ISSN : 0974 - 7435

Volume 10 Issue 24

# 2014



An Indian Journal

= FULL PAPER BTAIJ, 10(24), 2014 [14801-14808]

# How to realize update in K-anonymity model

Jinling Song<sup>1</sup>\*, Liming Huang<sup>1</sup>, Gang Wang<sup>1</sup>, Qianying Cai<sup>1</sup>, Yan Gao<sup>2</sup> <sup>1</sup>HeBei Normal University of Science & Technology, Qinhhuangdao, 066004, (CHINA)

<sup>2</sup>Liaoning Institute of Science and Technology, Benxi, 117004, (CHINA) E-mail: songjinling99@126.com

# ABSTRACT

K-anonymity is a typical privacy model which can guarantee the safety of publishing dataset, however, the k-anonymized dataset contains generalized value and it difficult to bring it into correspondence with the original dataset directly. We at first create the index table basing on the one-one mapping between original tuple and its generalized tuple, which can be used to update the generalized tuple. To locate the QI group where an original tuple is in or should be inserted in, the definition of tuple-QG semantic similarity degree is presented and the QI group is located basing on tuple-QG semantic similarity degree are presented and used to find the similar QI group. Finally, the update algorithms basing on Semantic for the k-anonymized dataset are presented.

# **KEYWORDS**

*k*-anonymity; Update; Semantic; Similarity; Generalize.

© Trade Science Inc.



#### **INTRODUCTION**

*K*-anonymity<sup>[1]</sup> is an important privacy model which protects privacy by making each tuple repeats at least *k* times on the quasi-identifier (*QI*) through generalizing attribute values. The generalizing process is called *k*-anonymization and the formed dataset is called *k*-anonymized dataset. Since *k*-anonymized dataset includes fuzzy (generalized) data, it is difficult to update naturally when the original dataset update. However, if we generate the *k*-anonymized dataset again after each update of original dataset, it will waste most resources of computer and may result in multiple versions of *k*-anonymized dataset and information leakage<sup>[2]</sup>. Because the updating dataset is small under normal circumstances, regenerate *k*-anonymized dataset is not fit for *k*-anonymity model. So, in this paper we will discuss how to update the *k*-anonymized dataset directly following it's original dataset, which is very important for *k*-anonymity.

Considering the fuzzy (generalized) data in the *k*-anonymized dataset, the connection between original tuple and generalized tuple ought to be built to update the generalized tuple directly. So we create an index table between original dataset and *k*-anonymized dataset at first, in which each original tuple mapping to one generalized tuple. Since the update operation contains insert, delete and modify, the update operation of *k*-anonymized dataset may be different. To insert or delete a generalized tuple, the QI group where the generalized tuple is in or should be inserted in will be located firstly. We present the definition of tuple-QG semantic similarity degree, and locate the QI group according to the least tuple-QG semantic similarity degree. To the modify operation, it can be decomposed into insert and delete. After one QI group is updated in the *k*-anonymized dataset, it maybe smaller than *k* and violate the *k*-anonymity constraint (the candidate of each QI group no less than *k*). So the QI group will be merged with other QI group to maintain the *k*-anonymity constraint. In order to find the similar QI group which can be merged, the QG semantic similarity degree is presented. Finally, the update algorithms basing on Semantic for the *k*-anonymized dataset are presented.

## **RELATED RESEARCH**

Current researches on k-anonymity focused on anonymized methods or the improvement of k-anonymity model. Meverson et al<sup>[3]</sup> and Agarwal<sup>[4]</sup> verified that achieving the highest precise k-anonymized table is a NP-hard problem. They presented O(klogk) and O(k) approximate algorithm respectively. Lefvre<sup>[5]</sup> gave a multi-dimension k-anonymity algorithm which can generalize multiple attributes simultaneously. The anonymized algorithm for high-dimension sensitive transactional data is proposed in<sup>[6]</sup>. A. Machanavajjhala et al<sup>[7]</sup> introduced a  $\ell$ -diversity model which is better than k-anonymity model. Xiaokui Xiao<sup>[8]</sup> presented that the optimization of  $\ell$ -diverse is NP-hard even there are 3 different sensitive value, then a ( $\ell$ ,d)approximate algorithm is proposed. Basing on *l*-diversity model, Junqiang Liu<sup>[9]</sup> presented *l*<sup>+</sup>-diversity model and an anonymized algorithm based on full sub-tree generalization. Ke Wang<sup>[10]</sup> pointed that the sensitive information in temporary data is slope and can't to satisfy *l*-diversity, and proposed a tuple collocation strategy to construct *l*-diversity. The quasisensitive attribute(QS) is presented in [11], in which QS ℓ-diversity and QS t-closeness model were proposed. Ren Xiangmin et al<sup>[12]</sup> proposed CBK(L,K)-anonymity algorithm which can make anonymous data effectively resist background knowledge attack and homogeneity attack by K-clustering based on influence matrix of background knowledge. Ren Xiangmin et al proposed CBK(L,K)-anonymity algorithm<sup>[13]</sup> to resist background knowledge attack and sample attack. Yinghua Liu et al<sup>[14]</sup> proposed a personalized privacy preserving parallel (alpha, k)-anonymity model based on k-anonymity to reduce high probability of the attributes in the equivalent group and reduce the probability of the likelihood of attack. An anonymized algorithm for multi-side cooperation under half-honesty model was proposed in <sup>[15]</sup>.

Current researches on update algorithm of the *k*-anonymized dataset are as follows. Xiao X et al present "M-invariance" algorithm<sup>[16]</sup> to dynamic datasets, which assure the each QI group in different versions of generalized dataset has same sensitive attribute values when insert and delete operation is performed. K. LeFevre et al<sup>[17]</sup> update the *k*-anonymized dataset basing on Information loss metric. In this paper, we update *k*-anonymized dataset basing on the Semantic Similarity Degree, which will be an effective supplement for existing *k*-anonymity researches.

## **BASIC DEFINITION**

In this paper, the dataset is a relational table as  $R(A^{QI}, A^S)$ , where  $A^{QI} = \{A_1^{QI}, A_2^{QI}, \dots, A_n^{QI}\}$  is quasi-identifier,  $A^S$  is the sensitive attribute. For simplicity, we also use *R* denote dataset. For  $A \subseteq A^{QI} \cup A^S$ , R[A] is the projection containing repetition values of table *R* on the attribute set *A*, t[A] is the values of tuple *t* on the attribute set *A*.

**Definition 1**: *k*-anonymity constraints For dataset  $R(A^{\mathcal{Q}l}, A^S)$ , if each tuple in  $R[A^{\mathcal{Q}l}]$  counts at least  $k(k\geq 2)$  times, then the dataset *R* satisfies *k*-anonymity constraints.

Example 1: When { *Age*, *Zip* } is quasi-identifier of dataset  $R^*(Age, Zip, Problem)$  (table 1(b)), for  $R^*[Age, Zip]=\{([21, 25], [11k, 20k]), ([21, 25], [11k, 20k]), ([41, 50], [21k, 30k]), ([41, 50], [21k, 30k]), ([51, 55], [51k, 60k]), ([51, 55], [51k, 60k]) \}$ , so tuples ([21,25], [11k, 20k]), ([41, 50], [21k, 30k]) and ([51, 55], [51k, 60k]) are all count 2. Thus,  $R^*$  satisfies 2-anonymity constraints.

**Definition 2**: *Generalization* For a relation  $R(A_1, A_2, ..., A_k)$ , assume the domain of the attribute  $A_i$  is D and a partition of D is  $\{u_1, u_2, ..., u_L\}$ , where  $u_i (1 \le i \le L)$  is an integer interval. For any tuple  $t \in R$ , if there exists a function g:  $t[A_i] \rightarrow u_i$  on the attribute  $A_i$ , where  $t[A_i] \in u_i$ , then we call g as *generalization function* of the attribute  $A_i$ ,  $g(t[A_i])$  is the generalization of  $t[A_i]$ .

#### Jinling Song et al.

Similarly, the generalization of *R* on the attribute set  $\{A_1, A_2, ..., A_k\}$  denotes generalizing result of *R* on each attribute respectively, i.e.  $g(t[A_1, A_2, ..., A_k]) = (g(t[A_1]), g(t[A_2]), ..., g(t[A_k])).$ 

Notes: Definition 2 fits generalized value too. The generalizing operation on the generalized value is a mapping process from a small range to a bigger range which includes the generalized value.

| Tuple ID        | Age | Zip   | Problem   | Tuple | QG                                  | Age      | Zip        | Proble   |
|-----------------|-----|-------|-----------|-------|-------------------------------------|----------|------------|----------|
| t1              | 21  | 12000 | flu       | t1*   | 1                                   | [21, 25] | [11k, 20k] | flu      |
| t2              | 23  | 18000 | gastritis | t2*   | 1                                   | [21, 25] | [11k, 20k] | gastriti |
| t3              | 48  | 28000 | flu       | t3*   | 2                                   | [41, 50] | [21k, 30k] | flu      |
| t4              | 42  | 23000 | gastritis | t4*   | 2                                   | [41, 50] | [21k, 30k] | gastriti |
| t5              | 49  | 25000 | insomnia  | t5*   | 2                                   | [41, 50] | [21k, 30k] | insomn   |
| t6              | 52  | 52000 | flu       | t6*   | 3                                   | [51, 55] | [51k, 60k] | flu      |
| t7              | 53  | 59000 | gastritis | t7*   | 3                                   | [51, 55] | [51k, 60k] | gastriti |
| (a) Microdata R |     |       |           |       | (b) 2-anonymized dataset <i>R</i> * |          |            |          |

Table 1. Microdata R and its 2-anonymized dataset  $R^*$ , where  $A^{QI} = \{Age, Zip\}$ .

Example 2: Assuming the domain of attribute *Age* is [21-60], the first patition of the domain [21-60] is {[21-25],[26-30],...,[56-60]}, the second patition is {[21-30], [31-40],...,[51-60]}. Then the generalization on attribute *Age* in dataset *R*(table 1(a)) is: the values 21,23 were generalized to [21-25] respectively; the values 52,53 were generalize to [51-55] respectively; the values 48,42,49 were generalized by two steps, the first step result in [46-50], [41-45], [46-50] and the second step result in [41-50]. The generalization result were shown in table 1(b).

**Definition 3**: *k*-anonymized dataset For the dataset  $R(A^{QI}, A^S)$ , if we generalize the values on  $A^{QI}$  and get the dataset  $R^*$  which satisfies *k*-anonymity constraints on  $A^{QI}$ , then the generalization process from *R* to  $R^*$  is called *k*-anonymization, dataset  $R^*$  is the *k*-anonymized dataset of *R*.

Example 3:  $R^*(\text{table 1(b)})$  is the generalization result of dataset R(table 1(a)) on the quasi-identifier attributes  $\{Age, Zip\}$ . We know that  $R^*$  satisfies 2-anonymity constraints from example 1, so the generalization process from R to  $R^*$  is 2-anonymization of R and  $R^*$  is a 2-anonymized dataset of R.

To distinguish tuples in R and  $R^*$ , we call tuples in R as 'tuple' and tuples in  $R^*$  as 'generalized tuple' below.

**Definition 4: tuple-generalized tuple mapping** Assuming the original dataset and the *k*-anonymized dataset are *R* and *R*\* respectively, for any tuple  $t \in R$ , if there exists  $t^* \in R^*$  and where  $t[A_i^{Ql}] \in t^*[A_i^{Ql}]$   $(1 \le i \le n), t[A^S] = t^*[A^S]$ , then  $t^*$  is called the generalized tuple of *t*. Function gf:  $t \rightarrow t^*$  is called the one-to-one mapping function from the tuple *t* to its generalized tuple  $t^*$ .

Example 4: For the original dataset R (table 1(a)) and its 2-anonymized dataset  $R^*$  (table 1(b)),  $t1^*$  (in  $R^*$ ) is the generalized tuple of t1 (in R), similarly,  $t2^*$  is the generalized tuple of  $t2, ..., t7^*$  is the generalized tuple of t7.

We can build the index table between R and  $R^*$  basing on the one-to-one mapping between each tuple and its generalized tuple.

**Definition 5:** *QI* group For the *k*-anonymized dataset  $R^*(A^{QI}, A^S)$ , the generalized tuples with the same value in  $R^*[A^{QI}]$  are called a *QI* group, i.e. *QG*.

The *QI* groups in  $R^*$  are denoted as  $QG(R^*) = \{QG_1, QG_2, ..., QG_m\}$ , where  $|QG_i| \ge k(k\text{-anonymity constraints}), QG_i \cap QG_i = \emptyset(1 \le i, j \le m, i \ne j)$  and  $|QG_1| + |QG_2| + ... + |QG_m| = |R^*|$ .

Example 5: In the 2-anonymized dataset  $R^*$ (table 1(b)), for  $t_1[Age, Zip] = ([21, 25], [11k, 20k]), t_2[Age, Zip] = ([21, 25], [11k, 20k]), tupls <math>t_1, t_2$  are a QI group; in the same way,  $t_3, t_4, t_5$  are a QI group,  $t_6, t_7$  are a QI group, i.e.  $QG(R^*) = \{QG_1 = \{t_1, t_2\}, QG_2 = \{t_3, t_4, t_5\}, QG_3 = \{t_6, t_7\}\}.$ 

The update operations (insert, delete and modify) in the table *R* are expressed as follows:

INSERT (R, T): Insert the tuple sets  $T = \{t_1, t_2, ..., t_k\}$  to table R, where  $t_i \ (1 \le i \le k)$  is a tuple on the attribute set  $\{A^{QI}, A^S\}$ .

DELETE(R,  $\varphi_D$ ): Delete the tuples satisfying condition  $\varphi_D$  in R.

*MODIFY*( $R, \varphi_M, F_M$ ): Modify the tuples satisfying condition  $\varphi_M$  in R with the modification expression  $F_M$ .

To be illuminated,  $\varphi_D$  and  $\varphi_M$  are boolean equation sets defined on the attribute set  $\{A^{QI}, A^S\}$ , whose normal form is  $\varphi = \varphi_1 \quad \varphi_2 \quad \dots \quad \varphi_m$ , where  $\varphi_i$  is an atom condition with models  $(x\theta y+c)or(x\theta y)(x \text{ or } y \text{ denote the attribute variable, } c \text{ is a constant, } \theta \quad \{=, <, <, >, \geq\}$ .  $F_M$  is an expression like  $A = f(A_1, A_2, \dots, A_k)$ , where  $A, A_1, A_2, \dots, A_k$  are attributes in R, f is a computation function with the inputs  $A_1, A_2, \dots, A_k$ . We use  $\alpha(\varphi)$  denotes variables in  $\varphi$  in the following paper.

#### UPDATE OF K-ANONYMIZED DATASET BASING ON SEMANTIC

*K*-anonymity model arises *k*-anonymized dataset including fuzzy or generalized value in the *k*-anonymizaion process, which is strangling the natural update operations of *k*-anonymized dataset. However, the *k*-anonymized dataset need

to stay the same with the original dataset. So the *k*-anonymized dataset must be changed (insert, delete and modify) following the changes of original dataset. In this section, we consider how to update the generalized tuple directly according to the update operations of original dataset.

The update operation contains insert, delete and modify, in which the modify operation can also be decomposed into insert and delete. To insert or delete a generalized tuple, we need to locate the QI group where the generalized tuple is in or should be inserted in. We solve the problem by tuple-QG semantic similarity degree. After one QI group is updated in the *k*-anonymized dataset, it maybe smaller than *k* and violate the *k*-anonymity constraint(the candidate of each QI group no less than *k*). So the QI group will be merged with other QI group to maintain the *k*-anonymity constraint. In order to find the similar QI group which can be merged, the QG semantic similarity degree is presented.

The definitions of tuple-QG semantic similarity degree and QG semantic similarity degree are introduced in below. Since a tuple can be seen as a point and a QI group can be seen as a region composed by a set of points in the space, we measure the semantic between a original tuple and the QI group by the distance degree from the point to the region. Specifically, the tuple-QG semantic similarity degree is 1 when the point is inside of the region. For showing the semantic between two QI groups, we use the cosine similarity of the centers of the two regions.

**Definition 6: Tuple-***QG* **Semantic Similarity Degree** To a tuple *t* in original dataset  $R(A^{QI}, A^S)$  and a *QI* group  $QG_j$  in *k*-anonymized dataset  $R^*(A^{QI}, A^S)$ , the semantic similarity degree *T*-*QGSSD*(*t*, *QG*<sub>j</sub>) between *t* and *QG*<sub>j</sub> is:

$$T-QGSSD(t,QG_{j}) = \begin{cases} 1 & t \in Range (QG_{j}) \\ \sum_{l=1}^{n} |C_{l} - A_{jl}^{Ql}| & t \notin Range (QG_{j}) \\ \sum_{l=1}^{n} |t[A_{1}^{Ql}] - A_{jl}^{Ql}| & t \notin Range (QG_{j}) \end{cases}$$

Where  $t[A_l^{Ql}]$  is the value of tuple *t* on attribute  $A_l^{Ql}$ ,  $A_{jl}^{Ql}$  are the centers of the range of  $QG_j$  on attribute  $A_l^{Ql}$ ,  $\sum_{l=1}^{n} |t[A_l^{Ql}] - A_{jl}^{Ql}|$  is the Manhattan distance of *t* to the center of  $QG_j$ ,  $\sum_{l=1}^{n} |c_l - A_{jl}^{Ql}|$  is the Manhattan distance of the bound of  $QG_j$ to the center of  $QG_j$ , where the value of  $QG_j$  on the attribute  $A_l^{Ql}$  is a interval  $[b_l, c_l]$  and  $A_{jl} = (b_{jl} + c_{jl})/2$ . When  $t \in Range(QG_j)$ , it means that for each attribute  $A_l^{Ql}$ , the value  $t[A_l^{Ql}]$  of *t* must belong to the range value of  $QG_j[A_l^{Ql}]$ .

Example 6: For the tuple  $t_1$ =(21,12000, flu) in R(table 1(a), the semantic similarity degree between  $t_1$  and  $QG_1$  in  $R^*$ (table 1(b))can be calculated as below: for 21  $\in$  [21, 25], 12000 [11k, 22k], so T- $QGSSD(t_1, QG_1)$ =1. The semantic similarity degree between  $t_1$  and  $QG_2$  in  $R^*$  can be calculated as below: for 21 $\notin$ [41, 50], 12000 $\notin$ [11k, 22k], so T- $QGSSD(t_1, QG_2)$ = 1 = 0.24

$$\frac{1}{\left|21-(50+41)/2\right|+\left|12-(30+21)/2\right|}=0$$

**Definition 7 :** *QG* Semantic Similarity Degree For two *QI* groups  $QG_i$ ,  $QG_j$  in a *k*-anonymized dataset  $R^*(A^{QI}, A^S)$ , the semantic similarity degree between them is :

$$QGSSD(QG_{i}, QG_{j}) = \frac{\sum_{l=1}^{n} A_{il}^{Ql} \bullet A_{jl}^{Ql}}{\sqrt{\sum_{l=1}^{n} (A_{il}^{Ql})^{2}} \bullet \sqrt{\sum_{l=1}^{n} (A_{jl}^{Ql})^{2}}}$$

Where,  $A_l^{Ql}$  is the *l*th attribute on group of  $QG_i$  and  $QG_j$ ,  $A_{il}^{Ql}$  and  $A_{jl}^{Ql}$  are the centers of the bound of  $QG_i$  and  $QG_j$  on attribute  $A_l^{Ql}$ . Let the range on attribute  $A_l^{Ql}$  of  $QG_i$  and  $QG_j$  are intervals  $[b_{il},c_{il}]$  and  $[b_{jl},c_{jl}]$ , then  $A_{il} = (b_{il}+c_{il})/2$ ,  $A_{jl} = (b_{jl}+c_{jl})/2$ .

Example 7: For the 2-anonymized dataset  $R^*$  (table1(b), semantic similarity degree between  $QG_1$  and  $QG_2$  is:  $QGSSD(QG_1, QG_2)=$ 

$$\frac{23*45.5+15.5*25.5}{\sqrt{23^2+15.5^2}*\sqrt{45.5^2+25.5^2}} = \frac{1046.5+395.25}{\sqrt{529+240.25}*\sqrt{2070.25+625}} = \frac{1441.75}{27.7*52.2} = 0.997.$$

#### **INSERT OPERATION**

To an insert operation *INSERT(R, T)*, we need insert all the generalized tuples corresponding *T* to the *k*-anonymized dataset  $R^*$ . For each tuple  $t \in T$ , we firstly find the *QI* group whose semantic similarity degree is biggest with tuple *t*, then insert the generalized  $t^*$  of *t* to the *QI* group. If the biggest semantic similarity degree between *t* and *QG<sub>i</sub>* is 1, then the generalized tuple  $t^*$  has the same value with *QG<sub>i</sub>* on attributes  $A^{QI}$  and the same value with *t* on attributes  $A^{S}$ ; else  $t^*$  has the generalized value of *t* and *QG<sub>i</sub>* on attributes  $A^{QI}$  and the value of *t* on attributes *A*. In addition, when we insert many tuples into

 $QG_i$ , the size of  $QG_i$  may become very large (i.e. equal 2k). In order to make the updated  $R^*$  satisfy k-anonymity constraints, we can divide the  $QG_i$  into two QI groups(each group size is k) according to information loss(IL)<sup>[15]</sup>.

For any tuple  $t \in T$ , the procedure of the insert operation for the *k*-anonymized dataset is: 1.1 We calculate the semantic similarity between *t* and each *QI* group  $QG_i(1 \le i \le m)$ , if exit a *QI* group  $QG_i$  to make *T*-*QGSSD*(*t*, *QG*<sub>i</sub>) is 1, then insert *t*\* to  $QG_i$  directly, where  $t^*[A^{QI}] = QG_i [A^{QI}]$ ,  $t^*[A^S] = t[A^S]$ . Otherwise, select a *QI* group  $QG_i$  where *T*-*QGSSD*(*t*, *QG*<sub>i</sub>) is the biggest, and let  $t^*[A^{QI}] = g(t[A^{QI}], QG_i[A^{QI}])$ ,  $t^*[A^S] = t[A^S]$ . 1.2 If  $|QG_i| = 2k$ , then divide the  $QG_i$  into two *QI* groups.

#### Algorithm: INS ( $R(A^{QI}, A^S)$ , $T, R^*(A^{QI}, A^S)$ , INDT)

Input: original dataset  $R(A^{QI}, A^{S})$ , inserted tuples *T*, *k*-anonymized dataset  $R^*(A^{QI}, A^{S})$  corresponding to *R*, index table *INDT* between *R* and  $R^*$ 

Output: k-anonymized dataset R\* corresponding R after insertion. Initialization: *i* =0;*ssd*=0;*ssdmax*=0; 1.for each  $t \in T$ 1.1 {for i = 1 to m { $ssd \leftarrow T-OGSSD(t, OG_i)$ ; if ssd = 1 then {*ssdmax*=1;  $QG \leftarrow QG_i;$ exit; } if *ssd> ssdmax* then {*ssdmax*= *ssd*;  $QG \leftarrow QG_i;$ }} /\* | *A*<sup>QI</sup> |= n \*/ if *ssdmax* =1 then  $\{R^* \leftarrow R^* \cup \{t^* | t^* [A_i^{OI}] = QG[A_i^{OI}], t^* [A^S] = t[A^S]\};$ update index table *INDT*;} else  $\{R^* \leftarrow R^* \cup \{t^* | t^*[A_j^{\mathcal{Q}l}] = \text{the generalized value of } QG[A_j^{\mathcal{Q}l}] \text{ and } t[A_j^{\mathcal{Q}l}], t^*[A^S] = t[A^S] \};$ update other tuple  $t^*$  in QG to same with  $t^*$  on each attribute  $A_j^{\mathcal{Q}l}$ ; update index table *INDT*;} 1.2 if |OG|=2k then {Divide OG into two OI groups OG', OG'' (each group size is k) with least information loss; update index table *INDT*;}} 2. return  $(R^*)$ ;

Example 8: When the insert operation *INSERT* (R, {(24,17000, insomnia), (55,62000, insomnia)}) is performed in R(table 1(a)), the insert operation in  $R^*$ (table 1(b)) is: At first insert tuple t=(24,17000, insomnia), because T- $QGSSD(t, QG_1)=2$  is the biggest, so let  $t^*=([21, 25], [11k, 20k], insomnia)$  and insert into  $QG_1$ . The generalized tuple after insertion is  $t3^*$  in table 2. For tuple t=(55,62000, insomnia), the semantic similarity degrees between t and each QI group are: T- $QGSSD(t, QG_1)=0.095, T$ - $QGSSD(t, QG_2)=0.2, T$ - $QGSSD(t, QG_3)=0.765$ . Because the semantic similarity degree between t and  $QG_3$  is the biggest, we insert  $t^*$  into  $QG_3$ . For  $55 \in [51, 55]$ , so  $t^*[Age]= [51, 55]$ ; For  $62000 \notin [51k, 60k]$ , we generalized them to [51k, 65k](i.e.  $t^*[Zip]= [51k, 65k]$ ),  $t^*[Problem]=$  insomnia.  $t9^*$  in table 2 is the generalized tuple after insertion. In addition,  $t6^*[Zip]$  and  $t7^*[Zip]$  in table 1(b) should be changed to [51k, 65k] too, which corresponding to  $t7^*$ ,  $t8^*$  in table 2.

| Tuple | QG | Age              | Zip        | Problem   |
|-------|----|------------------|------------|-----------|
| t1*   | 1  | [21, 25]         | [11k, 20k] | flu       |
| t2*   | 1  | [21, 25]         | [11k, 20k] | gastritis |
| t3*   | 1  | [21, 25]         | [11k, 20k] | insomnia  |
| t4*   | 2  | [41, 50]         | [21k, 30k] | flu       |
| t5*   | 2  | [41, 50]         | [21k, 30k] | gastritis |
| t6*   | 2  | [41, 50]         | [21k, 30k] | insomnia  |
| t7*   | 3  | [51, 55]         | [51k, 65k] | flu       |
| t8*   | 3  | [51, 55]         | [51k, 65k] | gastritis |
| t9*   | 3  | [51 <i>,</i> 55] | [51k, 65k] | insomnia  |

Table 2. The increment update of insert to  $R^*$ .

## **DELETE OPERATION**

To a delete operation (*DELETE*( $R, \varphi_D$ )), the tuples satisfying delete condition  $\varphi_D$  will be deleted, so the corresponding tuples in  $R^*$  will be deleted too. The update operation of k-anonymized dataset  $R^*$  is: We first find the tuples satisfying the delete condition in R, then locate the generalized tuple in  $R^*$  of each deleted tuple and delete it. Delete operation on kanonymized dataset  $R^*$  may make the size of some OI groups smaller than k, we need to check the size of each OI group and merge *OI* groups which size is less than k to maintain the k-anonymity constraints.

The delete operation of the k-anonymized dataset  $R^*$  is: we firstly find the tuple set T satisfying  $\varphi_D$  in R, for each tuple  $t \in T$ , search the generalized tuple t\* of t and delete t\* from R\*. Second, check each OI group size in R\*, if there is a  $OG_i$  less than k, then select another OI group  $OG_i$  which has the biggest semantic similarity degree with  $OG_i$  and merge with  $OG_i$  to one *QI* group.

Algorithm:

**DEL** ( $R(A^{QI}, A^S), \varphi_D, R^*(A^{QI}, A^S), INDT$ ) Input : original table  $R(A^{QI}, A^S)$ , the delete condition  $\varphi_D$  of R, *k*-anonymized dataset  $R^*(A^{QI}, A^S)$  corresponding to R, index table (*INDT*) between R and  $R^*$ .

Output: k-anonymized dataset R\* corresponding table R after delete operation.

Initialization: *ssd*=0; *ssdq*=0;

1. /\*Locate the tuple need to be deleted, delete the corresponding tuple in  $R^*$  \*/

{ $T \leftarrow$  {the tuples satisfying  $\varphi_D$  in R};

/\*delete the generalized tuple corresponding to t in  $R^*$  \*/ for i = 1 to m

{ for each  $t \in T$ 

 $ssd \leftarrow T-QGSSD(t, QG_i);$ 

if ssd = 1 then  $|\dot{*}| A^{QI} = n */$ {  $t^* \leftarrow \{ t^* | t^* \in QG_i \text{ and } t^* [A^S] = t [A^S] \};$ 

 $R^* \leftarrow R^* - \{t^*\};$ 

 $T \leftarrow T - t;$ 

exit;

update the index table *INDT*;}}

2. /\* Merge each QI group whose size is no less than k in  $R^*$  according to QG semantic similarity degree\*/ for each  $OG_i \in R^*$ 

if  $|QG_i| \le k$  then

{for each  $QG_i \in R^*$  and  $QG_i \neq QG_i$ if  $QGSSD(QG_i, QG_i) > ssd$  then { $ssd \leftarrow QGSSD(QG_i, QG_i); ssdq=j;$ } generalize  $QG_i, QG_{ssdg}$  and merge to one QI group; update the index table *INDT*;}

3. return  $(R^*)$ ;

Example 9: When the delete operation in R(table 1(a)) is DELETE(R, (Problem = "insomnia"))), the deleted tuple  $t5^*$  in  $R^*$  can be judge directly, the updated  $R^*$  was shown in table 3(a). When the delete operation in R is DELETE(R, (Zip>15000)), the corresponding delete operation in R\* is: the tuple set satisfying  $\varphi_D = (Age < 25)$ Age < 25*Zip*>15000) is  $T = \{(23, 18000, \text{gastritis})\}$ . For T-QGSSD((23, 18000, gastritis), QG<sub>1</sub>)=1, so the generalized tuple of (23, 18000, gastritis) is  $t2^{*}=([21, 25], [11k, 20k], \text{ gastritis})$ , we delete  $t2^{*}$  in  $R^{*}$ . Because  $|QG_{1}|$  is less than 2 after deleting  $t2^{*}$ , so we need to merge  $QG_1$  with another QI group. The semantic similarity degree between  $QG_1$  and each other QI group  $QG_2$  is :  $QIGSSD(QG_1, QG_1)$  $QG_2$  = 0.997,  $QIGSSD(QG_1, QG_3)$  = 0.97. Since  $QIGSSD(QG_1, QG_2)$  is bigger than  $QIGSSD(QG_1, QG_3)$ , we merge  $QG_1$ and  $OG_2$  to one OI group. The updated  $R^*$  was shown is table 3(b).

| Tuple | QG | Age      | Zip        | Problem   | Tuple | QG | Age      | Zip        | Proble   |
|-------|----|----------|------------|-----------|-------|----|----------|------------|----------|
| t1*   | 1  | [21, 25] | [11k, 20k] | flu       | t1*   | 1  | [21, 50] | [11k, 30k] | flu      |
| t2*   | 1  | [21, 25] | [11k, 20k] | gastritis | t3*   | 1  | [21, 50] | [11k, 30k] | flu      |
| t3*   | 2  | [41, 50] | [21k, 30k] | flu       | t4*   | 1  | [21, 50] | [11k, 30k] | gastriti |
| t4*   | 2  | [41, 50] | [21k, 30k] | gastritis | t5*   | 1  | [21, 50] | [11k, 30k] | insomn   |
| t6*   | 3  | [51, 55] | [51k, 60k] | flu       | t6*   | 2  | [51, 55] | [51k, 60k] | flu      |
| t7*   | 3  | [51, 55] | [51k, 60k] | gastritis | t7*   | 2  | [51, 55] | [51k, 60k] | gastriti |
| (a)   |    |          |            | (b)       |       |    |          |            |          |

# **MODIFY OPERATION**

To a modify operation  $MODIFY(R, \varphi_M, F_M)$ , the k-anonymized dataset  $R^*$  need to be modified correspondingly too. According to the modified value in  $R^*$  map is generalized value or precise values, the modify operation of  $R^*$  can be divided into the following two cases. First case, if  $\varphi_M$  and  $F_M$  only contain  $A^S$ , then we modify the tuple in  $R^*$  directly. Second, if  $\varphi_M$ and  $F_M$  contain attributes of quasi-identifier, the modify operation in  $R^*$  can be decomposed to delete and insert operations: For each tuple t satisfying  $\varphi_M$  in R, we delete it's generalizing tuple from  $R^*$  firstly, then insert the modified tuple t' to  $R^*$ . We can see that the modification procedure includes the delete operation, thus, we need to check the QI group after modification and merge the QI groups which size is less than k.

The modify operation for the *k*-anonymized dataset  $R^*$  includes two steps: 1. If  $\varphi_M$  and  $F_M$  only contain  $A^S$ , then we modify the tuple in  $R^*$  directly. Otherwise, 2. Search the tuple set *T* satisfying  $\varphi_M$  in *R*, for each tuple  $t \in T$ , we delete the generalized tuple of *t* from  $R^*$ , then, perform *INS* process to insert the modified tuple *t'* into  $R^*$ . 3. Merge *QI* groups which size is less than *k*.

Algorithm:  $MOD(R(A^{Ql}, A^S), \varphi_M, F_M, R^*(A^{Ql}, A^S), INDT)$ Input: original dataset  $R(A^{Ql}, A^S)$ , *k*-anonymized dataset  $R^*(A^{Ql}, A^S)$  of  $R(A^{Ql}, A^S)$ , the modification condition  $\varphi_M$  and the modification expression  $F_M$  for R, the index table *INDT* between R and R\* Output: k-anonymized dataset R\* corresponding to R after modified Initialization: ssd=0; ssdq=0; 1. if  $\alpha(\varphi_M) = A^S$  and  $\alpha(F_M) = A^S$  then  $\{R^* \leftarrow \text{modify tuples in } R^* \text{ satisfying } \varphi_M \text{ basing the modification expression } F_M;$ Update the index table INDT;} else 2./\* Deleting the old tuple (before the modification) in R\*and inserting the new tuple (after the modification) \*/  $T \leftarrow \{ \text{tuples satisfying } \varphi_M \text{ on } R \} \}$ /\*modify each tuple  $t \in T */$ for i = 1 to m{for each  $t \in T$ { $ssd \leftarrow T-QGSSD(t, QG_i)$ ;  $/* | A^{\hat{Q}\hat{I}} | = n * /$ if ssd = 1 then  $\{R^* \leftarrow R^* - \{t^* | t^* \in QG_i \text{ and } t^* [A^S] = t[A^S]\}; /* \text{delete the old tuple in } R^* */$ update the index table *INDT*;} /\*insert the modified tuple to  $R^{**/}$  $t' = F_M(t);$  $R^* \leftarrow INS(R(A^{QI}, A^S), t', R^*(A^{QI}, A^S), INDT);$ update the index table *INDT*;  $T \leftarrow T - t; \} \}$ 3. /\* merge QI group which size is less than k in R\* basing on QG semantic similarity degree \*/ for each  $OG_i \in R^*$ if  $|QG_i| \leq k$  then {for each  $QG_i \in R^*$  and  $QG_i \neq QG_i$ if  $OGSSD(OG_i, OG_i) > ssd$  then { $ssd \leftarrow QGSSD(QG_i, QG_j); ssdq=j;$ } merge  $QG_i$  and  $QG_{ssdq}$  to one QI group; update the index table *INDT*;} 4. return  $(R^*)$ ;

| Tuple | QG | Zip        | Proble   |
|-------|----|------------|----------|
| t1*   | 1  | [11k, 20k] | flu      |
| t2*   | 1  | [11k, 20k] | gastriti |
| t3*   | 2  | [21k, 30k] | flu      |
| t4*   | 2  | [21k, 30k] | gastriti |
| t5*   | 2  | [21k, 30k] | insomn   |
| t6*   | 3  | [51k, 65k] | flu      |
| t7*   | 3  | [51k, 65k] | gastriti |

| Table 4. The increment update of mounty to A | Table 4. The | increment | update of | f modify to | o R*. |
|----------------------------------------------|--------------|-----------|-----------|-------------|-------|
|----------------------------------------------|--------------|-----------|-----------|-------------|-------|

Example 10: When the modify operation MODIFY (R, Age <= 25, Age = Age + 10) was performed in R (table 1(a)), the corresponding modify operation in  $R^*$ (table 1(b)) is: Perform Age <= 25 on R and got the tuple set  $T = \{(21, 12000, flu), (23, 18000, gastritis)\}$ . For the tuple (21, 12000, flu), the modified result is (31, 12000, flu) according to the modification expression Age = Age + 10. Because the result is different from the original tuple, we deleted it's generalized tuple ([21-25], [11k, 20k], flu) from  $R^*$  and call *INS* process to insert (31, 12000, flu) into  $QG_1$ . The result is shown in table 4. For the tuple(23, 18000, gastritis), it's generalized tuple is ([31-35], [11k, 20k], gastritis) which does not change before and after modify operation, so  $R^*$  is not changed too.

#### CONCLUSIONS

In this paper, we introduce a direct update method for *k*-anonymized dataset basing on semantic. The original dataset we considered is a relational table, but according to the information we have the update algorithms of *k*-anonymized dataset will be more complicated when the original dataset is a view derived from one or multiple relationship tables. So we will focus on the update method to the original dataset is a view in the following work.

#### ACKNOWLEDGMENT

Our work is supported by the National Natural Science Foundation of China (No.60773100, No. 61070032), Project of Science and Technology Office of Hebei Province (NO.13227427), Doctoral Fund of HeBei Normal University of Science & Technology (No.2013YB007) and Creative team Fund of HeBei Normal University of Science & Technology (No.CXTD2012-08).

## REFERENCES

- [1] Sweeney. L, "K-Anonymity: a model for protecting privacy", International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, **10(5)**, 557-570(**2002**).
- [2] Xiao Xiaokui and Tao Yufei, "Dynamic Anonymization: Accurate Statistical Analysis with Privacy Preservation", in Proceedings of the ACM SIGMOD, 107-120(2008).
- [3] A.Meyerson and R.Williams, "On the complexity of optimal k-anonymity", in Proceedings of the ACM Symp, 223-228(2004).
- [4] G.Aggarwal, T.Feder, K.Kenthapadi, et al, "k-Anonymity:Algorithms and Hardness", Stanford University, California, USA, Tech Rep:2004-22(2004).
- [5] LeFevre Kristen, DeWitt. D J and Ramakrishnan Raghu, "Mondrian Multidimensional K-Anonymity", in Proceedings of ICDE, 25 (2006).
- [6] Ghinita G, Kalnis P and Tao Y F, "Anonymous Publication of Sensitive Transactional Data", IEEE Transactions on Knowledge and Data Engineering, 23(2), 161-174(2011).
- [7] Machanavajjhala. A, Gehrke. J and Kifer. D, "l-diversity: Privacy beyond k-anonymity", in Proceedings of ICDE, 1-12 (2006).
- [8] Xiao X K, Yi K and Tao Y F, "The Hardness and Approximation Algorithms for L-Diversity", in Proceedings of EDBT, 135-146(2010).
- [9] Liu J Q and Wang K, "On Optimal Anonymization for L+-Diversity", in Proceedings of ICDE, 213-224(2010).
- [10] Wang K, Xu Y B, Wong R C-W, et al., "Anonymizing Temporal Data", in Proceedings of ICDM, 1109-1114(2010).
- [11] Shi P, Xiong L and Fung B C M, "Anonymizing Data with Quasi-Sensitive Attribute Values", in Proceedings of CIKM, 1389-1392(2010).
- [12] Ren Xiangmin, Yang Jing, Zhang Jianpei and Wang Kechao, "Research on CBK(L,K)-Anonymity Algorithm", International Journal of Advancements in Computing Technology, **3(4)**, 165-173 (**2011**).
- [13] Ren Xiangmin, Yang Jing and Zhang Jianpei, "An Improved Strategy of Preventing Privacy Inference Attacks Based on K-Anonymity Data Set", International Journal of Digital Content Technology and its Applications, 4(10), 346-355 (2012).
- [14] Yinghua Liu, Bingru Yang and Guangyuan LI, "A Personalized Privacy Preserving Parallel (alpha, k)-anonymity Model", International Journal of Advancements in Computing Technology, 4(5), 265-271(2012).
- [15] Mohammed N, Fung B C M and Debbabi M, "Anonymity Meets Game Theory: Secure Data Integration with Malicious Participants", The VLDB Journal, 20(4), 567-588(2011).
- [16] Xiao X and Tao Y, "M-invariance: towards privacy preserving re-publication of dynamic datasets", in Proceedings of the 2007 ACM SIGMOD international conference on Management of data, 689-700 (2007).
- [17] Traian M T and Alina C, "K-anonymization incremental maintenance and optimization techniques", in Proceedings of the 2007 ACM symposium on Applied computing, 80-387 (2007).