Hydrophobic, topological and steric parameter based QSAR study on peptidic HIV-protease inhibitors

P.P.Singh ${ }^{1 *}$, V.K.Sahu ${ }^{1}$, Pratibha Singh ${ }^{2}$, R.K.Singh ${ }^{2}$
${ }^{1}$ Department of Chemistry, Bareilly College Bareilly, (U.P.), (INDIA)
${ }^{2}$ Department of Chemistry, M.L.K. (P. G.) College Balrampur, (U.P.), (INDIA)
E-mail: dr_ppsingh@sify.com
Received: $3^{\text {rd }}$ May, 2008 ; Accepted: $8^{\text {th }}$ May, 2008

ABSTRACT

Anti-HIV drug discovery has been increasingly focusing on HIV-protease as a potential therapeutic target. QSAR study of three sets of peptidic HIV-protease inhibitors has been studied. The descriptor that have been used are $\log \mathrm{P}$ for the measurement of pharmacokinetics, topological indices (chi0 v and chi1v and KierA1) for the molecular structure quantization, and steric parameters (MR and MW) for the measurement of electronic effect and dipole-dipole interaction at the active site. The values of descriptors that have been used for QSAR models have been evaluated by CAChe software using the by PM3 method. The relationship between various descriptors and inhibitory activity has been presented. The combination of descriptors that provide best QSAR model and have correlation coefficient value above 0.80 is \log P, chilv, KierA1 and MR. The compounds having higher inhibitory activity have been identified on the basis of pharmacokinetics. © 2008 Trade Science Inc. - INDIA

KEYWORDS

Protease inhibitor; QSAR; PM3;
Pharmacokinetics.

INTRODUCTION

Anti-HIV drug discovery has been increasingly focusing on HIV-protease as a potential therapeutic target ${ }^{[1-3]}$. Since HIV-protease is an aspartic protease and its substrate is peptide in nature, a number of peptide derived compounds have been identified as HIV-protease inhibitors ${ }^{[4]}$. These peptidic HIV-protease inhibitors bind to the substrate binding site pocket of the enzyme that has a considerable number of hydrophobic residues ${ }^{[5-7]}$. The amino acids that make up these pockets are Valine-32, Isoleucine-47, Isoleucine-50 and Iso-leucine-84 in each monomer of homodimeric polypeptides of the HIV-protease. Isoleucine and valine have
their hydropathy index 4.5 and 4.2 and are the top hydrophobic amino acids respectively. According to Huff ${ }^{81}$, the inhibitor-enzyme binding is dominated by hydrophobic interaction. Hence the inhibitors must have higher hydrophobicity ${ }^{[9]}$ for strong and effective hydrophobic interaction with hydrophobic amino acids of the binding pocket. Although, the activity of inhibitors increases as their hydrophobicity $(\log P)$ increases but $\log P$ above 5.0 show poor pharmacokinetics ${ }^{[10]}$, including low oral bioavailability and rapid excretion. Since, the pharmacokinetics of a drug is as important to its efficacy as is its pharmacodynamics, both must be optimized in producing a medicinally useful drug. One of the most important empirically based rule ${ }^{[11]}$ formulated by Chris-
topher Lipinski is that a compound is likely to exhibit poor absorption or permeation if its value of $\log \mathrm{P}$ is greater than 5.0. Thus, the most effective drugs are usually a compromise; they are neither too hydrophobic nor too hydrophilic. Recently, $\mathrm{QSAR}^{[12,13]}$ has gained importance in the field of pharmacological sciences. In this paper we present QSARstudy of three sets of peptidic HIV-protease inhibitors from the literature ${ }^{[14,15]}$ with the help of following descriptors:
(i). Log P for the measurement of pharmacokinetics, (ii). Topological indices (chi0v and chilv and KierA1) for the molecular structure quantization, and
(iii). Steric parameters (MR and MW) for the measurement of electronic effect and dipole-dipole interaction at the active site.

THEORY

If the hydrophobicity of a drug is important for its biological activity, then changing the substituents on the drug so as to alter its hydrophobicity will affect its activity. Of course, the biological activities of these drugs (peptidic HIV-protease inhibitors) depend on their hydrophobicities. A measure of the drug's hydrophobicity is its partition coefficient (P) between two immiscible solvents, octanol and water at equilibrium ${ }^{[16,17]}$:
$\log P=\log \left[\frac{\text { Concentration of drug in octanol }}{\text { Concentration of drug in water }}\right]$
Biological activity may be expressed as $1 / C$, where C is the drug concentration required to achieve a specified level of biological function and can be expressed:

$$
\begin{equation*}
\log (1 / C)=k_{1} \log P+k_{2} \tag{2}
\end{equation*}
$$

here k_{1} and k_{2} are constants, where optimum values in this QSAR can be determined by computerized curve-fitting methods.

For compounds with a larger range of $\log \mathrm{P}$ values it is better described by quadratic equation:
$\log (\mathbf{1} / \mathbf{C})=k_{1}(\log P) \mathbf{2}+k_{2} \log P+k_{3}$
The topological indices are molecular connectivity indices and shape index. Molecular connectivity is a method of molecular structure quantization in which weighted counts of substructure fragments are incorporated into numerical indices such as size, branching, unsaturation, hetero atom content and cyclicity which are encoded. Substructures for molecular skeleton are
defined by the decomposition of the skeleton into fragments of atom (zero order, $\mathrm{m}=0$) and one bond paths (first order, $m=1$). The calculation of the indices begins with the reduction of the molecule to hydrogen-suppressed skeleton. The molecular connectivity indices are symbolized by ${ }^{\mathrm{m}} \mathrm{X}_{\mathrm{t}}$. The valence connectivity index ${ }^{[18]}$ of zero (chi0v $={ }^{0} \chi_{t}^{v}$) and first order (chilv $={ }^{1} \chi_{t}^{v}$) is given respectively by eqn- 4 and eqn- 5

$$
\begin{align*}
& { }^{0} \chi_{t}^{v}=\sum_{i=1}^{N s}{ }^{0} C_{i}^{v} \tag{4}\\
& { }^{0} \chi_{t}^{v}=\sum_{i=1}^{N s}{ }^{1} C_{i}^{v} \tag{5}
\end{align*}
$$

where ${ }^{\circ} \mathrm{Ci}^{\mathrm{i}}$ and ${ }^{1} \mathrm{Ci}^{\mathrm{v}}$ are given by eqn- 6 and eqn- 7

$$
\begin{equation*}
{ }^{0} C_{i}^{v}=\prod_{k=1}^{m+1}\left(\delta_{k}{ }^{\mathrm{v}}\right)^{-0.5} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
{ }^{1} C_{i}^{v}=\prod_{k=1}^{m+1}\left(\delta_{k}{ }^{v}\right)^{-0.5} \tag{7}
\end{equation*}
$$

The Kappa shape indices ${ }^{[19]}\left({ }^{\mathrm{m}} \mathrm{K}\right)$ are also a method of molecular structure quantization in which attributes of molecular shape are encoded into kappa values (${ }^{1} \mathrm{~K}$ for first order, ${ }^{2}$ Kfor second order, ${ }^{3} \mathrm{~K}$ for third order, ${ }^{1} \mathrm{~K} \alpha$ for kappa alfa first order). The values of the kappa alpha, order $1\left(\right.$ KierA1 $\left.={ }^{1} \mathrm{~K} \alpha\right)$ can be calculated directly from the equation-.
${ }^{1} \mathrm{~K} \alpha=\frac{(\mathrm{A}+\alpha)[(\mathrm{A}+\alpha)-1]^{2}}{\left({ }^{1} \mathrm{Pi}+\alpha\right)^{2}}$
where α is given by
$\alpha=r(x) / r\left[C\left(s p^{3}\right)\right]-1$
here $\mathrm{r}(\mathrm{x})$ is the covalent radius of atom x and $\mathrm{r}\left[\mathrm{C}\left(\mathrm{sp}^{3}\right)\right]$ is the covalent radius of carbon in sp ${ }^{3}$ state.

Molecular refractivity (MR) is used as a steric parameter ${ }^{[20]}$ and measures the electronic effect also and may reflect the dipole-dipole interaction at the active site,
$M R=\frac{\left[\left(n^{2}-1\right) /\left(n^{2}+2\right)\right] M W}{d}$
where n is the refractive index for the sodium D line, MW is the molecular weight and d is the density of the compound. Molecular weight (MW) is also used as steric parameter.

Full Papor

TABLE 1: First set of derivatives containing 15 compounds and their biological activity in terms of inhibitory activity

Comp. no.	Substituents				R
activity(A)					

Cbz= Carbobenzyloxy, Qua=Quinolinyl-2-Carboxamide
TABLE 2: Second set of derivatives containing 15 compounds and their biological activity in terms of inhibitory activity

Comp. no.	Substituents			Inhibitory $\operatorname{activity}(\mathbf{A})$
	R_{1}	R2	R3	
16	$\mathrm{CH}_{2} \mathrm{Ph}$	H	H	9.60
17	$\mathrm{CH}_{2} \mathrm{Ph}$	Me	H	8.11
18	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	H	OH	9.72
19	$\mathrm{CH}_{2}-4-\mathrm{CF}_{3} \mathrm{Ph}$	H	H	9.59
20	(E) $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHPh}$	H	H	9.64
21	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}$	H	H	9.22
22	$\mathrm{CH}_{2}-4-\mathrm{CH}_{3} \mathrm{Ph}$	H	H	9.54
23	$\mathrm{CH}_{2}-4-\mathrm{NH}_{2} \mathrm{Ph}$	H	H	9.51
24	$\mathrm{CH}_{2}-4-\mathrm{NO}_{2} \mathrm{Ph}$	H	H	9.57
25	$\mathrm{CH}_{2}-4$-OHPh	H	H	9.80
26	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	H	H	7.56
27	CH_{2}-4-IPh	H	H	9.14
28	$\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}$	H	H	8.27
29	$\mathrm{CH}_{2} \mathrm{SPh}$	H	H	9.60
30	$\mathrm{CH}_{2}-4-\mathrm{CMe}_{3} \mathrm{Ph}$	H	H	9.77

Figure 1: Skeleton structure of parent compound of first set

RESULT AND DISCUSSION

Since the skeleton structures of parent compound

TABLE 3: Third set of derivatives containing 11 compounds and their biological activity in terms of inhibitory activity

Comp. no.	Substituents (X)	Inhibitory $\operatorname{activity}(\mathbf{A})$
31	$\mathrm{Ph} \mathrm{CH} 2 \mathrm{NH}-$	6.94
32	$\mathrm{HO}-\mathrm{C}_{5} \mathrm{H}_{6}-\mathrm{NH}-$	7.47
33	$\mathrm{Ph} \mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{NH}-$	6.16
34	HOOC-CH(i-pr)NH-	6.79
35	$\mathrm{MeOOC}-\mathrm{C}_{9} \mathrm{H}_{8}-\mathrm{NH}-$	7.18
36	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{7}(\mathrm{Me}) \mathrm{NH}-$	6.67
37	$\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{10}$-NH-	6.91
38	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}-\mathrm{NH}-$	7.39
39	$\mathrm{C}_{9} \mathrm{H}_{9}$-NH-	6.89
40	$\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{CH}(\mathrm{Me}) \mathrm{NH}-$	6.84
41	$\mathrm{Ph}-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{NH}-$	7.41

TABLE 4.1 : Relationship between $\log P$ and activity of compounds of first set

Comp. no.	Substituents				Inhibitory activity(A)	$\begin{gathered} \mathbf{L o g} \\ \mathbf{P} \end{gathered}$
	R	X	Y	Z		
Subgroup-A						
1	Cbz	H	CHMe_{2}	Me	5.82	1.558
4	Cbz	H	CHMe_{2}	Et	6.48	1.901
5	Cbz	H	CHMe_{2}	i-Pr	6.59	2.314
12	Cbz	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	t-Bu	7.72	2.908
9	Qua	H	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{CH} \\ & \mathrm{Me}_{2} \end{aligned}$	t-Bu	8.52	3.077
Subgroup-B						
14	Cbz	H	4-Py	t-Bu	6.98	1.643
6	Cbz	H	CHMe_{2}	t-Bu	7.46	2.392
8	Cbz	H	$\begin{aligned} & \mathrm{CH}_{2} \mathrm{CH} \\ & \mathrm{Me}_{2} \end{aligned}$	t-Bu	7.89	2.716
11	Qua	H	$\mathrm{C}_{6} \mathrm{H}_{11}$	t-Bu	8.30	3.359
Subgroup-C						
3	Cbz	H	CHMe_{2}	$\mathrm{n}-\mathrm{Pr}$	6.29	2.369
2	Qua	H	CHMe_{2}	$\mathrm{n}-\mathrm{Bu}$	6.90	2.922
10	Cbz	H	$\mathrm{C}_{6} \mathrm{H}_{11}$	t-Bu	7.54	3.72
7*	Qua	H	CHMe2	t-Bu	8.22	2.549
15*	Qua	H	4-Py	$\mathrm{t}-\mathrm{Bu}$	7.72	1.664
13*	Qua	H	C6H5	$\mathrm{t}-\mathrm{Bu}$	8.52	2.07

Cbz = Carbobenzyloxy, Qua=Quinolinyl-2-Carboxamide

Figure 2: Skeleton structure of parent compound of second set
(Figures 1-3) are different, the peptidic HIV-protease inhibitors have been divided in three sets, which along with their biological activity are presented in TABLES

Figure 3: Skeleton structure of parent compound of third set

TABLE 4.2 : Relationship between chi0 v and activity of compounds of first set

Comp. no.	Substituents				Inhibitory $\operatorname{activity}(\mathbf{A})$	chi0v
	R	X	Y	Z		
Subgroup -A						
,	Cbz		CHMe_{2}	Me	5.82	22.631
4	Cbz		CHMe_{2}	Et	6.48	23.339
5	Cbz		CHMe_{2}	i-Pr	6.59	24.209
14	Cbz		4-Py	t-Bu	6.98	25.811
8	Cbz		$\mathrm{CH}_{2} \mathrm{CHMe}_{2}$	$\mathrm{t}-\mathrm{Bu}$	7.89	25.839
7	Qua		CHMe_{2}	t-Bu	8.22	26.449
9	Qua		$\mathrm{CH}_{2} \mathrm{CHMe}_{2}$	$\mathrm{t}-\mathrm{Bu}$	8.52	26.667
13	Qua		$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{t}-\mathrm{Bu}$	8.52	27.258
Subgroup -B						
3	Cbz		CHMe_{2}	$\mathrm{n}-\mathrm{Pr}$	6.29	24.046
6	Cbz		CHMe_{2}	$\mathrm{t}-\mathrm{Bu}$	7.46	25.131
10	Cbz		$\mathrm{C}_{6} \mathrm{H}_{11}$	t-Bu	7.54	27.156
15	Qua		$4-\mathrm{Py}$	t-Bu	7.72	28.018
11	Qua		$\mathrm{C}_{6} \mathrm{H}_{11}$	t-Bu	8.30	28.277
2*	Qua		CHMe_{2}	$\mathrm{n}-\mathrm{Bu}$	6.90	26.07
12*	Cbz		$\mathrm{C}_{6} \mathrm{H}_{5}$	t-Bu	7.72	27.013

Cbz= Carbobenzyloxy, Qua=Quinolinyl-2-Carboxamide, chi0v = valence connectivity index of zero order
TABLE 4.3: Relationship between chilv and activity of compounds of first set

$\begin{gathered} \hline \text { Comp. } \\ \text { no. } \\ \hline \end{gathered}$	Substituents				Inhibitory $\operatorname{activity}(\mathbf{A})$	chilv
	R	X	Y	Z		
Subgroup-A						
1	Cbz	H	CHMe_{2}	Me	5.82	18.583
4	Cbz	H	CHMe_{2}	Et	6.48	19.083
5	Cbz	H	CHMe_{2}	i-Pr	6.59	19.438
6	Cbz	H	CHMe_{2}	t-Bu	7.46	19.729
8	Cbz	H	$\mathrm{CH}_{2} \mathrm{CHMe}_{2}$	t-Bu	7.89	20.229
7	Qua	H	CHMe_{2}	t-Bu	8.22	21.212
9	Qua	H	$\mathrm{CH}_{2} \mathrm{CHMe}_{2}$	t-Bu	8.52	21.391
13	Qua	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	t-Bu	8.52	23.036
Subgroup-B						
3	Cbz	H	CHMe_{2}	$\mathrm{n}-\mathrm{Pr}$	6.29	19.583
14	Cbz	H	4-Py	$\mathrm{t}-\mathrm{Bu}$	6.98	21.391
10	Cbz	H	$\mathrm{C}_{6} \mathrm{H}_{11}$	t-Bu	7.54	21.802
11	Qua	H	$\mathrm{C}_{6} \mathrm{H}_{11}$	t-Bu	8.30	22.874
2*	Qua	H	CHMe_{2}	$\mathrm{n}-\mathrm{Bu}$	6.90	21.566
12*	Cbz	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	t-Bu	7.72	21.415
15*	Qua	H	4-Py	t-Bu	7.72	23.514

Cbz= Carbobenzyloxy, Qua=Quinolinyl-2-Carboxamide, chi1v = valence connectivity index of first order

TABLE 4.4 : Relationship between KierA1and activity of compounds of first set

Comp. no.	Substituents				$\underset{-\operatorname{Inhibitory}}{\text { activity }(\mathrm{A})} \text { KierA1 }$	
	R	X	Y	Z		
Subgroup-A						
1	Cbz	H	CHMe_{2}	Me	5.82	32.054
4	Cbz	H	CHMe_{2}	Et	6.48	33.049
5	Cbz	H	CHMe_{2}	i-Pr	6.59	34.043
6	Cbz	H	CHMe_{2}	$\mathrm{t}-\mathrm{Bu}$	7.46	35.038
10	Cbz	H	$\mathrm{C}_{6} \mathrm{H}_{11}$	t-Bu	7.54	35.268
8	Cbz	H	$\mathrm{CH}_{2} \mathrm{CHMe}_{2}$	t-Bu	7.89	36.033
9	Qua	H	$\mathrm{CH}_{2} \mathrm{CHMe}_{2}$	$\mathrm{t}-\mathrm{Bu}$	8.52	36.31
Subgroup-B						
12	Cbz	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	t-Bu	7.72	32.038
15	Qua	H	4-Py	t-Bu	7.72	32.21
7	Qua	H	CHMe2	t-Bu	8.22	35.726
11	Qua	H	$\mathrm{C}_{6} \mathrm{H}_{11}$	t-Bu	8.30	37.075
13*	Qua	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{t}-\mathrm{Bu}$	8.52	32.599
3*	Cbz	H	CHMe_{2}	$\mathrm{n}-\mathrm{Pr}$	6.29	34.043
14*	Cbz	H	4-Py	$\mathrm{t}-\mathrm{Bu}$	6.98	35.469
2*	Qua	H	CHMe_{2}	$\mathrm{n}-\mathrm{Bu}$	6.90	35.726

Cbz= Carbobenzyloxy, Qua=Quinolinyl-2-Carboxamide, KierA1 = kappa alfa first order
TABLE 4.5 : Relationship between MR and activity of compounds of first set

Comp. no.	Substituents				
R	X	Y	Z	activity	(A)

Cbz= Carbobenzyloxy, Qua=Quinolinyl-2-Carboxamide, MR = molar refractivity
1-3. The reactivity indices, $\log P$, chi0v, chi1v, KierA1, MR and MW of the corresponding derivatives are presented in TABLES 4.1-4.6 for first set; in TABLES 5.1-5.6 for second set and in TABLES 6.1-6.6 for third set. Each table has been divided into subgroups in order to demonstrate better sequential relationship between the biological activity and the reactivity indices. The QSAR study of each set is presented below

Fula Paper

TABLE 4.6: Relationship between $M W$ and activity of compounds of first set

Comp. no.	Substituents			Inhibitory activity(A)	MW
	R	X Y	Z		
Subgroup-A					
,	Cbz	HCHMe_{2}	Me	5.82	541.646
4	Cbz	$\mathrm{H} \mathrm{CHMe}_{2}$	Et	6.48	555.673
5	Cbz	$\mathrm{H} \mathrm{CHMe}_{2}$	i-Pr	6.59	569.7
6	Cbz	$\mathrm{H} \mathrm{CHMe2}$	t-Bu	7.46	583.726
8	Cbz	$\mathrm{H} \mathrm{CH}_{2} \mathrm{CHMe}_{2}$	t-Bu	7.89	597.753
7	Qua	$\mathrm{H} \mathrm{CHMe}_{2}$	$\mathrm{t}-\mathrm{Bu}$	8.22	620.747
9	Qua	$\mathrm{H} \mathrm{CH}_{2} \mathrm{CHMe}_{2}$	t-Bu	8.52	623.791
13*	Qua	H $\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{t}-\mathrm{Bu}$	8.52	654.764
Subgroup-B					
3	Cbz	$\mathrm{H} \mathrm{CHMe}_{2}$	$\mathrm{n}-\mathrm{Pr}$	6.29	569.7
14	Cbz	H 4-Py	$\mathrm{t}-\mathrm{Bu}$	6.98	618.731
2	Qua	$\mathrm{H}^{\text {CHMe }}$	$\mathrm{n}-\mathrm{Bu}$	6.90	620.747
12	Cbz	$\mathrm{H} \mathrm{C}_{6} \mathrm{H}_{5}$	t-Bu	7.72	623.791
11	Qua	$\mathrm{H} \mathrm{C}_{6} \mathrm{H}_{11}$	t-Bu	8.30	660.812
10*	Cbz	$\mathrm{H} \mathrm{C}_{6} \mathrm{H}_{11}$	t-Bu	7.54	634.774
15*	Qua	H 4-Py	$\mathrm{t}-\mathrm{Bu}$	7.72	669.779

Cbz= Carbobenzyloxy, Qua=Quinolinyl-2-Carboxamide, MW = molecular weight
TABLE 5.1: Relationship between Log Pand activity of compounds of second set

Comp. no.	Substituents			Inhibitory activity(A)	$\log P$
	R_{1}	R2	R3		
Subgroup-A					
26	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	H	H	7.56	4.352
17	$\mathrm{CH}_{2} \mathrm{Ph}$	Me	H	8.11	4.994
23	$\mathrm{CH}_{2}-4-\mathrm{NH}_{2} \mathrm{Ph}$	H	H	9.51	4.605
22	$\mathrm{CH}_{2}-4-\mathrm{CH}_{3} \mathrm{Ph}$	H	H	9.54	5.855
19	$\mathrm{CH}_{2}-4-\mathrm{CF}_{3} \mathrm{Ph}$	H	H	9.59	6.271
20	(E) $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHPh}$	H	H	9.64	6.317
30	$\mathrm{CH}_{2}-4-\mathrm{CMe}_{3} \mathrm{Ph}$	H	H	9.77	7.015
16*	$\mathrm{CH}_{2} \mathrm{Ph}$	H	H	9.60	5.388
Subgroup-B					
25	$\mathrm{CH}_{2}-4$-OHPh	H	H	9.80	5.104
29	$\mathrm{CH}_{2} \mathrm{SPh}$	H	H	9.60	5.175
24	$\mathrm{CH}_{2}-4-\mathrm{NO}_{2} \mathrm{Ph}$	H	H	9.57	5.436
21	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}$	H	H	9.22	6.086
27	$\mathrm{CH}_{2}-4-\mathrm{IPh}$	H	H	9.14	6.646
18*	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	H	OH	9.72	5.784
28*	$\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}$	H	H	8.27	4.461

First set

The first set consists of fifteen urea isostere derivatives and their biological activity has been measured in terms of inhibitory activity ${ }^{[14]}$.

The values of reactivity indices, $\log \mathrm{P}$; chi0v; chi1v; KherA1; MR and MW, of this set of compounds alongwith their reported inhibitory activity are placed in TABLES 4.1-4.6 respectively. A close look at the TABLES indicates that successive addition of

TABLE 5.2: Relationship between chi0v and activity of compounds of second set

Comp. no.	Substituents			Inhibitory $\operatorname{activity}(\mathrm{A})$	chi0v
	R_{1}	R2			
Subgroup - ${ }^{\text {a }}$					
26	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	H	H	7.56	21.315
23	$\mathrm{CH}_{2}-4-\mathrm{NH}_{2} \mathrm{Ph}$	H	H	9.51	23.917
22	$\mathrm{CH}_{2}-4-\mathrm{CH}_{3} \mathrm{Ph}$	H	H	9.54	24.340
24	$\mathrm{CH}_{2}-4-\mathrm{NO}_{2} \mathrm{Ph}$	H	H	9.57	24.604
29	$\mathrm{CH}_{2} \mathrm{SPh}$	H	H	9.60	24.642
20	(E) $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHPh}$	H	H	9.64	25.279
30	$\mathrm{CH}_{2}-4-\mathrm{CMe}_{3} \mathrm{Ph}$	H	H	9.77	26.84
Subgroup -B					
25	CH_{2}-4-OHPh	H	H	9.80	23.787
18	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	H	OH	9.72	24.124
28	$\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}$	H	H	8.27	24.326
17	$\mathrm{CH}_{2} \mathrm{Ph}$	Me	H	8.11	24.522
Subgroup -C					
16	$\mathrm{CH}_{2} \mathrm{Ph}$	H	H	9.60	23.417
19	$\mathrm{CH}_{2}-4-\mathrm{CF}_{3} \mathrm{Ph}$	H	H	9.59	24.974
27	CH_{2}-4-IPh	H	H	9.14	25.875
21*	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}$	H	H	9.22	24.920

chi0v = valence connectivity index of zero order
TABLE 5.3: Relationship between chilv and activity of compounds of second set

Comp. no.	Substituents			Inhibitory $\operatorname{activity}(A)$	
	R_{1}	R2	R3		
Subgroup -A					
26	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	H	H	7.56	17.069
17	$\mathrm{CH}_{2} \mathrm{Ph}$	Me	H	8.11	19.432
27	CH_{2}-4-IPh	H	H	9.14	19.480
23	$\mathrm{CH}_{2}-4-\mathrm{NH}_{2} \mathrm{Ph}$	H	H	9.51	19.480
22	$\mathrm{CH}_{2}-4-\mathrm{CH}_{3} \mathrm{Ph}$	H	H	9.54	19.480
24	$\mathrm{CH}_{2}-4-\mathrm{NO}_{2} \mathrm{Ph}$	H	H	9.57	20.518
19	$\mathrm{CH}_{2}-4-\mathrm{CF}_{3} \mathrm{Ph}$	H	H	9.59	20.692
30*	$\mathrm{CH}_{2}-4-\mathrm{CMe}_{3} \mathrm{Ph}$	H	H	9.77	20.692
Subgroup -B					
25	$\mathrm{CH}_{2}-4-\mathrm{OHPh}$	H	H	9.80	19.480
18	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	H	OH	9.72	19.586
29	$\mathrm{CH}_{2} \mathrm{SPh}$	H	H	9.60	19.586
28	$\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}$	H	H	8.27	19.997
20*	(E) $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHPh}$	H	H	9.64	20.586
21*	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}$	H	H	9.22	21.157
16*	CH2Ph	H	H	9.60	19.086

chi1v = valence connectivity index of first order

Figure 4: Graphic representation of relationship between Log Pand Activity of compounds of first set
subsititutents $\mathrm{Me}, \mathrm{Et}, \mathrm{i}-\mathrm{Pr}, \mathrm{t}-\mathrm{Bu}, 4-\mathrm{Py}, \mathrm{CHMe} 2$,

TABLE 5.4: Relationship between KierA1 and activity of compounds of second set

Comp. no.	Substituents			Inhibitory $\operatorname{activity}(\mathrm{A})$	KierA1
	R_{1}	R2	R3		
Subgroup-A					
26	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	H	H	7.56	27.900
23	$\mathrm{CH}_{2}-4-\mathrm{NH}_{2} \mathrm{Ph}$	H	H	9.51	30.712
22	$\mathrm{CH}_{2}-4-\mathrm{CH}_{3} \mathrm{Ph}$	H	H	9.54	30.752
24	$\mathrm{CH}_{2}-4-\mathrm{NO}_{2} \mathrm{Ph}$	H	H	9.57	32.278
19	$\mathrm{CH}_{2}-4-\mathrm{CF}_{3} \mathrm{Ph}$	H	H	9.59	33.482
30	$\mathrm{CH}_{2}-4-\mathrm{CMe}_{3} \mathrm{Ph}$	H	H	9.77	33.688
Subgroup-B					
17	$\mathrm{CH}_{2} \mathrm{Ph}$	Me	H	8.11	30.918
28	$\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}$	H	H	8.27	31.407
27	CH_{2}-4-IPh	H	H	9.14	31.465
21	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}$	H	H	9.22	34.326
Subgroup-C					
16	$\mathrm{CH}_{2} \mathrm{Ph}$	H	H	9.60	29.775
29	$\mathrm{CH}_{2} \mathrm{SPh}$	H	H	9.60	31.094
20	(E) $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHPh}$	H	H	9.64	32.454
18*	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	H	OH	9.72	30.752
25*	$\mathrm{CH}_{2}-4$-OHPh	H	H	9.80	30.712

KierA1 = kappa alfa first order
TABLE 5.5: Relationship between MR and activity of compounds of second set

Comp. no.	Substituents			Inhibitory $\operatorname{activity}(\mathbf{A})$	MR
	R_{1}	R2	R3		
Subgroup -A					
21	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}$	H	H	9.22	155.954
23	$\mathrm{CH}_{2}-4-\mathrm{NH}_{2} \mathrm{Ph}$	H	H	9.51	159.573
22	$\mathrm{CH}_{2}-4-\mathrm{CH}_{3} \mathrm{Ph}$	H	H	9.54	159.914
24	$\mathrm{CH}_{2}-4-\mathrm{NO}_{2} \mathrm{Ph}$	H	H	9.57	161.796
29	$\mathrm{CH}_{2} \mathrm{SPh}$	H	H	9.60	162.654
20	(E) $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHPh}$	H	H	9.64	169.792
Subgroup -B					
26	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	H	H	7.56	139.423
17	$\mathrm{CH}_{2} \mathrm{Ph}$	Me	H	8.11	160.050
28	$\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}$	H	H	8.27	160.260
27	CH_{2}-4-IPh	H	H	9.14	167.281
Subgroup -C					
16	$\mathrm{CH}_{2} \mathrm{Ph}$	H	H	9.60	154.872
18	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	H	OH	9.72	159.473
30	$\mathrm{CH}_{2}-4-\mathrm{CMe}_{3} \mathrm{Ph}$	H	H	9.77	173.538
25*	$\mathrm{CH}_{2}-4-\mathrm{OHPh}$	H	H	9.80	156.567
19*	$\mathrm{CH}_{2}-4-\mathrm{CF}_{3} \mathrm{Ph}$	H	H	9.59	160.846

$M R=$ molar refractivity

Figure 5: Graphic representation of relationship between chi0v and Activity of compounds of first set

TABLE 5.6 : Relationship between MW and activity of compounds of second set

Comp. no.	Substituents		$\mathbf{R}_{\mathbf{1}}$		R2
Inhibitory	R3	activity(A)			

MW = molecular weight
CH2CHMe2, carbobenzyloxy and quinolinyl-2carboxamide increases the hydrophobicity and also the inhibitory activity. The relationship is well demonstrated by graph (Figures 4-6) drawn between the inhibitory activity and reactivity indices. Although there is a direct relationship but there is no sequential rise or fall. In order to provide sequential relationship we have divided the TABLES 4.1-4.6 into subgroups: TABLE 4.1 into three subgroups-A, B, and C; while TABLES 4.2-4.6 into two subgroups-A and B . The compounds in each subgroup show the sequential relationship very clearly. Compounds which do not follow the sequential trend are indicated by *.

Second set

Second set of isostere derivatives also contains fifteen compounds and their biological activity is also shown in term of inhibitory activity ${ }^{[15]}$.

Figure 6 : Graphic representation of relationship between chilv and Activity of compounds of first set

Pula Papor

TABLE 6.1: Relationship between $\log P$ and activity of compounds of third set

Comp. no.	Substituents(X)	Inhibitory $\operatorname{activity}(\mathbf{A})$	$\begin{gathered} \mathbf{L o g} \\ \mathbf{P} \\ \hline \end{gathered}$
Subgroup-A			
33	$\mathrm{Ph} \mathrm{CH} 2-\mathrm{CH}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{NH}-$	6.16	3.489
36	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{7}(\mathrm{Me}) \mathrm{NH}-$	6.67	3.367
34	HOOC-CH(i-pr)NH-	6.79	2.784
37	$\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{10}-\mathrm{NH}-$	6.91	2.649
Subgroup-B			
40	$\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{CH}(\mathrm{Me}) \mathrm{NH}-$	6.84	4.145
39	$\mathrm{C}_{9} \mathrm{H}_{9}$-NH-	6.89	3.913
38	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}-\mathrm{NH}-$	7.39	3.732
41	$\mathrm{Ph}-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{NH}-$	7.41	3.359
35*	$\mathrm{MeOOC}-\mathrm{C}_{9} \mathrm{H}_{8}-\mathrm{NH}-$	7.18	4.080
31*	$\mathrm{Ph} \mathrm{CH} 2 \mathrm{NH}-$	6.94	3.609
32*	$\mathrm{HO}-\mathrm{C}_{5} \mathrm{H}_{6}$-NH-	7.47	4.058

TABLE 6.2: Relationship between chi0v and Activity of compounds of third set

Comp. no.	Substituents (X)	Inhibitory $\operatorname{activity}(\mathbf{A})$	chi0v
Subgroup-A			
33	$\mathrm{Ph} \mathrm{CH2}-\mathrm{CH}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{NH}-$	6.16	19.66
34	HOOC-CH(i-pr)NH-	6.79	18.345
37	$\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{10}$-NH-	6.91	18.265
31	Ph CH2NH-	6.94	17.929
Subgroup-B			
36	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{7}(\mathrm{Me}) \mathrm{NH}-$	6.67	20.376
40	$\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{CH}(\mathrm{Me}) \mathrm{NH}-$	6.84	19.525
39	$\mathrm{C}_{9} \mathrm{H}_{9}-\mathrm{NH}-$	6.89	19.136
38	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}-\mathrm{NH}-$	7.39	18.655
32*	$\mathrm{HO}-\mathrm{C}_{5} \mathrm{H}_{6}-\mathrm{NH}-$	7.47	19.136
35*	$\mathrm{MeOOC}-\mathrm{C}_{9} \mathrm{H}_{8}-\mathrm{NH}-$	7.18	20.914
41*	$\mathrm{Ph}-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{NH}-$	7.41	19.679

chi0 $\mathrm{v}=$ valence connectivity index of zero order
TABLE 6.3: Relationship between chilv and activity of compounds of third set

Comp. no.	Substituents (X)	Inhibitory $\operatorname{activity}(\mathbf{A})$	chi1v
Subgroup -A			
34	HOOC-CH(i-pr)NH-	6.79	13.886
40	$\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{CH}(\mathrm{Me}) \mathrm{NH}-$	6.84	14.637
39	$\mathrm{C}_{9} \mathrm{H}_{9}-\mathrm{NH}-$	6.89	15.192
32	$\mathrm{HO}-\mathrm{C}_{5} \mathrm{H}_{6}-\mathrm{NH}-$	7.47	15.209
Subgroup -B			
37	$\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{10}-\mathrm{NH}-$	6.91	14.137
31	$\mathrm{Ph} \mathrm{CH2NH-}$	6.94	14.226
41	$\mathrm{Ph}-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{NH}-$	7.41	15.175
Subgroup -C			
33	$\mathrm{Ph} \mathrm{CH} 2-\mathrm{CH}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{NH}-$	6.16	15.658
36	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{7}(\mathrm{Me}) \mathrm{NH}-$	6.67	15.976
35	$\mathrm{MeOOC}-\mathrm{C}_{9} \mathrm{H}_{8}-\mathrm{NH}-$	7.18	16.531
38*	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}-\mathrm{NH}-$	7.39	14.226

The biological activity and the reactivity indices, \log

TABLE 6.4: Relationship between KierA1 and activity of compounds of third set

Comp. no.	Substituents (X)	Inhibitory $\operatorname{activity}(\mathbf{A})$	KierA1
Subgroup-A			
33	Ph CH2-CH(CH3OH)NH-	6.16	26.829
36	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{7}(\mathrm{Me}) \mathrm{NH}-$	6.67	26.189
34	HOOC-CH(i-pr)NH-	6.79	26.066
40	$\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{CH}(\mathrm{Me}) \mathrm{NH}-$	6.84	25.659
39	$\mathrm{C}_{9} \mathrm{H}_{9}-\mathrm{NH}-$	6.89	24.266
31	$\mathrm{Ph} \mathrm{CH2NH-}$	6.94	23.895
Subgroup-B			
37	$\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{10}-\mathrm{NH}-$	6.91	24.628
38	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}-\mathrm{NH}-$	7.39	24.667
41	$\mathrm{Ph}-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{NH}-$	7.41	26.611
35*	$\mathrm{MeOOC}-\mathrm{C}_{9} \mathrm{H}_{8}-\mathrm{NH}-$	7.18	26.887
32*	$\mathrm{HO}-\mathrm{C}_{5} \mathrm{H}_{6}-\mathrm{NH}-$	7.47	24.266

KierA1 = kappa alfa first order
TABLE 6.5: Relationship between MR and activity of compounds of third set

Comp. no.	Substituents (X)	Inhibitory $\operatorname{activity}(\mathbf{A})$	MR
Subgroup-A			
37	$\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{10}-\mathrm{NH}-$	6.91	114.655
31	$\mathrm{Ph} \mathrm{CH2NH-}$	6.94	116.893
38	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}-\mathrm{NH}-$	7.39	118.025
41	$\mathrm{Ph}-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{NH}-$	7.41	123.988
32	HO-C $5_{5} \mathrm{H}_{6}$-NH-	7.47	124.473
Subgroup-B			
34	HOOC-CH(i-pr)NH-	6.79	111.854
40	$\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{CH}(\mathrm{Me}) \mathrm{NH}-$	6.84	122.443
39	$\mathrm{C}_{9} \mathrm{H}_{9}-\mathrm{NH}-$	6.89	124.627
35	$\mathrm{MeOOC}-\mathrm{C}_{9} \mathrm{H}_{8}-\mathrm{NH}-$	7.18	134.111
33*	Ph CH2-CH($\left.\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{NH}-$	6.16	127.61
36*	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{7}(\mathrm{Me}) \mathrm{NH}-$	6.67	130.473

MR = molar refractivity
TABLE 6.6: Relationship between MW and activity of compounds of third set

Comp. no.	Substituents (X)	Inhibitory $\operatorname{activity}(\mathrm{A})$	MV
Subgroup-A			
34	HOOC-CH(i-pr)NH-	6.79	422.52
40	$\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{CH}(\mathrm{Me}) \mathrm{NH}-$	6.84	432.602
39	$\mathrm{C}_{9} \mathrm{H}_{9}-\mathrm{NH}-$	6.89	438.566
32	$\mathrm{HO}-\mathrm{C}_{5} \mathrm{H}_{6}-\mathrm{NH}-$	7.47	438.566
Subgroup-B			
33	$\mathrm{Ph} \mathrm{CH} 2^{-}$ $\mathrm{CH}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{NH}-$	6.16	456.581
36	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{7}(\mathrm{Me}) \mathrm{NH}-$	6.67	468.592
35	$\mathrm{MeOOC}-\mathrm{C}_{9} \mathrm{H}_{8}-\mathrm{NH}-$	7.18	480.603
Subgroup-C			
31	$\mathrm{Ph} \mathrm{CH} 2 \mathrm{NH}-$	6.94	412.528
38	$\mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}-\mathrm{NH}-$	7.39	418.575
41	$\mathrm{Ph}-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{NH}-$	7.41	448.601
37*	$\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{10}-\mathrm{NH}-$	6.91	420.548

MW = molecular weight

P; chi0v; chi1v; kierA1; MR and MW, of these derivatives are given in TABLES 5.1-5.6. A close look at the TABLE 5.1 indicates that successive addition of substitutents, $-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} ;-\mathrm{CH}_{2} \mathrm{Ph} ;-\mathrm{CH}_{2}-4-$ $\mathrm{NH}_{2} \mathrm{Ph} ;-\mathrm{CH}_{2}-4-\mathrm{CH}_{3} \mathrm{Ph} ;-\mathrm{CH}_{2}-4-\mathrm{CF}_{3} \mathrm{Ph} ;-\mathrm{CH}_{2} \mathrm{CH}$ $=\mathrm{CHPh}(\mathrm{E})$ and $-\mathrm{CH}_{2}-4-\mathrm{CMe}_{3} \mathrm{Ph}$ increase hydrophobicity and also the inhibitory activity. But successive addition of substitutents, $-\mathrm{CH}_{2}-4-\mathrm{OHPh} ;-\mathrm{CH}_{2} \mathrm{SPh}$;-$\mathrm{CH}_{2}-4-\mathrm{NO}_{2} \mathrm{Ph} ;-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}$ and $-\mathrm{CH}_{2}-4$-IPh increase hydrophobicity but decrease the activity. It also indicates that there is a direct relationship between reactivity indices, KierA1; MR and MW, and inhibitory activity of this set of compounds. We have divided the compounds of TABLE 5.1 into two subgroups-A and B; and TABLES 5.2-5.6 into three subgroups-A, B and C. All the subgroups of TABLES 5.1, 5.2, 5.4 and 5.5 show direct relationships very clearly, except subgroupB of TABLES 5.1-5.3 and subgroup-C of TABLE 5.2. Compounds which do not follow the sequential trend are indicated by*.

Third set

Third set contain eleven derivatives and their biological activity is also shown in term of inhibitory activity ${ }^{[15]}$.

The inhibitory activity alongwith reactivity indices, \log P; chi0v; chilv; KierA1; MR and MW, are given in TABLES 6.1-6.6. Examination of TABLES 6.1 show that successive addition of substitutents, $\mathrm{Ph}_{\mathrm{CH}}^{2}-$ $\mathrm{CH}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{NH}-; \mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{7}(\mathrm{Me}) \mathrm{NH}-; \mathrm{HOOC}-$ $\mathrm{CH}(\mathrm{i}-\mathrm{pr}) \mathrm{NH}-$; and $\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{10}-\mathrm{NH}-$ in subgroup-A while $\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{CH}(\mathrm{Me}) \mathrm{NH}-; \mathrm{C}_{9} \mathrm{H}_{9}-\mathrm{NH}-; \mathrm{HO}-\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}-$ NH- and $\mathrm{Ph}-\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{NH}-$ in subgroup-B decrease hydrophobicity but increase the activity. TABLE 6.2 shows inverse relationship. TABLES 6.3-6.6 show that biological activity has direct relationships with chilv; KierA1; MR and MW. The inverse and direct relationship can be better represented by dividing the TABLES 6.1, 6.2, 6.4 and 6.5 into two sub groups: A and B, while the remaining TABLES 6.3 and 6.6 into three subgroups: A, B and C. Compounds which do not follow the sequential trend are indicated by*.

QSAR models

Multi linear regression analysis using the descriptors, Log P, chi0v, chi1v, KierA1 MR and MW, in dif-

TABLE 7: Predicted activity from PA1-PA7 as obtained from regression equations, RE1-RE7

$\begin{aligned} & \text { Comp. } \\ & \text { no. } \end{aligned}$	Inhibitory activity (A)	PA1	PA2	PA3	PA4	PA5	PA6	PA7
1	5.82	6.505	6.955	7.061	6.993	6.377	6.344	6.364
2	6.9	7.352	7.961	8.04	8.002	7.774	7.746	7.77
3	6.29	7.009	7.29	7.324	7.277	7.028	6.993	6.99
4	6.48	6.718	7.135	7.204	7.145	6.676	6.64	6.647
5	6.59	6.974	7.314	7.289	7.267	6.995	6.97	6.939
6	7.46	7.023	7.533	7.387	7.409	7.159	7.143	7.053
7	8.22	7.12	8.041	7.975	7.996	7.586	7.577	7.526
8	7.89	7.224	7.705	7.523	7.554	7.445	7.428	7.325
9	8.52	7.447	8.157	8.073	8.087	7.917	7.899	7.844
10	7.54	7.847	8.17	8.136	8.215	8.268	8.307	8.306
11	8.3	7.623	7.999	7.999	8.101	8.141	8.191	8.21
12	7.72	7.343	6.831	6.93	7.227	7.257	7.469	7.591
13	8.52	6.823	9.895	10.08	10.056	8.23	8.205	8.224
14	6.98	6.558	7.98	8.065	8.004	7.128	7.083	7.08
15	7.72	6.571	8.755	9.032	9.159	7.611	7.711	7.829
16	9.6	8.881	8.657	8.699	8.688	8.98	8.964	8.993
17	8.11	8.636	8.889	8.79	8.843	8.922	8.915	8.867
18	9.72	9.127	8.824	8.831	8.831	9.301	9.284	9.302
19	9.59	9.429	8.107	8.21	8.108	9.381	9.384	9.482
20	9.64	9.457	9.335	9.306	9.29	9.881	9.842	9.839
21	9.22	9.314	7.273	7.529	7.371	9.004	9.034	9.23
22	9.54	9.171	8.899	8.843	8.872	9.355	9.349	9.338
23	9.51	8.395	8.87	8.882	8.846	8.724	8.686	8.676
24	9.57	8.911	8.515	8.641	8.57	9.106	9.084	9.162
25	9.8	8.705	8.541	8.597	8.562	8.839	8.82	8.854
26	7.56	8.238	7.874	7.89	7.868	7.945	7.927	7.932
27	9.14	9.661	9.55	9.189	9.025	9.986	10.039	9.89
28	8.27	8.306	8.666	8.729	8.697	8.627	8.6	8.622
29	9.6	8.749	9.098	8.995	8.985	9.108	9.092	9.039
30	9.77	9.89	9.451	9.161	9.283	10.294	10.31	10.207
31	6.94	7.778	6.985	7.053	7.018	6.914	6.897	6.922
32	7.47	8.056	7.489	7.549	7.551	7.434	7.435	7.462
33	6.16	7.703	7.165	7.195	7.151	7.09	7.063	7.067
34	6.79	7.266	6.047	5.978	5.976	6.116	6.127	6.099
35	7.18	8.069	7.647	7.648	7.668	7.657	7.664	7.667
36	6.67	7.628	7.538	7.523	7.539	7.201	7.205	7.185
37	6.91	7.182	6.603	6.606	6.601	6.282	6.285	6.275
38	7.39	7.854	6.941	6.878	6.913	6.964	6.972	6.945
39	6.89	7.966	7.51	7.565	7.566	7.369	7.367	7.388
40	6.84	8.11	7.107	6.963	7.035	7.283	7.302	7.244
41	7.41	7.623	6.936	6.876	6.892	6.886	6.887	6.856

ferent combinations have been tried but only the following equations have provided better results, which can be used as QSAR models. The cross validation coefficient and correlation coefficient of these models are presented in TABLE 8. The QSAR models have been divided in three sets:

The first set (RE1) has been developed using only $\log \mathrm{P}$. The correlation value of the model is below 0.60 . RE1 $=0.620278 \log \mathrm{P}+5.53898$
rCV $\wedge=0.566415 r^{\wedge} 2=0.59635$
The second set (RE2-RE4) has been developed using the descriptors: chi1v, KierA1 MR and MW. The

Fu00 Papco

Figure 7: Graphic representation of relationship between fifth predicted activity (PA5) obtained from fifth regression equation (RE5) and observed activity (A) of the compounds

Figure 8 : Graphic representation of relationship between sixth predicted activity (PA6) obtained from sixth regression equation (RE6) and observed activity (A) of the compounds

Figure 9: Graphic representation of relationship between seventh predicted activity (PA7) obtained from seventh regression (RE7) equation and observed activity (A) of the compounds

TABLE 8: The values of cross validation coefficient and correlation coefficient with combination of descriptors

Regression equation	rCV^2 $^{\wedge}$	$\mathbf{r}^{\wedge} \mathbf{2}$	Descriptor(s) used
RE1	0.566415	0.59635	Log P
RE2	0.48182	0.555834	chi1v, KierA1, MR
RE3	0.424793	0.543502	chi0v, KierA1, MR
RE4	0.500887	0.538817	KierA1, MW, MR
RE5	0.77206	0.802924	Log P, KierA1, MW, MR
RE6	0.770993	0.804	Log P, chi0v, KierA1, MR
RE7	0.760549	0.80768	Log P, chi1v, KierA1, MR

correlation values of these models are also below 0.60 , hence can not considered as high class models.
RE2 $=-0.24875$ chi1 $v-0.216955$ KierA1 +0.109446 MR +2.91411 $\mathrm{rCV}^{\wedge} 2=0.48182 \mathrm{r}^{\wedge} 2=0.555834$
RE3 $=-0.152724$ chi0v -0.230804 KierA1+0.101157 MR+3.48108 $\mathrm{rCV}^{\wedge} 2=0.424793 \mathrm{r}^{\wedge} 2=0.543502$
RE4 $=-0.248168$ KierA1-0.00320675 MW +0.0935459MR +3.33581
$\mathrm{rCV}^{\wedge} 2=0.500887 \mathrm{r}^{\wedge} 2=0.538817$
The third set (RE5-RE7) has been developed by
using the combination of four reactivity indices e.g., log P; chi0v; chi1v; KherA1; MR and MW. The correlation values of these models are above 0.80 hence can be considered as high class models.
RE5 $=0.495205$ Log P -0.0758793 KierA1-0.000262398MW
+0.0438808 MR +1.91849
$\mathrm{rCV}^{\wedge} 2=0.77206 \mathrm{r}^{\wedge} 2=0.802924$
RE6 $=0.50345 \log P+0.0576518$ chi0v- 0.0895402
KierA1+0.0363927MR +1.93135
$\mathrm{rCV}^{\wedge} 2=0.770993 \mathrm{r}^{\wedge} 2=0.804$
RE7 $=0.524553 \log P+0.130978$ chil v- 0.0945474
KierA1 +0.0278393 MR +2.17043
$\mathrm{rCV}^{\wedge} 2=0.760549 \mathrm{r}^{\wedge} 2=0.80768$
The predicted inhibitory activity of various derivatives as obtained from regression equations RE1-7 are presented in TABLE 7. A reference to these TABLES clearly indicates that predicted activities are close to observed activity. In order to adjudge their quality the values of cross validation coefficient and correlation coefficient, are collectively presented in TABLE 8
alongwith combination of descriptors. The values of correlation coefficients of QSAR models RE5, RE6 and RE7 are above 0.80 , hence are considered as best models having reliable predictive power. The combinations of descriptors of these models are also shown in the TABLE 8. Graphs (Figures 7-9) between predicted activity and observed activity have been drawn for QSAR models RE5-RE7 to demonstrate the quality of prediction.

EXPERIMENTAL

The study materials of this paper are protease inhibitors and are presented in TABLES 1-3. TABLE 1 includes derivatives of urea isosteres ${ }^{[19]}$ and TABLE 2, 3 includes derivatives of other isosteres ${ }^{[20]}$. The biological activity of these derivatives has been measured in term of inhibitory activity. For QSAR prediction, the 3D modeling and geometry optimization of all the derivatives of protease inhibitors have been done with the help of PCMODEL software using the semiemipical PM3 Hamiltonian ${ }^{[21]}$. The MOPAC calculations have been performed with Win MOPAC 7.21 software by applying key words: PM 3 , Charge $=0$, Gnorm $=0.1$, Bonds, Geo-OK, Vectors Density, and all the values required for the determination of the value of $\log P$, valence connectivity index order 0 , valence connectivity index order 1 , shape index order 1 , molar refractivity and molecular weight have been obtained from this software by solving the equations given in theory and result are reported in TABLES 4.1-6.6.

CONCLUSION

1. Out of the six descriptors that have used for studying the relationship with inhibitory activity of HIVprotease inhibitors, the $\log \mathrm{P}$ is the best. In other words the hydrophobicity provides better relationship as compared with topological or steric indices.
2. $\log \mathrm{P}$ also is the essential descriptor of all combinations providing good QSAR model.
3. The best QSAR model (RE7) is provided by the combination of four descriptors, which are $\log P$, chilv, KherA1 and MR. The correlation coefficient values of this model is 0.80768 .
4. Addition of substituent which increases the hydrophobicity also increases the inhibitory activity. Such substituents are Me , Et , i-Pr, t-Bu, 4-Py, CHMe_{2} and $\mathrm{CH}_{2} \mathrm{CHMe}_{2}$. While substituents which decrease the hydrophobicity but increase the inhibitory activity are $\mathrm{PhCH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{NH}-$, $\mathrm{HO}-$ $\mathrm{C}_{9} \mathrm{H}_{7}(\mathrm{Me}) \mathrm{NH}-$, $\mathrm{HOOC}-\mathrm{CH}(\mathrm{i}-\mathrm{pr}) \mathrm{NH}-$ and $\mathrm{HO}-$ $\mathrm{C}_{6} \mathrm{H}_{10}$-NH-.

ACKNOWLEDGMENT

We thanks Dr. Amogh Sahasrabuddhe (Central Drugs Research Institute Lucknow, U.P., India) for valuable suggestions and Dr. R.B.Srivastava (Maharani Lal Kunwari Post Graduate College, Balrampur, U.P., India) for providing computational help.

REFERENCES

[1] N.E.Kohl, N.A.Emini, W.A.Schleif, L.J.Davis, J.C. Heimbach, R.A.F.Dixon; E.M.Scolnick, I.S.Sigal; Proc.Natl.Acad.Sci.U.S.A., 85, 4686 (1988).
[2] C.Peng, B.K.Ho, T.W.Chang, N.T.Chang; J.Virol., 63, 2550 (1989).
[3] H.Jacabson, K. Yasargil, D.L.Winslow, J.C.Craig, A.Krohn, I.B.Duncan; Mous.J.Virology, 206, 327 (1995).
[4] K.R.Romines, S.Thaisrviongs; Drugs Future, 20, 377 (1995).
[5] M.Miller, J.Schneider, B.K.Sathyanarayana, M.V. Toth, G.R.Marshall, L.Clawson, L.Selk, S.B.H.Kent, A.Wlodawer; Science, 246, 1149 (1989).
[6] P.M.D.Fitzgerald, B.M.McKeever, J.F.Van Middlesworth, J.P.Springer, J.C.Heimbach, C.T. Leu, W.K.Herber, R.A.F.Dixon, P.L.Darke; J.Biol. Chem., 265, 14209 (1990).
[7] J.Erickson, D.J.Neidhart, J.Van Drive, D.J.Kempf, X.C.Wang, D.W.Norbeck, J.J.Plattner, J.W. Rittenhouse, M.Turon, N.Wideburg, W.E. Kohlbrenner, R.Simmer, R.Helfrich, D.A.Paul, M. Knigge; Science, 249, 527 (1990).
[8] J.R.Huff; J.Med.Chem., 34, 23 (1991).
[9] C.Hansch, J.P.Bjorkroth, A.Leo; J.Pharm.Sci., 76, 663 (1987).
[10] G.L.Olson, D.R.Bolin, M.P.Bonner, M.Bos, C.M. Cook, D.C.Fry, B.J.Graves, M.Hatada, D.E.Hill, M.Khan, V.S.Madison, V.K.Rusiedci, R.Sarabu, J. Sepinwall, G.P.Vincet, M.F.Voss; J.Med.Chem., 36,

Full Paper

3039 (1993).
[11] C.Hansch, T.Fujita; J.Am.Chem.Soc., 86, 1616 (1964).
[12] T.J.Hou, J.M.Wang, N.Liao, X.J.Xu; J.Chem.Inf. Comput.Sci., 39, 775 (1999).
[13] D.P.Getman, G.A.Decrescenzo, R.M.Heintz, K.L. Reed, J.J.Talley, M.L.Bryant, M.Clare, K.A. Houseman, J.J.Marr, R.A.Mueller, M.L.Vazquez, H.S.Shieh, W.C.Stallings, R.A.Stegeman; J.Med. Chem., 36, 288 (1993).
[14] M.K.Holloway, J.M.Wai, T.A.Halgren, P.M.D. Fitzgerald, J.P.Vacca, B.D.Dorsey, R.B.Levin, W.J. Thompson, L.J.Chen, S.J.DeSolms, N.Gaffin, A.K. Ghosh, E.A.Giuliani, S.L.Graham, J.P.Guare, R.W. Hungate, T.A.Lyle, W.M.Sanders, T.J.Tucker, M. Wiggins, C.M.Wiscoust, O.W.Woltersdof, S.D. Young, P.L.Darke, J.A.Zugay; J.Med.Chem., 38, 305 (1995).
[15] D.Voet, J.G.Voet; ‘Biochemistry’, $3^{\text {rd }}$ Edition, 531.
[16] H.Leviton, J.L.Barken; Science, Washington D.C., 176, 1423 (1972).
[17] A.Leo, C.Hansch, D.Elkins; Chem.Rev., 71, 525 (1971).
[18] L.B.Kier, L.H.Hall; ‘Molecular Connectivity in Chemical and Drug Research; Academic New York, (1977).
[19] L.H.Hall, L.B.Kier, K.B.Lipkowitz, D.B.Boyd; 'Reviews in Computational Chemistry', Ch.9, (1922).
[20] C.Hansch, A.Leo, S.H.Unger, K.H.Kim, D. Nikaitani, E.J.Lien; J.Med.Chem., 16, 1207 (1973).
[21] J.J.Stewart; P.J.Comp.Chem., 10, 209 (1989).

