were computed according to Equation (2). 

 

F = 
S

S

2
1

2
1
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where, S1 is variance between samples and S2 is variance within samples. 

The values of computed F-ratio were compared with the critical values tabulated in 

statistical texts and levels of significance discerned. The correlations found to be 

statistically significant were compiled from CODESSA software. 

RESULTS AND DISCUSSION 

Variable QSPR results were obtained following application of multivariate 

statistical analysis on quinolone drugs. Thousands of such correlation and regression 

analysis were attempted choosing all the possible combination of available descriptors, 

each yielding an elaborate output. The concise results of only those correlations which 

were found to be statistically significant, usually at 5% level or less, and/or which have 

important applications have been taken into consideration. Time to reach maximum plasma 

concentration is a negative indicator of the rate of absorption of a drug8. Good QSPR 

correlations were obtained for the value of tmax for quinolone drugs. Table 1 shows steller 
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dependence of tmax upon various topological parameters, e.g. SPI, Jhetp, PW5 etc. and 

electrostatic parameters, e.g., FNSA-2, HACA-2, Qhmin etc. Influence of constitutional 

parameters like Orel & Srel was also noticed during multi-parameter studies. Both 

logarithmic (Fig. 2) and inverse transform (Fig. 3) of the tmax value resulted in decrease in 

correlation coefficient but the residuals were more evenly distributed around the mean for 

logarithmic transformation of the tmax value. 

Table 1 : Significant QSPR polynomial equations along with the statistical 

parameters for a series of 24 quinolones, using time of peak plasma 

concentration (tmax) as the pharmacokinetic parameter  

Equations m R
2
 F S

2
 Q

2
 p< 

tmax = - 1.1032 + 1.9329 Jhetp 1 0.1323 3.66 0.6026 0.0507 0.1 

tmax = - 3.4817 - 55.022 Orel+ 

80.021 PW5 

2 0.3309 5.69 0.4849 0.1645 0.05 

tmax = 3.9180 + 0.01687 PNSA-2 

+ 0.00085 SPI + 94.049 Srel 

3 0.6767 15.35 0.2449 0.4694 0.001 

tmax = 31.287 + 0.01834 PNSA-2 

+ 0.00096 SPI + 101.66 Srel - 

291.25 QCmax 

4 0.8193 23.80 0.1435 0.6567 0.001 

tmax = 99.515 + 11.769 FNSA-2 + 

0.00084 SPI + 100.24 Srel - 

65.521 TI1 + 1.2396 HACA - 2 

5 0.8710 27.02 0.1075 0.7954 0.001 

tmax = 120.67 + 7.7546 FNSA-2 + 

0.00072 SPI + 112.15 Srel - 

79.458 TI1 + 1.4766 HACA - 2 - 

113.18 QHmin 

6 0.9147 33.96 0.0748 0.8046 0.001 

Log tmax = - 0.60293 + 0.54713 

Jhetp 

1 0.2153 6.59 0.0268 0.1236 0.05 

Log tmax = 1.4111 - 13.402 Qmax-

Qmin + 19.635 PW5 

2 0.4417 9.10 0.0199 0.2983 0.01 

Log tmax = 0.87749 + 22.745 PW5 

- 13.515 Orel - 27.003 QCmin + 

33.891 SPI + 0.064397 TI2- 

49.323 QCmax 

6 0.8636 20.05 0.0059 0.7158 0.001 

Cont… 
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Equations m R
2
 F S

2
 Q

2
 p< 

1/tmax = 0.0796 – 0.00309 PNSA-

2 

1 0.2708 8.91 0.0526 0.1295 0.01 

1/tmax = 2.3377 + 0.01045 TI1 - 

0.31451 KHI1 

2 0.4451 9.23 0.0418 0.2996 0.01 

1/tmax = - 23.223 + 0.01287 TI1 - 

0.29388 KHI1 + 19.925 RCI + 

32.405 QCmin - 42.307 SPI- 

0.22525 X5sol 

6 0.8701 21.21 0.0118 0.7570 0.001 

m - No. of descriptors 

Jhetp - Balaban-type index from electronegativity weighted distance matrix 

Orel - Relative no. of O atoms 

PW5 - path/walk5-Randic Shape Index 

PNSA-2 - PNSA-2 Total charge weighted PNSA [Zefirov’s PC] 

SPI - Superpendentic Index 

Srel - Relative no. of S-atoms 

Qcmax - Max partial charge for C atom [Zefirov’s PC] 

FNSA-2 - FNSA-2 Fractional PNSA (PNSA-2/TMSA) [Zefirov’s PC] 

TI1 - First Mohar Index TI1 

HACA-2 - H-Acceptors charged Surface Area HACA-2 [Zefirov’s PC] 

QHmin - Min partial charge for H atom [Zefirov’s PC] 

Qmax-Qmin - Polarity parameter (Qmax-Qmin) 

QCmin - Min. partial charge for C atom [Zefirov’s PC] 

TI2 - Second mohar index TI2 

KHI1 - Kier and Hall index (order 1) 

X5sol - Solvation connectivity index chi-5 
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Fig. 1 : Linear correlation plot between the values of tmax as reported in literature and 

those predicted using multi-parameter QSPR for a series of 24 quinolones. The inset 

shows the corresponding residual plot. 

 

Fig. 2 : Linear correlation plot between the values of log transform of tmax as reported 

in literature and those predicted using multi-parameter QSPR for a series of 24 

quinolones. The inset shows the corresponding residual plot. 
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Fig. 3 : Linear correlation plot between the values of inverse transform of tmax as 

reported in literature and those predicted using multi-parameter QSPR for a series of 

24 quinolones. The inset shows the corresponding residual plot 

CONCLUSIONS 

In case of quinolones, the joint dependence of tmax values on topological and 

electrostatic parameters signifies the importance of diffusion and ionization of quinolone 

drugs in vivo. The involvement of constitutional parameters like Orel further confirms the 

diffusional contribution in ascribing intra-class variation in tmax values. As hardly any 

dependence upon lipophilic parameters was observed, it signifies that absorption is 

dissolution rate limited rather than permeation limited. Chance correlations, if any, were 

ruled out in the light of high magnitudes of cross-validated variance i.e., Q2, obtained in the 

current QSPR studies. Pharmacokinetic performance of a drug is known to be not merely a 

function of its physicochemical nature, but of the biological system(s) too like somatic, 

psychological, pathological environmental, nutritional, genetic, hereditary and diurnal 

status of the human subjects. This causes a great deal of plausible variation in 

pharmacokinetic profiles amongst the volunteers/ patients undergoing study. The literature 

values of the pharmacokinetic parameters taken up in the present investigations, pertain to 

diverse subject populations hailing from different age groups, genders, races, nutritional 

and physical attributes, etc. studied in different geographical regions under different 
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weather conditions. Considering these potentially high inter-subject and intra-subject 

variations amongst the pharmacokinetic parameters, the currently established relationships 

assume much higher credibility. 
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