Hydrothermal synthesis and crystal structure of Cd(II) complex:
\[\{[\text{Cd}_2(L^1)_2\text{Cl}_4(\text{H}_2\text{O})_2](L^2)_2\}[\text{HL}^1=3-(2\text{-pyridyl})\text{pyrazole, } L^2=5\text{-nitro-1,3-benzenedicarboxylic acid}] \]

Jian-Long Du
College of Chemistry and Environmental Science, Hebei University, Baoding 071002, (P.R.CHINA)
Tel/Fax: +86-312-5079628
E-mail: dujl@mail.hbu.edu.cn
Received: 12th July, 2008 ; Accepted: 17th July, 2008

INTRODUCTION

In the recent years, the synthesis of multi-nuclear and discrete or infinite coordination polymers has attracted great interest in coordination chemistry due to their intriguing topologies and potential applications as functional materials[1-2]. Rational design and synthesis coordination architectures (discrete or infinite) with organic ligands and metal ions is still a long term challenge. Carefully select organic ligand and metal ions are the main keys of crystal engineering. 3-(2-Pyridyl) pyrazole (HL1) as a multifunctional ligand with different coordination modes, was first reported by Tisler and co-workers[3]. After that, HL1 was just considered as a 2,2′-bipyridine like bidentate ligand until 1996, Ward and coworkers observed another coordination mode, acting as a terdentate bridging ligand via deprotonation of the NH group and which can coordinate to a second metal ion[4]. A triple-stranded helical complex has been reported by Lam and co-workers[5]. Therefore, the coordination chemistry of HL1 with some transition metal ions, has been studied by several researchers[6-7]. However, to the best of our knowledge, the Cd(II) complexes with HL1 are reported rarely. Herein, we report the hydrothermal synthesis of a new Cd(II) complex with ligand HL1.

EXPERIMENTAL

1. Synthesis of \{[\text{Cd}_2(L^1)_2\text{Cl}_4(\text{H}_2\text{O})_2](L^2)_2\}

A mixture of CdCl$_2$ (0.2mmol), 3-(2-pyridyl) pyrazole (0.2mmol), 5-nitro-1,3-benzenedicarboxylic acid (0.1mmol), and distilled water (10 mL) was sealed in a 25mL stainless steel reactor with Teflon liner and directly heated to 120°C for two days, then cooled to room temperature during 24 h. Block single crystals were obtained in 20% yield.

2. Structure determination

X-ray single-crystal diffraction data for the cobalt complex was collected on a Bruker Smart 1000 CCD diffractometer at 293(2) K with Mo-Kα radiation (= 0.71073 Å) by scan mode. The program SAINT[8] was used for integration of the diffraction profiles. Semiempirical absorption corrections were applied using SADABS program. All the structures were solved by direct methods using the SHELXS program of the SHELXTL package and refined by full-matrix least-squares methods with SHELXL[9]. Metal atoms in each complex were located from the E-maps and other non-
hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on F^2. Hydrogen atoms of carbon were included in calculated positions and refined with fixed thermal parameters riding on C. Details for structural analysis are summarized in TABLE 1. Selected bond lengths and angles are listed in TABLE 2.

RESULTS AND DISCUSSION

The title compound was obtained as an air-stable colorless solid after heated to 120°C for two days. Single-crystal analysis reveals that though two different ligands have been used in the experiment, only HL1 coordinate to the Cd(II) center, while L2 lies in the crystal lattice as guest molecular. As shown in figure 1, in the complex the Cd(II) adopts a distorted octahedron coordinate geometry, which coordinates to two N atoms of HL1, two O atoms of water molecules, and two Cl$^-$ anions. The distance of Cd–N are 2.117(5) and 2.140(5) Å, the distance of Cd–Cl between 2.069(4) and 2.137(4) Å, and the distance of Cd–O between 2.136(4) and 2.380(5) Å. The angles around Cd(II) are between 90.29(19) and 171.17(19)°, all the distances and angles are in the normal range. It is very interesting that the mononuclear complex forms the dinuclear complex bridging by two Cl$^-$ anions. L2 does not coordinate to the metal center, but there are C–H\cdotsCl weak interactions between the H atoms of L2 and two Cl$^-$ anions [C(16)–Cl(3) = 3.5654 Å, H(16)–Cl(3) = 2.7639 Å, C(16)–H(16)–Cl(3) = 144.852°].

REFERENCES

(c) P.L. Jones, J.C. Jeffery, J.A. McCleverty, M.D. Ward; Polyhedron, 16, 1567 (1997).

